1
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Hart A, Schroeder H, Rose M, Vrijheid M, Kouloura E, Bordajandi LR, Riolo F, Vleminckx C. Update of the scientific opinion on tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J 2024; 22:e8859. [PMID: 39010865 PMCID: PMC11247339 DOI: 10.2903/j.efsa.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 μg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
Collapse
|
2
|
Eze FN, Jansakul C, Srichana T. Insights into the formulation properties, biocompatibility, and permeability of poorly water-soluble methoxyflavones with PEG400 and propylene glycol. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:385-404. [PMID: 37708958 DOI: 10.2478/acph-2023-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 09/16/2023]
Abstract
Herein, thermal and non-thermal techniques were used to elucidate the putative physical and chemical interactions between poorly water-soluble Kaempferia methoxyflavones and PEG400/propylene glycol. Additionally, the biocompatibility of methoxyflavone-glycol solutions was evaluated using Caco-2 cells whereas the absorptive transport was investigated by measuring the apparent permeability coefficient (P app) of the methoxyflavones and transepithelial electrical resistance (TEER) of the Caco-2 cell monolayer. Data from differential scanning calorimetry, Fourier-transform infrared (FTIR), and proton nuclear magnetic resonance (1H NMR) spectroscopic analysis revealed physico-chemical compatibility between the three methoxyflavones and PEG400/propylene glycol. Furthermore, PEG400 and propylene glycol solutions of the methoxyflavones were shown to be compatible with Caco-2 cells at pharmacologically effective concentrations. In vitro transport studies across the Caco-2 cell monolayer revealed high P app values of 24.07 × 10-6 to 19.63 × 10-6 cm s-1 for PEG400 solutions of the methoxyflavones. The TEER values of the Caco-2 cell monolayers indicated that the increased drug transport was partly due to increased tight junction openings, but without compromising the epithelial barrier integrity. The good pharmaceutical and biocompatibility profiles, as well as improved transport of the methoxyflavones in PEG400 and propylene glycol solutions, are suggestive of the worthiness of this approach for further consideration pertaining to the development of these drugs into oral liquid dosage forms.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hat Yai, Songkhla 90110, Thailand
| | - Chaweewan Jansakul
- Natural Product Research Centre of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hat Yai, Songkhla 90110, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
3
|
Khalid HB, Rasul A, Shah S, Abbas G, Mahmood A. Disulfide Bridged Nanoparticles of Thiolated Sodium Alginate and Eudragit RS100 for Oral Delivery of Paclitaxel: In Vitro and In Vivo Evaluation. ACS OMEGA 2023; 8:9662-9672. [PMID: 36936332 PMCID: PMC10018692 DOI: 10.1021/acsomega.3c00400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Most biopharmaceutics classification system (BCS) class IV drugs have limited oral bioavailability due to poor solubility and poorer permeability. This work aims to investigate the possibility of utilizing disulfide bridged nanoparticles to improve BCS IV drug solubility and oral absorption. Disulfide bridged nanoparticles were made using thiolated sodium alginate (TSA) and thiolated eudragit RS100 (TERS100). This study used paclitaxel (PTL) as a model drug to create PTL-loaded nanoparticles using the air oxidation approach. PTL-loaded nanoparticles boosted the solubility of PTL by over 11 times (∼59 μg/mL). The nanoparticles had particle sizes of 103 nm, polydispersity indices of 0.034, and zeta potentials of -21 mV, respectively. Nanoparticles demonstrated 75.34% and 89.18% entrapment and loading efficiency of PTL, respectively. The PTL release data from nanoparticles had good sustained release properties. The effective permeability of PTL from nanoparticles was 2.19-fold higher than that of pure PTL suspension. The relative bioavailability of PTL with disulfide bridged nanoparticles was 237.11%, which was much higher than that of PTL suspension, according to the pharmacokinetic data. These results show that disulfide bridged nanoparticles have a wide range of clinical applications.
Collapse
Affiliation(s)
- Hafiz
Muhammad Bilal Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38040, Pakistan
| | - Akhtar Rasul
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38040, Pakistan
| | - Shahid Shah
- Department
of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38040, Pakistan
| | - Ghulam Abbas
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38040, Pakistan
| | - Abid Mahmood
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38040, Pakistan
| |
Collapse
|
4
|
Fragki S, Piersma AH, Westerhout J, Kienhuis A, Kramer NI, Zeilmaker MJ. Applicability of generic PBK modelling in chemical hazard assessment: A case study with IndusChemFate. Regul Toxicol Pharmacol 2022; 136:105267. [DOI: 10.1016/j.yrtph.2022.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/20/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
|
5
|
Adachi K, Shimizu M, Yamazaki H. Updated in Silico Prediction Methods for Fractions Absorbed and Key Input Parameters of 355 Disparate Chemicals for Physiologically Based Pharmacokinetic Models for Time-Dependent Plasma Concentrations after Virtual Oral Doses in Humans. Biol Pharm Bull 2022; 45:1812-1817. [PMID: 36171106 DOI: 10.1248/bpb.b22-00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human metabolic profiles for substances such as toxic food-derived compounds are usually allometrically extrapolated from traditionally determined in vivo rat concentration profiles. To evaluate internal exposures in humans without any reference to experimental data, physiologically based pharmacokinetic (PBPK) modeling could be used if the model input parameters could be estimated in silico. This approach would simplify the use of PBPK models for forward dosimetry after oral doses. In this study, the in silico estimation of input parameters for PBPK models (i.e., fraction absorbed × intestinal availability, absorption rate constants, and volumes of the systemic circulation) was updated for an panel of 355 chemicals (212 previously analyzed and 143 additional substances) using a light gradient boosting machine learning algorithms (LightGBM) based on between 11 and 29 in silico-calculated chemical descriptors. Simplified human PBPK models were then used to calculate virtual maximum plasma concentrations (Cmax) and areas under the concentration-time curve (AUC) based on two sets of input parameters, i.e., traditionally derived values from in vivo data and those calculated in silico using the current updated systems. Both sets of Cmax and AUC data were well correlated (r = 0.87 and r = 0.73, respectively; p < 0.01, n = 355). Therefore, input parameters for human PBPK models for a diverse range of compounds could be successfully estimated using chemical descriptors and in silico tools. This approach to pharmacokinetic modeling has potential for application in computational toxicology and in the clinical setting for assessing the potential risk of general chemicals.
Collapse
|
6
|
Ogiya D, Murayama N, Kamiya Y, Saito R, Shiraiwa S, Suzuki R, Machida S, Tazume K, Ando K, Yamazaki H. Low cerebrospinal fluid-to-plasma ratios of orally administered lenalidomide mediated by its low cell membrane permeability in patients with hematologic malignancies. Ann Hematol 2022; 101:2013-2019. [PMID: 35732975 DOI: 10.1007/s00277-022-04893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022]
Abstract
Lenalidomide is a synthetic analog of thalidomide formed by the removal of one keto group (plus the addition of an amino group); it has anti-tumor activities beneficial for the treatment of hematologic malignancies. However, lenalidomide distribution to brain in animal models is reportedly low compared with that of thalidomide. The aim of this study was to evaluate plasma and cerebrospinal fluid concentrations of lenalidomide in three patients with malignant hematologic malignancies. Lenalidomide was detected in plasma from the three Japanese patients 1.5 h following oral administration of 20 mg lenalidomide using liquid chromatography/mass spectrometry, despite the in vitro gastrointestinal permeability of lenalidomide being low. Clinically observed cerebrospinal fluid-to-plasma ratios of lenalidomide were low (1.3-2.4%). Observed influx permeability values for lenalidomide in monkey blood-brain barrier model and human placental cell systems were one order of magnitude lower than those of thalidomide and another second-generation drug, pomalidomide along with a positive permeability control, caffeine. Because of the low cell-barrier permeability of lenalidomide demonstrated in in vitro assays, clinically relevant pharmacokinetic profiles of lenalidomide resulted in low penetrability from plasma into cerebrospinal fluid in patients with hematologic malignancies. Lenalidomide is conclusively suggested to expert its favorable immunomodulatory effects via systemic exposures in the patients.
