1
|
Clabaugh G, Wang Y. Formation of Carboxymethyl-Phosphotriester Adducts in DNA. Chem Res Toxicol 2025; 38:892-899. [PMID: 40235319 DOI: 10.1021/acs.chemrestox.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Humans are exposed to endogenous and exogenous sources of N-nitroso compounds (NOCs). Metabolic activation of some endogenous NOCs can yield diazoacetate, which is known to induce the formation of carboxymethylated DNA adducts that are implicated in human gastrointestinal tumors. Although carboxymethylated nucleobase adducts have been investigated, no studies have assessed if carboxymethylation occurs on the phosphate backbone of DNA. In this study, we report the synthesis of a carboxymethyl phosphotriester (CM-PTE) phosphoramidite building block of thymidine and the preparation of oligodeoxyribonucleotides (ODNs) containing a site-specifically inserted CM-PTE. By employing liquid-chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we also demonstrated the formation of CM-PTE adducts in calf thymus DNA treated with diazoacetate, where we identified a total of 16 CM-PTE products across all possible combinations of flanking nucleobases. Together, our findings laid the foundation for exploring the in vivo formation and biological consequences of the CM-PTE lesions.
Collapse
Affiliation(s)
- Garrit Clabaugh
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
2
|
Li Y. DNA Adducts in Cancer Chemotherapy. J Med Chem 2024; 67:5113-5143. [PMID: 38552031 DOI: 10.1021/acs.jmedchem.3c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
DNA adducting drugs, including alkylating agents and platinum-containing drugs, are prominent in cancer chemotherapy. Their mechanisms of action involve direct interaction with DNA, resulting in the formation of DNA addition products known as DNA adducts. While these adducts are well-accepted to induce cancer cell death, understanding of their specific chemotypes and their role in drug therapy response remain limited. This perspective aims to address this gap by investigating the metabolic activation and chemical characterization of DNA adducts formed by the U.S. FDA-approved drugs. Moreover, clinical studies on DNA adducts as potential biomarkers for predicting patient responses to drug efficacy are examined. The overarching goal is to engage the interest of medicinal chemists and stimulate further research into the use of DNA adducts as biomarkers for guiding personalized cancer treatment.
Collapse
|
3
|
Stanfill SB, Hecht SS, Joerger AC, González PJ, Maia LB, Rivas MG, Moura JJG, Gupta AK, Le Brun NE, Crack JC, Hainaut P, Sparacino-Watkins C, Tyx RE, Pillai SD, Zaatari GS, Henley SJ, Blount BC, Watson CH, Kaina B, Mehrotra R. From cultivation to cancer: formation of N-nitrosamines and other carcinogens in smokeless tobacco and their mutagenic implications. Crit Rev Toxicol 2023; 53:658-701. [PMID: 38050998 DOI: 10.1080/10408444.2023.2264327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 12/07/2023]
Abstract
Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.
Collapse
Affiliation(s)
- Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andreas C Joerger
- Structural Genomics Consortium (SGC), Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pablo J González
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - Luisa B Maia
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | - Maria G Rivas
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - José J G Moura
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | | | - Nick E Le Brun
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Jason C Crack
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Courtney Sparacino-Watkins
- University of Pittsburgh, School of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, PA, USA
| | - Robert E Tyx
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suresh D Pillai
- Department of Food Science & Technology, National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Ghazi S Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - S Jane Henley
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clifford H Watson
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Ravi Mehrotra
- Centre for Health, Innovation and Policy Foundation, Noida, India
| |
Collapse
|
4
|
Guidolin V, Jacobs FC, MacMillan ML, Villalta PW, Balbo S. Liquid Chromatography-Mass Spectrometry Screening of Cyclophosphamide DNA Damage In Vitro and in Patients Undergoing Chemotherapy Treatment. Chem Res Toxicol 2023; 36:1278-1289. [PMID: 37490747 PMCID: PMC11231964 DOI: 10.1021/acs.chemrestox.3c00008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
DNA alkylating drugs have been used as frontline medications to treat cancer for decades. Their chemical reaction with DNA leads to the blockage of DNA replication, which impacts cell replication. While this impacts rapidly dividing cancerous cells, this process is not selective and results in highly variable and often severe side effects in patients undergoing alkylating-drug based therapies. The development of biomarkers to identify patients who effectively respond with tolerable toxicities vs patients who develop serious side effects is needed. Cyclophosphamide (CPA) is a commonly used chemotherapeutic drug and lacks biomarkers to evaluate its therapeutic effect and toxicity. Upon administration, CPA is metabolically activated and converted to phosphoramide mustard and acrolein, which are responsible for its efficacy and toxicity, respectively. Previous studies have explored the detection of the major DNA adduct of CPA, the interstrand DNA-DNA cross-link G-NOR-G, finding differences in the cross-link amount between Fanconi Anemia and non-Fanconi Anemia patients undergoing chemotherapy treatment. In this study, we take advantage of our DNA adductomic approach to comprehensively profile CPA's and its metabolites' reactions with DNA in vitro and in patients undergoing CPA-based chemotherapy. This investigation led to the detection of 40 DNA adducts in vitro and 20 DNA adducts in patients treated with CPA. Moreover, acrolein-derived DNA adducts were quantified in patient samples. The results suggest that CPA-DNA damage is very complex, and an evaluation of DNA adduct profiles is necessary when evaluating the relationship between CPA-DNA damage and patient outcome.