Collapse
Affiliation(s)
- Daisuke Ogiya
- Department of Hematology and Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.,Department of Hematology, Isehara Kyodo Hospital, 345 Tanaka, Isehara, Kanagawa, 259-1187, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Rie Saito
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Sawako Shiraiwa
- Department of Hematology and Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Rikio Suzuki
- Department of Hematology and Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Shinichiro Machida
- Department of Hematology and Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Kei Tazume
- Department of Hematology, Isehara Kyodo Hospital, 345 Tanaka, Isehara, Kanagawa, 259-1187, Japan
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
7
|
Shimizu M, Hayasaka R, Kamiya Y, Yamazaki H. Trivariate Linear Regression and Machine Learning Prediction of Possible Roles of Efflux Transporters in Estimated Intestinal Permeability Values of 301 Disparate Chemicals. Biol Pharm Bull 2022; 45:1142-1157. [DOI: 10.1248/bpb.b22-00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Miura T, Uehara S, Shimizu M, Suemizu H, Yamazaki H. Forward and reverse dosimetry for aniline and 2,6-dimethylaniline in humans extrapolated from humanized-liver mouse data using simplified physiologically based pharmacokinetic models. J Toxicol Sci 2022; 47:531-538. [DOI: 10.2131/jts.47.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Shotaro Uehara
- Laboratory Animal Research Department, Central Institute for Experimental Animals
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| |
Collapse
|
9
|
Adachi K, Shimizu M, Yamazaki H. Updated <i>in silico</i> prediction methods for fractions absorbed and absorption rate constants of 372 disparate chemicals for use in physiologically based pharmacokinetic models for estimating internal concentrations in rats. J Toxicol Sci 2022; 47:453-456. [DOI: 10.2131/jts.47.453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Kuwagata M, Hasegawa T, Takashima H, Shimizu M, Kitajima S, Yamazaki H. Pharmacokinetics of primary metabolites 5-hydroxythalidomide and 5'-hydroxythalidomide formed after oral administration of thalidomide in the rabbit, a thalidomide-sensitive species. J Toxicol Sci 2021; 46:553-560. [PMID: 34853241 DOI: 10.2131/jts.46.553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The teratogenicity of the chemotherapeutic drug thalidomide is species-specific and affects humans, non-human primates, and rabbits. The primary oxidation of thalidomide in previously investigated rodents predominantly resulted in the formation of deactivated 5'-hydroxythalidomide. In the current study, similar in vivo biotransformations to 5-hydroxythalidomide and 5'-hydroxythalidomide were confirmed by the analysis of blood plasma from male rabbits, a thalidomide-sensitive species, after oral administration of thalidomide (2.0 mg/kg). Similar levels of thalidomide in seminal plasma and in blood plasma were detected using liquid chromatography-tandem mass spectrometry at 4 hr and 7 hr after oral doses in male rabbits. Seminal plasma concentrations of 5-hydroxythalidomide and 5'-hydroxythalidomide were also seen in male rabbits in a roughly similar time-dependent manner to those in the blood plasma after oral doses of thalidomide (2.0 mg/kg). Furthermore, the values generated by a simplified physiologically based pharmacokinetic rabbit model were in agreement with the measured in vivo blood plasma data under metabolic ratios of 0.01 for the hepatic intrinsic clearance of thalidomide to both unconjugated 5-hydroxythalidomide and 5'-hydroxythalidomide. These results suggest that metabolic activation of thalidomide may be dependent on rabbit liver enzymes just it was for cytochrome P450 enzymes in humanized-liver mice; in contrast, rodent livers predominantly mediate biotransformation of thalidomide to 5'-hydroxythalidomide. A developmental toxicity test system with experimental animals that involves intravaginal exposures to the chemotherapeutic drug thalidomide via semen should be considered in the future.
Collapse
Affiliation(s)
- Makiko Kuwagata
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
| | | | | | | | - Satoshi Kitajima
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
| | | |
Collapse
|
11
|
Kamiya Y, Handa K, Miura T, Ohori J, Kato A, Shimizu M, Kitajima M, Yamazaki H. Machine Learning Prediction of the Three Main Input Parameters of a Simplified Physiologically Based Pharmacokinetic Model Subsequently Used to Generate Time-Dependent Plasma Concentration Data in Humans after Oral Doses of 212 Disparate Chemicals. Biol Pharm Bull 2021; 45:124-128. [PMID: 34732590 DOI: 10.1248/bpb.b21-00769] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling has the potential to play significant roles in estimating internal chemical exposures. The three major PBPK model input parameters (i.e., absorption rate constants, volumes of the systemic circulation, and hepatic intrinsic clearances) were generated in silico for 212 chemicals using machine learning algorithms. These input parameters were calculated based on sets of between 17 and 65 chemical properties that were generated by in silico prediction tools before being processed by machine learning algorithms. The resulting simplified PBPK models were used to estimate plasma concentrations after virtual oral administrations in humans. The estimated absorption rate constants, volumes of the systemic circulation, and hepatic intrinsic clearance values for the 212 test compounds determined traditionally (i.e., based on fitting to measured concentration profiles) and newly estimated had correlation coefficients of 0.65, 0.68, and 0.77 (p < 0.01, n = 212), respectively. When human plasma concentrations were modeled using traditionally determined input parameters and again using in silico estimated input parameters, the two sets of maximum plasma concentrations (r = 0.85, p < 0.01, n = 212) and areas under the curve (r = 0.80, p < 0.01, n = 212) were correlated. Virtual chemical exposure levels in liver and kidney were also estimated using these simplified PBPK models along with human plasma levels. These results indicate that the PBPK model input parameters for humans of a diverse set of compounds can be reliability estimated using chemical descriptors calculated using in silico tools.
Collapse
|
12
|
Miura T, Kamiya Y, Murayama N, Shimizu M, Yamazaki H. Differences in Pharmacokinetics and Haematotoxicities of Aniline and Its Dimethyl Derivatives Orally Administered in Rats. Biol Pharm Bull 2021; 44:1775-1780. [PMID: 34433705 DOI: 10.1248/bpb.b21-00589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aniline and its dimethyl derivatives reportedly become haematotoxic after metabolic N-hydroxylation of their amino groups. The plasma concentrations of aniline and its dimethyl derivatives after single oral doses of 25 mg/kg in rats were quantitatively measured and semi-quantitatively estimated using LC-tandem mass spectrometry. The quantitatively determined elimination rates of aniline; 2,4-dimethylaniline; and 3,5-dimethylaniline based on rat plasma versus time curves were generally rapid compared with those of 2,3-; 2,5-; 2,6-; and N,2-dimethylaniline. The primary acetylated metabolites of aniline; 2,4-dimethylaniline; and 3,5-dimethylaniline, as semi-quantitatively estimated based on their peak areas in LC analyses, were more extensively formed than those of 2,3-; 2,5-; 2,6-; and N,2-dimethylaniline. The areas under the curve of unmetabolized (remaining) aniline and its dimethyl derivatives estimated using simplified physiologically based pharmacokinetic models (that were set up using the experimental plasma concentrations) showed an apparently positive correlation with the reported lowest-observed-effect levels for haematotoxicity of these chemicals. In the case of 2,4-dimethylaniline, a methyl group at another C4-positon would be one of the determinant factors for rapid metabolic elimination to form aminotoluic acid. These results suggest that rapid and extensive metabolic activation of aniline and its dimethyl derivatives occurred in rats and that the presence of a methyl group at the C2-positon may generally suppress fast metabolic rates of dimethyl aniline derivatives that promote metabolic activation reactions at NH2 moieties.
Collapse
Affiliation(s)
- Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| |
Collapse
|
13
|
Kamiya Y, Handa K, Miura T, Ohori J, Shimizu M, Kitajima M, Shono F, Funatsu K, Yamazaki H. An Updated In Silico Prediction Method for Volumes of Systemic Circulation of 323 Disparate Chemicals for Use in Physiologically Based Pharmacokinetic Models to Estimate Plasma and Tissue Concentrations after Oral Doses in Rats. Chem Res Toxicol 2021; 34:2180-2183. [PMID: 34586804 DOI: 10.1021/acs.chemrestox.1c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Updated algorithms for predicting the volumes of systemic circulation (V1), along with absorption rate constants and hepatic intrinsic clearances, as input parameters for physiologically based pharmacokinetic (PBPK) models were established to improve the accuracy of estimated plasma and tissue concentrations of 323 chemicals after virtual oral administrations in rats. Using ridge regression with an enlarged set of chemical descriptors (up to 99), the estimated input V1 values resulted in an improved correlation coefficient (from 246 compounds) with the traditionally determined values. The PBPK model input parameters for rats of diverse compounds can be precisely estimated by increasing the number of descriptors.
Collapse
Affiliation(s)
- Yusuke Kamiya
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | | - Tomonori Miura
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Junya Ohori
- Fujitsu, Nakahara-ku, Kawasaki 211-8588, Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | | - Fumiaki Shono
- Data Science Center Tokyo Office, Nara Institute of Science and Technology, Minato-ku, Tokyo 108-0023, Japan
| | - Kimito Funatsu
- Data Science Center Tokyo Office, Nara Institute of Science and Technology, Minato-ku, Tokyo 108-0023, Japan
| | | |
Collapse
|
14
|
Adachi K, Beppu S, Terashima M, Fukuda T, Tomizawa J, Shimizu M, Yamazaki H. Pharmacokinetics of caffeine self-administered in overdose in a Japanese patient admitted to hospital. J Pharm Health Care Sci 2021; 7:36. [PMID: 34602096 PMCID: PMC8489039 DOI: 10.1186/s40780-021-00220-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Caffeine (0.1 g) is used as a central nervous system stimulant and as a nontoxic phenotyping probe for cytochrome P450 1A2. However, an increasing number of suicide attempts by caffeine overdose have been recently reported. Case presentation A 25-year-old woman (body weight, 43 kg) who intentionally took an overdose of 5.9 g caffeine as a suicide attempt was emergently admitted to Kyoto Medical Center. The plasma concentrations of caffeine and its primary metabolite, N-demethylated paraxanthine, in the current case were 100 and 7.3 μg/mL, 81 and 9.9 μg/mL, 63 and 12 μg/mL, and 21 and 14 μg/mL, at 12, 20, 30, and 56 h after oral overdose, respectively. The observed apparent terminal elimination half-life of caffeine during days 1 and 2 of hospitalization was 27 h, which is several times longer than the reported normal value. This finding implied nonlinearity of caffeine pharmacokinetics over such a wide dose range, which could affect the accuracy of values simulated by a simplified physiologically based pharmacokinetic model founded on a normal dose of 100 mg. Low serum potassium levels (2.9 and 3.5 mM) on days 1 and 2 may have been caused by the caffeine overdose in the current case. Conclusions The patient underwent infusion with bicarbonate Ringer’s solution and potassium chloride and was discharged on the third day of hospitalization despite taking a potentially lethal dose of caffeine. The virtual plasma exposures of caffeine estimated using the current simplified PBPK model were higher than the measured values. The present results based on drug monitoring data and additional pharmacokinetic predictions could serve as a useful guide in cases of caffeine overdose.
Collapse
Affiliation(s)
- Koichiro Adachi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan.,Kyoto Medical Center, Fukakusa Mukaihata-cho, Fushimi-ku, Kyoto, 612-8555, Japan.,Himeji Medical Center, Himeji, Hyogo, 670-8520, Japan
| | - Satoru Beppu
- Kyoto Medical Center, Fukakusa Mukaihata-cho, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Mariko Terashima
- Kyoto Medical Center, Fukakusa Mukaihata-cho, Fushimi-ku, Kyoto, 612-8555, Japan
| | | | - Jun Tomizawa
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
15
|
Adachi K, Sugitani Y, Unita R, Yoshida K, Beppu S, Terashima M, Fujii M, Shimizu M, Yamazaki H. Pharmacokinetics of loxoprofen in a self-administered overdose in a Japanese patient admitted to hospital. J Pharm Health Care Sci 2021; 7:33. [PMID: 34488903 PMCID: PMC8422741 DOI: 10.1186/s40780-021-00216-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023] Open
Abstract
Background Loxoprofen is a propionic acid derivative and is the most widely prescribed non-steroidal anti-inflammatory drug in Japan. Loxoprofen is generally considered to be relatively nontoxic. Case presentation A 33-year-old man (body weight, 55 kg) who intentionally took an overdose of 100 tablets of loxoprofen (6000 mg) as a suicide attempt was emergently admitted to Kyoto Medical Center. On arrival, the patient was suffering disorders of consciousness. His plasma concentrations of loxoprofen and its reduced trans-alcohol metabolite were 52 and 24 μg/mL, 3.7 and 2.3 μg/mL, 0.81 and 0.54 μg/mL, and 0.015 and 0.011 μg/mL, respectively, at 4, 26, 50, and 121 h after the oral overdose. The observed apparent terminal elimination half-life of loxoprofen during days 1 and 2 of hospitalization was in the range 6–12 h, which is several times longer than the reported normal value. This finding implied nonlinearity of loxoprofen pharmacokinetics over the current 100-fold dose range, which could affect the accuracy of values simulated by a simplified physiologically based pharmacokinetic (PBPK) model founded on data from a normal dose of 60 mg. The reasons for the delayed eliminations from plasma of loxoprofen and its trans-alcohol metabolite in this case are uncertain, but slight renal impairment (low eGFR values) developed on the second and third hospital days and could be a causal factor. Conclusions Because the patient’s level of consciousness had gradually improved, he was discharged on the fourth day of hospitalization. The virtual plasma exposures of loxoprofen and its reduced trans-alcohol metabolite estimated using the current simplified PBPK model were lower than the measured values in the overdose case. The present results based on drug monitoring data and pharmacokinetic predictions could serve as a useful guide in cases of loxoprofen overdose.
Collapse
Affiliation(s)
- Koichiro Adachi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan.,Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555, Japan.,Present address, Himeji Medical Center, Himeji, Hyogo, 670-8520, Japan
| | - Yuki Sugitani
- Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Ryo Unita
- Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Kosuke Yoshida
- Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Satoru Beppu
- Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555, Japan
| | | | - Masaya Fujii
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
16
|
Yanagi M, Kamiya Y, Murayama N, Banju K, Shimizu M, Yamazaki H. Metabolic profiles for the pyrrolizidine alkaloid neopetasitenine and its metabolite petasitenine in humans extrapolated from rat in vivo and in vitro data sets using a simplified physiologically based pharmacokinetic model. J Toxicol Sci 2021; 46:391-399. [PMID: 34470991 DOI: 10.2131/jts.46.391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Naturally occurring food substances may constitute safety hazards. The risks associated with plant-derived pyrrolizidine alkaloids have been extensively evaluated. Petasites japonicus (common Japanese name, fuki) is a widely consumed water-soluble pyrrolizidine alkaloid-producing plant. In this study, neopetasitenine (acetylfukinotoxin) was selected as a model food substrate (for which human pharmacokinetics were estimated) because of its high concentration in fuki, along with petasitenine (fukinotoxin), its carcinogenic deacetylated metabolite. Although neopetasitenine was rapidly absorbed and converted to petasitenine after oral administration of 1.0 mg/kg in rats, petasitenine was slowly cleared from plasma. Forward dosimetry was conducted using in silico simplified physiologically based pharmacokinetic (PBPK) modeling formulated on experimental pharmacokinetic rat data. From ~2 hr after the oral administration of neopetasitenine in rats, the plasma concentrations of petasitenine were higher than those of neopetasitenine under the present conditions. A human PBPK model was established following an allometric scaling approach applied to rat parameters (without considering interspecies factors) to estimate human intrinsic hepatic clearances from empirical rat values. Human in silico neopetasitenine and petasitenine plasma concentration curves were simulated after daily oral administrations of 3.0 and 1.3 mg/kg neopetasitenine. These doses were taken from reported acute/short-term cases of pyrrolizidine alkaloid toxicity. In vitro hepatotoxicity of neopetasitenine and petasitenine was caused by their high concentrations in the medium for human hepatocyte-like cell line HepaRG cells as an index of lactate dehydrogenase leakage. Neopetasitenine was estimated to be rapidly absorbed and converted to deacetylated carcinogenic petasitenine, even after hepatotoxic doses of 1.0 mg/kg in humans. If the water-soluble pyrrolizidine alkaloid-producing plant P. japonicus were daily consumed as food, current simulation results suggest that dangerous amounts of deacetylated petasitenine could be continuously present in human plasma.
Collapse
|
17
|
Kamiya Y, Omura A, Hayasaka R, Saito R, Sano I, Handa K, Ohori J, Kitajima M, Shono F, Funatsu K, Yamazaki H. Prediction of permeability across intestinal cell monolayers for 219 disparate chemicals using in vitro experimental coefficients in a pH gradient system and in silico analyses by trivariate linear regressions and machine learning. Biochem Pharmacol 2021; 192:114749. [PMID: 34461115 DOI: 10.1016/j.bcp.2021.114749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022]
Abstract
For medicines, the apparent membrane permeability coefficients (Papp) across human colorectal carcinoma cell line (Caco-2) monolayers under a pH gradient generally correlate with the fraction absorbed after oral intake. Furthermore, the in vitro Papp values of 29 industrial chemicals were found to have an inverse association with their reported no-observed effect levels for hepatotoxicity in rats. In the current study, we expanded our influx permeability predictions for the 90 previously investigated chemicals to both influx and efflux permeability predictions for 207 diverse primary compounds, along with those for 23 secondary compounds. Trivariate linear regression analysis found that the observed influx and efflux logPapp values determined by in vitro experiments significantly correlated with molecular weights and the octanol-water distribution coefficients at apical and basal pH levels (pH 6.0 and 7.4, respectively) (apical to basal, r = 0.76, n = 198; and basal to apical, r = 0.77, n = 202); the distribution coefficients were estimated in silico. Further, prediction accuracy was enhanced by applying a light gradient boosting machine learning system (LightGBM) to estimate influx and efflux logPapp values that incorporated 17 and 19 in silico chemical descriptors (r = 0.83-0.84, p < 0.001). The determination in vitro and/or prediction in silico of permeability coefficients across intestinal cell monolayers of a diverse range of industrial chemicals/food components/medicines could contribute to the safety evaluations of oral intakes of general chemicals in humans. Such new alternative methods could also reduce the need for animal testing during toxicity assessment.
Collapse
Affiliation(s)
- Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Asuka Omura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Riku Hayasaka
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Rie Saito
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Izumi Sano
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | | | - Junya Ohori
- Fujitsu, Nakahara-ku, Kawasaki 211-8588, Japan
| | | | - Fumiaki Shono
- Data Science Center Tokyo Office, Nara Institute of Science and Technology, Minato-ku, Tokyo 108-0023, Japan
| | - Kimito Funatsu
- Data Science Center Tokyo Office, Nara Institute of Science and Technology, Minato-ku, Tokyo 108-0023, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
18
|
Adachi K, Beppu S, Terashima M, Kobari W, Shimizu M, Yamazaki H. Pharmacokinetic modeling of over-the-counter drug diphenhydramine self-administered in overdoses in Japanese patients admitted to hospital. J Pharm Health Care Sci 2021; 7:32. [PMID: 34334133 PMCID: PMC8327444 DOI: 10.1186/s40780-021-00215-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background Although the over-the-counter H1 receptor antagonist diphenhydramine is not a common drug of abuse, it was recently recognized as one of the substances causing acute poisoning in patients attempting suicide that led to admissions to our hospital emergency room. Case presentation Two patients [women aged 21 and 27 years (cases 1 and 2)] were emergently admitted after intentionally taking overdoses of 900 and 1200 mg diphenhydramine, respectively. The plasma diphenhydramine concentrations in case 1 were 977 and 425 ng/mL at 2.5 and 11.5 h after single oral overdose, and those in case 2 were 1320 and 475 ng/mL at 3 and 18 h after administration, respectively. We set up a simplified physiologically based pharmacokinetic (PBPK) model that was established using the reported pharmacokinetic data for a microdose of diphenhydramine. The two virtual plasma concentrations and the area under the curve (AUC) values extrapolated using the PBPK model were consistent with the observed overdose data. This finding implied linearity of pharmacokinetics over a wide dosage range for diphenhydramine. Conclusions The determined plasma concentrations of diphenhydramine of around 1000 ng/mL at ~ 3 h after orally administered overdoses in cases 1 and 2 may not have been high enough to cause hepatic impairment because levels of aspartate aminotransferase and alanine aminotransferase were normal; however, there was an increase in total bilirubin in case 1. Nonetheless, high virtual liver exposures of diphenhydramine were estimated by the current PBPK model. The present results based on drug monitoring data and pharmacokinetic predictions could serve as a useful guide when setting the duration of treatment in cases of diphenhydramine overdose.
Collapse
Affiliation(s)
- Koichiro Adachi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan.,Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555, Japan.,Present address, Himeji Medical Center, Himeji, Hyogo, 670-8520, Japan
| | - Satoru Beppu
- Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555, Japan
| | | | - Wataru Kobari
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
19
|
Miura T, Kamiya Y, Uehara S, Murayama N, Shimizu M, Suemizu H, Yamazaki H. Hepatotoxicological potential of P-toluic acid in humanised-liver mice investigated using simplified physiologically based pharmacokinetic models. Xenobiotica 2021; 51:636-642. [PMID: 33781181 DOI: 10.1080/00498254.2021.1908643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
p-Toluic acid, a metabolite of organic solvent xylene, has a high reported no-observed-effect level (NOEL, 1000 mg/kg) in rats, possibly because of direct glycine conjugation to methylhippuric acid. In this study, plasma levels of p-toluic acid and its glycine conjugate in mice and humanised-liver mice were evaluated after oral administrations.Although rapid conversion of p-toluic acid to its glycine conjugate was evident from mouse plasma concentrations, the biotransformation of p-toluic acid was slower in humanised-liver mice. The input parameters for physiologically based pharmacokinetic (PBPK) models were determined using fitting procedures to create PBPK-generated plasma concentration curves.The PBPK-modelled hepatic concentrations of p-toluic acid in humanised-liver mice were higher than those observed in plasma. PBPK-modelled hepatic and plasma concentrations of p-toluic acid also indicated slow elimination in humans.These results suggest that rapid conjugations of p-toluic acid reportedly observed in rats could result in overestimation of NOELs for conjugatable chemicals when extrapolated to humanised-liver mice or humans.
Collapse
Affiliation(s)
- Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Shotaro Uehara
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
20
|
Adachi K, Beppu S, Nishiyama K, Shimizu M, Yamazaki H. Pharmacokinetics of duloxetine self-administered in overdose with quetiapine and other antipsychotic drugs in a Japanese patient admitted to hospital. J Pharm Health Care Sci 2021; 7:6. [PMID: 33531089 PMCID: PMC7856802 DOI: 10.1186/s40780-021-00189-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/07/2021] [Indexed: 01/20/2023] Open
Abstract
Background Combinations of antidepressant duloxetine (at doses of 40–60 mg/day) and other antipsychotics are frequently used in clinical treatment; however, several fatal and nonfatal cases of duloxetine overdose have been documented. We experienced a patient who had taken an overdose of duloxetine (780 mg) in combination with other drugs in a suicide attempt. Case presentation The patient was a 37-year-old man (body weight, 64 kg) with a history of gender identity disorder and depression. He intentionally took an overdose of duloxetine in combination with three other antipsychotic drugs (18 mg flunitrazepam, 850 mg quetiapine, and 1100 mg trazodone) and was emergently admitted to Kyoto Medical Center. The patient’s plasma concentration of duloxetine during ambulance transport was 57 ng/ml, and the level was still as high as 126 ng/mL at 32 h after administration. Duloxetine disappeared most slowly from plasma, in contrast to quetiapine, which was the fastest to clear among the four medicines determined in this patient. The observed concentrations of duloxetine in this overdose patient were generally within the 95% confidence intervals of the plasma concentration curves predicted using a physiologically based pharmacokinetic (PBPK) model. Conclusion Even if more than 1 h (the generally recommended period) has passed after administration of duloxetine in such overdose cases, gastric lavage and/or administration of activated charcoal may be effective in clinical practice up to 6 h because of the typically slow elimination behavior illustrated by the PBPK model. Pharmacokinetic profiles visualized using PBPK modeling can inform treatment decisions in cases of drug overdose for medicines such as duloxetine in emergency clinical practice.
Collapse
Affiliation(s)
- Koichiro Adachi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan.,Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Satoru Beppu
- Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Kei Nishiyama
- Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
21
|
Kamiya Y, Handa K, Miura T, Yanagi M, Shigeta K, Hina S, Shimizu M, Kitajima M, Shono F, Funatsu K, Yamazaki H. In Silico Prediction of Input Parameters for Simplified Physiologically Based Pharmacokinetic Models for Estimating Plasma, Liver, and Kidney Exposures in Rats after Oral Doses of 246 Disparate Chemicals. Chem Res Toxicol 2021; 34:507-513. [PMID: 33433197 DOI: 10.1021/acs.chemrestox.0c00336] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently developed computational models can estimate plasma, hepatic, and renal concentrations of industrial chemicals in rats. Typically, the input parameter values (i.e., the absorption rate constant, volume of systemic circulation, and hepatic intrinsic clearance) for simplified physiologically based pharmacokinetic (PBPK) model systems are calculated to give the best fit to measured or reported in vivo blood substance concentration values in animals. The purpose of the present study was to estimate in silico these three input pharmacokinetic parameters using a machine learning algorithm applied to a broad range of chemical properties obtained from several cheminformatics software tools. These in silico estimated parameters were then incorporated into PBPK models for predicting internal exposures in rats. Following this approach, simplified PBPK models were set up for 246 drugs, food components, and industrial chemicals with a broad range of chemical structures. We had previously generated PBPK models for 158 of these substances, whereas 88 for which concentration series data were available in the literature were newly modeled. The values for the absorption rate constant, volume of systemic circulation, and hepatic intrinsic clearance could be generated in silico by equations containing between 14 and 26 physicochemical properties. After virtual oral dosing, the output concentration values of the 246 compounds in plasma, liver, and kidney from rat PBPK models using traditionally determined and in silico estimated input parameters were well correlated (r ≥ 0.83). In summary, by using PBPK models consisting of chemical receptor (gut), metabolizing (liver), excreting (kidney), and central (main) compartments with in silico-derived input parameters, the forward dosimetry of new chemicals could provide the plasma/tissue concentrations of drugs and chemicals after oral dosing, thereby facilitating estimates of hematotoxic, hepatotoxic, or nephrotoxic potential as a part of risk assessment.
Collapse
Affiliation(s)
- Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Kentaro Handa
- Fujitsu Kyusyu Systems, Higashi-hie, Hakata-ku, Fukuoka 812-0007, Japan
| | - Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Mayu Yanagi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Kazuki Shigeta
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Shiori Hina
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Masato Kitajima
- Fujitsu Kyusyu Systems, Higashi-hie, Hakata-ku, Fukuoka 812-0007, Japan
| | - Fumiaki Shono
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kimito Funatsu
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
22
|
Miura T, Uehara S, Shimizu M, Suemizu H, Yamazaki H. Pharmacokinetics of primary oxidative metabolites of thalidomide in rats and in chimeric mice humanized with different human hepatocytes. J Toxicol Sci 2021; 46:311-317. [PMID: 34193768 DOI: 10.2131/jts.46.311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The approved drug thalidomide is teratogenic in humans, nonhuman primates, and rabbits but not in rodents. The extensive biotransformation of 5'-hydroxythalidomide after oral administration of thalidomide (250 mg/kg) in rats was investigated in detail using liquid chromatography-tandem mass spectrometry. Probable metabolites 5'-hydroxythalidomide sulfate and glucuronide were extensively formed, with approximately tenfold and onefold peak areas, respectively, to the primary 5'-hydroxythalidomide measured using authentic standards. As a minor metabolite, 5-hydroxythalidomide was also detected. The output of simplified physiologically based pharmacokinetic rat models was consistent with the observed in vivo data under a metabolic ratio of 0.05 for the hepatic intrinsic clearance of thalidomide to unconjugated 5'-hydroxythalidomide. The aggregate of unconjugated and sulfate/glucuronide conjugated 5'-hydroxythalidomide forms appear to be the predominant metabolites in rats. Two hours after oral administration of thalidomide (100 mg/kg) to chimeric mice humanized with four different batches of genotyped human hepatocytes, the plasma concentration ratios of 5-hydroxythalidomide to 5'-hydroxythalidomide were correlated with replacement indexes of human liver cells previously transplanted in immunodeficient mice. These results indicate that rodent livers mediate thalidomide primary oxidation, leading to extensive deactivation in vivo to unconjugated/conjugated 5'-hydroxythalidomide and suggest that thalidomide activation might be dependent on the humanized livers in mice transplanted with human hepatocytes.
Collapse
Affiliation(s)
- Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Shotaro Uehara
- Laboratory Animal Research Department, Central Institute for Experimental Animals
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| |
Collapse
|
23
|
Miura T, Shimizu M, Uehara S, Yoshizawa M, Nakano A, Yanagi M, Kamiya Y, Murayama N, Suemizu H, Yamazaki H. Different Hepatic Concentrations of Bromobenzene, 1,2-Dibromobenzene, and 1,4-Dibromobenzene in Humanized-Liver Mice Predicted Using Simplified Physiologically Based Pharmacokinetic Models as Putative Markers of Toxicological Potential. Chem Res Toxicol 2020; 33:3048-3053. [DOI: 10.1021/acs.chemrestox.0c00387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Shotaro Uehara
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Manae Yoshizawa
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Ayane Nakano
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Mayu Yanagi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
24
|
Miura T, Kamiya Y, Hina S, Kobayashi Y, Murayama N, Shimizu M, Yamazaki H. Metabolic profiles of coumarin in human plasma extrapolated from a rat data set with a simplified physiologically based pharmacokinetic model. J Toxicol Sci 2020; 45:695-700. [PMID: 33132243 DOI: 10.2131/jts.45.695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Coumarin is a dietary-derived substance that is extensively metabolized by human liver to excretable 7-hydroxycoumarin. Although coumarin under daily dietary consumption is generally regarded as nontoxic, the substance is of toxicological and clinical interest because of its potential association with hepatotoxicity, which is especially evident in rats. In this study, the pharmacokinetics of coumarin were modeled after virtual oral administration in humans. The adjusted monitoring equivalents of coumarin, along with the biotransformation of coumarin to o-hydroxyphenylacetic acid (via 3,4-epoxidation) based on reported plasma concentrations from rat studies, were scaled to human coumarin equivalents using known species allometric scaling factors. Using rat and human liver preparations, data on the rapid in vitro metabolic clearance for humans (~50-fold faster than in rats) were obtained for in vitro-in vivo extrapolation. For human physiologically based pharmacokinetic (PBPK) modeling, the metabolic ratios to o-hydroxyphenylacetic acid and 7-hydroxycoumarin were set at minor (0.1) and major (0.9) levels for the total disappearance of coumarin. The resulting modeled plasma concentration curves in humans generated by simple PBPK models were consistent with reported simulated coumarin maximum concentrations. These results provide basic information to simulate plasma levels of coumarin and its primary metabolite 7-hydroxycoumarin or its secondary activated metabolite o-hydroxyphenylacetic acid (via 3,4-epoxidation) resulting from dietary foodstuff consumption. Under the current assumptions, little toxicological impact of coumarin was evident in humans, thereby indicating the usefulness of forward dosimetry using PBPK modeling for human risk assessment.
Collapse
|
25
|
Toda A, Shimizu M, Uehara S, Sasaki T, Miura T, Mogi M, Utoh M, Suemizu H, Yamazaki H. Plasma and hepatic concentrations of acetaminophen and its primary conjugates after oral administrations determined in experimental animals and humans and extrapolated by pharmacokinetic modeling. Xenobiotica 2020; 51:316-323. [PMID: 33179995 DOI: 10.1080/00498254.2020.1849872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plasma concentrations of acetaminophen, its glucuronide and sulfate conjugates, and cysteinyl acetaminophen were experimentally determined after oral administrations of 10 mg/kg in humanised-liver mice, control mice, rats, common marmosets, cynomolgus monkeys, and minipigs; the results were compared with reported human pharmacokinetic data. Among the animals tested, only rats predominantly converted acetaminophen to sulfate conjugates, rather than glucuronide conjugates. In contrast, the values of area under the plasma concentration curves of acetaminophen, its glucuronide and sulfate conjugates, and cysteinyl acetaminophen after oral administration of acetaminophen in marmosets and minipigs were consistent with those reported in humans under the present conditions. Physiologically based pharmacokinetic (PBPK) models (consisting of the gut, liver, and central compartments) for acetaminophen and its primary metabolite could reproduce and estimate, respectively, the plasma and hepatic concentrations of acetaminophen in experimental animals and humans after single virtual oral doses. The values of area under the curves of hepatic concentrations of acetaminophen estimated using PBPK models were correlated with the measured levels of cysteinyl acetaminophen (a deactivated metabolite) in plasma fractions in these species. Consequently, using simple PBPK models and plasma data to predict hepatic chemical concentrations after oral doses could be helpful as an indicator of in vivo possible hepatotoxicity of chemicals such as acetaminophen.
Collapse
Affiliation(s)
- Akiko Toda
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Wakayama , Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Tokyo , Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Tokyo , Japan.,Laboratory Animal Research Department, Central Institute for Experimental Animals , Kawasaki , Japan
| | - Tatsuro Sasaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Tokyo , Japan
| | - Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Tokyo , Japan
| | - Masayuki Mogi
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Wakayama , Japan.,Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima , Japan
| | - Masahiro Utoh
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Wakayama , Japan.,Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Tokyo , Japan.,Scientific Affairs Division, Shin Nippon Biomedical Laboratories, Ltd., Tokyo , Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals , Kawasaki , Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Tokyo , Japan
| |
Collapse
|
26
|
Miura T, Uehara S, Shigeta K, Yoshizawa M, Kamiya Y, Murayama N, Shimizu M, Suemizu H, Yamazaki H. Metabolic Profiles of Tetrabromobisphenol A in Humans Extrapolated from Humanized-Liver Mouse Data Using a Simplified Physiologically Based Pharmacokinetic Model. Chem Res Toxicol 2020; 34:522-528. [PMID: 33198470 DOI: 10.1021/acs.chemrestox.0c00358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tetrabromobisphenol A, a brominated flame retardant, is increasingly prevalent worldwide and presents a potential health risk. Adjusted animal biomonitoring equivalents of tetrabromobisphenol A after orally administered doses in humanized-liver mice were scaled up to humans using known species allometric scaling factors to set up simplified physiologically based pharmacokinetic (PBPK) models. Absorbed tetrabromobisphenol A was slightly, moderately, and extensively metabolized in vivo to its glucuronide in rats, control mice, and humanized-liver mice tested, respectively. In silico estimated hepatic exposures of tetrabromobisphenol A and its glucuronide generated using the rat PBPK model-generated plasma concentration profiles were consistent with the reported values. The extent of hepatic injury in humanized-liver mice caused by tetrabromobisphenol A was evaluated by detecting human albumin mRNA in mouse plasma after oral administration of a high dose of tetrabromobisphenol A (1000 mg/kg). Reverse dosimetry analyses were carried out using two human PBPK models (set up based on the humanized-liver-mouse model and by optimizing the input parameters for reported human plasma concentrations of tetrabromobisphenol A glucuronide) to estimate the tetrabromobisphenol A daily intake based on reported human serum concentrations of total tetrabromobisphenol A from biomonitoring data. Within the predictability of the forward and reverse dosimetry estimations, the calculated daily intake was found to be far below established health benchmark levels (i.e., the suggested daily reported reference dose) with a wide (4 orders of magnitude) safety margin. These results suggest that the simplified PBPK models can be successfully applied to forward and reverse dosimetry estimations of tissue and/or blood exposures of tetrabromobisphenol A in humans after oral doses.
Collapse
Affiliation(s)
- Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Shotaro Uehara
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazuki Shigeta
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Manae Yoshizawa
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
27
|
In vivo drug interactions of itopride and trimethylamine mediated by flavin-containing monooxygenase 3 in humanized-liver mice. Drug Metab Pharmacokinet 2020; 37:100369. [PMID: 33513464 DOI: 10.1016/j.dmpk.2020.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Flavin-containing monooxygenase (FMO) catalyzes the oxygenation of a wide variety of medicines and dietary-derived compounds. However, little information is available regarding drug interactions mediated by FMO3 in vivo. Consequently, we investigated interactions between FMO substrates in humanized-liver mice. Trimethylamine-d9 and itopride were, respectively, intravenously and orally administered to humanized-liver mice (n = 5-7). The pharmacokinetic profiles of itopride (the victim drug) in the presence of trimethylamine (the perpetrator drug) were determined for 24 h after co-administration using liquid chromatography/tandem mass spectrometry. Itopride (10 mg/kg) was extensively oxygenated in humanized-liver mice to its N-oxide. The plasma concentrations of itopride N-oxide after co-administration of itopride and trimethylamine (10 and 100 mg/kg) were significantly suppressed in a dose-dependent manner, but only during the early phase, i.e., up to 2 h after co-administration. With the higher dose of trimethylamine, the areas under the concentration-time curves of itopride and its N-oxide significantly increased (1.6-fold) and decreased (to 60%), respectively; modeling suggested that these modified pharmacokinetics resulted from suppression of the in vivo hepatic intrinsic clearance (to 67%). These results suggest that food-derived trimethylamine may result in interactions with FMO drug substrates immediately after administration; however, the potential for this to occur in vivo may be limited.
Collapse
|
28
|
Adachi K, Tuchiya J, Beppu S, Nishiyama K, Shimizu M, Yamazaki H. Pharmacokinetics of anticoagulant edoxaban in overdose in a Japanese patient transported to hospital. J Pharm Health Care Sci 2020; 6:20. [PMID: 32944263 PMCID: PMC7488402 DOI: 10.1186/s40780-020-00176-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/04/2020] [Indexed: 01/15/2023] Open
Abstract
Background The anticoagulant edoxaban is used clinically at doses of 30–60 mg/day; however, we experienced a patient who had taken an overdose of edoxaban of 750 mg. We investigated the pharmacokinetics of edoxaban in this patient by using liquid chromatography–tandem spectrometry to estimate the follow-up period in emergency clinical practice with this medicine. Case presentation The patient was a 57-year-old woman (body weight, 69 kg) who had taken a single oral dose of 750 mg of edoxaban in a suicide attempt. She was emergently admitted to Kyoto Medical Center. The patient’s edoxaban plasma concentrations during ambulance transport (8 h after oral administration) were ~ 4900 ng/ml, and the concentration gradually decreased to ~ 10 ng/mL and to detectable but unmeasurable levels of ~ 1.0 ng/mL at 60 h and 100 h, respectively. The linear range of the relationship between the dose and plasma concentration was assumed to have been exceeded during the first 8 h; however, the measured elimination rate of edoxaban was similar to that visualized curves predicted by a simplified physiologically based pharmacokinetic model previously established. Conclusion Simplified physiologically based pharmacokinetic models for creating visualized curves have proven to be useful not only during drug discovery or chemical risk assessment but also in cases of medical poisoning. We used a physiologically based pharmacokinetic model previously established for edoxaban to predict the pharmacokinetics in the current case. It is hoped that the results of this study, which encompass drug monitoring data in the patient and visualized pharmacokinetic prediction, will serve as an index when setting the treatment and follow-up period in cases of drug overdose for medicines such as edoxaban in emergency clinical practice.
Collapse
Affiliation(s)
- Koichiro Adachi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543 Japan.,Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555 Japan
| | | | - Satoru Beppu
- Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555 Japan
| | - Kei Nishiyama
- Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555 Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543 Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543 Japan
| |
Collapse
|
29
|
Ogawa SI, Shimizu M, Kamiya Y, Uehara S, Suemizu H, Yamazaki H. Increased plasma concentrations of an antidyslipidemic drug pemafibrate co-administered with rifampicin or cyclosporine A in cynomolgus monkeys genotyped for the organic anion transporting polypeptide 1B1. Drug Metab Pharmacokinet 2020; 35:354-360. [DOI: 10.1016/j.dmpk.2020.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/02/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
|
30
|
Kamiya Y, Otsuka S, Miura T, Yoshizawa M, Nakano A, Iwasaki M, Kobayashi Y, Shimizu M, Kitajima M, Shono F, Funatsu K, Yamazaki H. Physiologically Based Pharmacokinetic Models Predicting Renal and Hepatic Concentrations of Industrial Chemicals after Virtual Oral Doses in Rats. Chem Res Toxicol 2020; 33:1736-1751. [PMID: 32500706 DOI: 10.1021/acs.chemrestox.0c00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently developed high-throughput in vitro assays in combination with computational models could provide alternatives to animal testing. The purpose of the present study was to model the plasma, hepatic, and renal pharmacokinetics of approximately 150 structurally varied types of drugs, food components, and industrial chemicals after virtual external oral dosing in rats and to determine the relationship between the simulated internal concentrations in tissue/plasma and their lowest-observed-effect levels. The model parameters were based on rat plasma data from the literature and empirically determined pharmacokinetics measured after oral administrations to rats carried out to evaluate hepatotoxic or nephrotic potentials. To ensure that the analyzed substances exhibited a broad diversity of chemical structures, their structure-based location in the chemical space underwent projection onto a two-dimensional plane, as reported previously, using generative topographic mapping. A high-throughput in silico one-compartment model and a physiologically based pharmacokinetic (PBPK) model consisting of chemical receptor (gut), metabolizing (liver), central (main), and excreting (kidney) compartments were developed in parallel. For 159 disparate chemicals, the maximum plasma concentrations and the areas under the concentration-time curves obtained by one-compartment models and modified simple PBPK models were closely correlated. However, there were differences between the PBPK modeled and empirically obtained hepatic/renal concentrations and plasma maximal concentrations/areas under the concentration-time curves of the 159 chemicals. For a few compounds, the lowest-observed-effect levels were available for hepatotoxicity and nephrotoxicity in the Hazard Evaluation Support System Integrated Platform in Japan. The areas under the renal or hepatic concentration-time curves estimated using PBPK modeling were inversely associated with these lowest-observed-effect levels. Using PBPK forward dosimetry could provide the plasma/tissue concentrations of drugs and chemicals after oral dosing, thereby facilitating estimates of nephrotoxic or hepatotoxic potential as a part of the risk assessment.
Collapse
Affiliation(s)
- Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Shohei Otsuka
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Manae Yoshizawa
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Ayane Nakano
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Miyu Iwasaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Yui Kobayashi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Masato Kitajima
- Fujitsu Kyusyu Systems, Higashi-hie, Hakata-ku, Fukuoka 812-0007, Japan
| | - Fumiaki Shono
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kimito Funatsu
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
31
|
Kamiya Y, Takaku H, Yamada R, Akase C, Abe Y, Sekiguchi Y, Murayama N, Shimizu M, Kitajima M, Shono F, Funatsu K, Yamazaki H. Determination and prediction of permeability across intestinal epithelial cell monolayer of a diverse range of industrial chemicals/drugs for estimation of oral absorption as a putative marker of hepatotoxicity. Toxicol Rep 2020; 7:149-154. [PMID: 31993333 PMCID: PMC6976901 DOI: 10.1016/j.toxrep.2020.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 11/19/2022] Open
Abstract
Permeability values of 90 industry chemicals were measured by a Caco-2 system. A multivariate prediction equation for permeability of chemicals was proposed. Chemical permeability coefficients were inversely associated with hepatic NOELs.
Apparent permeability coefficients (Papp) across a human intestinal epithelial Caco-2 cell monolayer were measured for a range of industrial/drug chemicals. A predictive equation for determining in vitro Papp values of fifty-six substances was set up using multivariate regression analysis based on in silico-estimated physicochemical properties (molecular weights and water distribution coefficients for apical and basal pH environments) (r = 0.77, p < 0.01). Predicted logPapp values of a secondary set of 34 compounds were correlated with the measured values. Under the medicinal logPapp values associated with their reported fraction absorbed, a significant inverse non-linear correlation was found between the logarithmic transformed values of observed Papp values and reported hepatic no-observed-effect levels of industrial chemicals (r = –0.55, p < 0.01, n = 29). In vitro determination and/or in silico prediction of permeability across intestinal cells could be effective for estimating oral absorption as a putative indicator for hepatotoxicity.
Collapse
Affiliation(s)
- Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Hiroka Takaku
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Rio Yamada
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Chisato Akase
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Yuto Abe
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Yuko Sekiguchi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | | | - Fumiaki Shono
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kimito Funatsu
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
- Corresponding author at: Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
32
|
Ogawa SI, Shimizu M, Yamazaki H. Plasma concentrations of pemafibrate with co-administered drugs predicted by physiologically based pharmacokinetic modeling in virtual populations with renal/hepatic impairment. Xenobiotica 2020; 50:1023-1031. [DOI: 10.1080/00498254.2019.1709133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shin-ichiro Ogawa
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
33
|
Kamiya Y, Yanagi M, Hina S, Shigeta K, Miura T, Yamazaki H. Plasma, liver, and kidney exposures in rats after oral doses of industrial chemicals predicted using physiologically based pharmacokinetic models: A case study of perfluorooctane sulfonic acid. J Toxicol Sci 2020; 45:763-767. [DOI: 10.2131/jts.45.763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Mayu Yanagi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Shiori Hina
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Kazuki Shigeta
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| |
Collapse
|
34
|
Ota M, Shimizu M, Kamiya Y, Emoto C, Fukuda T, Yamazaki H. Adult and infant pharmacokinetic profiling of dihydrocodeine using physiologically based pharmacokinetic modeling. Biopharm Drug Dispos 2019; 40:350-357. [PMID: 31691978 DOI: 10.1002/bdd.2209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 01/11/2023]
Abstract
We previously analysed the serum concentrations of dihydrocodeine in a 1-month-old infant with respiratory depression after being prescribed dihydrocodeine phosphate 2.0 mg/day divided t.i.d. for 2 days. The purpose was to develop a full physiologically based pharmacokinetic (PBPK) model that could account for these and other drug monitoring results. Based on experiments in Caco-2 cell monolayers, the effective permeability of dihydrocodeine in human jejunum was established as 1.28 × 10-4 cm/s. The in vitro Vmax /Km values for dihydrocodeine demethylation mediated by recombinant cytochrome P450 2D6 and 3A4 were 0.19 and 0.066 μl/min/pmol, respectively, and for dihydrocodeine 6-O-glucuronidation mediated by recombinant UGT2B4 and 2B7, the Vmax /Km values were 0.14 and 0.22 μl/min/mg protein, respectively. Renal clearance was calculated as 5.37 L/h on the total clearance value multiplied by the fraction recovered in urine. The reported plasma concentration-time profiles of dihydrocodeine after intravenous administration in healthy volunteers were used to adjust the tissue partitioning ratios. The developed model simulated the pharmacokinetic profiles of dihydrocodeine after single and multiple oral administrations reasonably well in the same population. Subsequently, the validated model was used to simulate pharmacokinetic profiles for five pediatric cases, including the 1-month-old Japanese boy and a 14-year-old Japanese girl who took an overdose of dihydrocodeine phosphate (37 mg). The simulated pharmacokinetic profiles for five virtual pediatric subjects matching the age, gender, and P450 2D6 phenotype of each case approximately reflected the observed values. These results suggested that our dihydrocodeine PBPK model reproduced the results of clinical cases reasonably well for subjects.
Collapse
Affiliation(s)
- Miki Ota
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Yusuke Kamiya
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Chie Emoto
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Tsuyoshi Fukuda
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| |
Collapse
|
35
|
Yamazaki H, Kamiya Y. Extrapolation of Hepatic Concentrations of Industrial Chemicals Using Pharmacokinetic Models to Predict Hepatotoxicity. Toxicol Res 2019; 35:295-301. [PMID: 31636840 PMCID: PMC6791659 DOI: 10.5487/tr.2019.35.4.295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 11/20/2022] Open
Abstract
In this review, we describe the absorption rates (Caco-2 cell permeability) and hepatic/plasma pharmacokinetics of 53 diverse chemicals estimated by modeling virtual oral administration in rats. To ensure that a broad range of chemical structures is present among the selected substances, the properties described by 196 chemical descriptors in a chemoinformatics tool were calculated for 50,000 randomly selected molecules in the original chemical space. To allow visualization, the resulting chemical space was projected onto a two-dimensional plane using generative topographic mapping. The calculated absorbance rates of the chemicals based on cell permeability studies were found to be inversely correlated to the no-observed-effect levels for hepatoxicity after oral administration, as obtained from the Hazard Evaluation Support System Integrated Platform in Japan (r = -0.88, p < 0.01, n = 27). The maximum plasma concentrations and the areas under the concentration-time curves (AUC) of a varied selection of chemicals were estimated using two different methods: simple one-compartment models (i.e., high-throughput toxicokinetic models) and simplified physiologically based pharmacokinetic (PBPK) modeling consisting of chemical receptor (gut), metabolizing (liver), and central (main) compartments. The results obtained from the two methods were consistent. Although the maximum concentrations and AUC values of the 53 chemicals roughly correlated in the liver and plasma, inconsistencies were apparent between empirically measured concentrations and the PBPK-modeled levels. The lowest-observed-effect levels and the virtual hepatic AUC values obtained using PBPK models were inversely correlated (r = -0.78, p < 0.05, n = 7). The present simplified PBPK models could estimate the relationships between hepatic/plasma concentrations and oral doses of general chemicals using both forward and reverse dosimetry. These methods are therefore valuable for estimating hepatotoxicity.
Collapse
Affiliation(s)
- Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| | - Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
36
|
Notsu Y, Shimizu M, Sasaki T, Nakano A, Ota M, Yoshida S, Yamazaki H. Simple pharmacokinetic models accounting for drug monitoring results of atomoxetine and its 4-hydroxylated metabolites in Japanese pediatric patients genotyped for cytochrome P450 2D6. Drug Metab Pharmacokinet 2019; 35:191-200. [PMID: 32184039 DOI: 10.1016/j.dmpk.2019.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/30/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023]
Abstract
Atomoxetine is an approved medicine for attention-deficit/hyperactivity disorder and a cytochrome P450 2D6 (CYP2D6) probe substrate. Simple physiologically based pharmacokinetic (PBPK) models and compartment models were set up to account for drug monitoring results of 33 Japanese patients (6-15 years of age) to help establish the correct dosage for the evaluation of clinical outcomes. The steady-state one-point drug monitoring data for the most participants indicated the extensive biotransformation of atomoxetine to 4-hydroxyatomoxetine under individually prescribed doses of atomoxetine. However, 5 participants (with impaired CYP2D6 activity scores based on the CYP2D6 genotypes) showed high plasma concentrations of atomoxetine (0.53-1.5 μM) compared with those of total 4-hydroxyatomoxetine (0.49-1.4 μM). Results from full PBPK models using the in-built Japanese pediatric system of software Simcyp, one-compartment models, and new simple PBPK models (using parameters that reflected the subjects' small body size and normal/reduced CYP2D6-dependent clearance) could overlay one-point measured drug/metabolite plasma concentrations from almost common 28 participants within threefold ranges. Validated one-compartment or simple PBPK models can be used to predict steady-state plasma concentrations of atomoxetine and/or its primary metabolites in Japanese pediatric patients (>6 years) who took a variety of individualized doses in a clinical setting.
Collapse
Affiliation(s)
- Yuki Notsu
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Tatsuro Sasaki
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Ayane Nakano
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Miki Ota
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Sayaka Yoshida
- Nara Prefecture General Medical Center, Nara, 630-8581, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
37
|
Miura T, Uehara S, Nakazato M, Kusama T, Toda A, Kamiya Y, Murayama N, Shimizu M, Suemizu H, Yamazaki H. Human plasma and liver concentrations of styrene estimated by combining a simple physiologically based pharmacokinetic model with rodent data. J Toxicol Sci 2019; 44:543-548. [DOI: 10.2131/jts.44.543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | | | | | - Akiko Toda
- Shin Nippon Biomedical Laboratories, Ltd
| | | | | | | | | | | |
Collapse
|