Collapse
Affiliation(s)
- Valeria Guidolin
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School of Public Health, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Foster C. Jacobs
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School of Public Health, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Margaret L. MacMillan
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Blood and Marrow Transplantation & Cellular Therapy Program, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Silvia Balbo
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School of Public Health, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Li Y, Dator RP, Maertens LA, Balbo S, Hecht SS. Mass Spectrometry-Based Metabolic Profiling of Urinary Metabolites of N'-Nitrosonornicotine (NNN) in the Rat. Chem Res Toxicol 2023; 36:769-781. [PMID: 37017527 PMCID: PMC10429506 DOI: 10.1021/acs.chemrestox.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The tobacco-specific nitrosamine N'-nitrosonornicotine (NNN) and its close analogue 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) are classified as "carcinogenic to humans" (Group 1) by the International Agency for Research on Cancer. The currently used biomarker to monitor NNN exposure is urinary total NNN (free NNN plus its N-glucuronide). However, total NNN does not provide information about the extent of metabolic activation of NNN as related to its carcinogenicity. Targeted analysis of the major metabolites of NNN in laboratory animals recently led to the identification of N'-nitrosonornicotine-1N-oxide (NNN-N-oxide), a unique metabolite detected in human urine that is specifically formed from NNN. To further investigate NNN urinary metabolites that hold promise as new biomarkers for monitoring NNN exposure, uptake, and/or metabolic activation, we conducted a comprehensive profiling of NNN metabolites in the urine of F344 rats treated with NNN or [pyridine-d4]NNN. Using our optimized high-resolution mass spectrometry (HRMS)-based isotope-labeling method, 46 putative metabolites were identified with robust MS evidence. Out of the 46 candidates, all known major NNN metabolites were identified and structurally confirmed by comparing them to their isotopically labeled standards. More importantly, putative metabolites considered to be exclusively formed from NNN were also identified. The two new representative metabolites─4-(methylthio)-4-(pyridin-3-yl)butanoic acid (23, MPBA) and N-acetyl-S-(5-(pyridin-3-yl)-1H-pyrrol-2-yl)-l-cysteine (24, Py-Pyrrole-Cys-NHAc) ─were identified by comparing them to synthetic standards that were fully characterized by nuclear magnetic resonance and HRMS. They are hypothesized to be formed by NNN α-hydroxylation pathways and thus represent the first potential biomarkers to specifically monitor the uptake plus metabolic activation of NNN in tobacco users.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Romel P. Dator
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Laura A. Maertens
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
6
|
Genetic and epigenetic instability induced by betel quid associated chemicals. Toxicol Rep 2023; 10:223-234. [PMID: 36845258 PMCID: PMC9945799 DOI: 10.1016/j.toxrep.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/06/2023] Open
Abstract
Over the years, betel quid chewing and tobacco use have attracted considerable interest as they are implicated as the most likely causative risk factors of oral and esophageal cancers. Although areca nut use and betel quid chewing may lead to apoptosis, chronic exposure to areca nut and slaked lime may promote pre-malignant and malignant transformation of oral cells. The putative mutagenic and carcinogenic mechanisms may involve endogenous nitrosation of areca and tobacco alkaloids as well as the presence of direct alkylating agents in betel quid and smokeless tobacco. Metabolic activation of carcinogenic N-nitrosamines by phase-I enzymes is required not only to elicit the genotoxicity via the reactive intermediates but also to potentiate the mutagenicity with the sporadic alkylations of nucleotide bases, resulting in the formation of diverse DNA adducts. Persistent DNA adducts provides the impetus for genetic and epigenetic lesions. The genetic and epigenetic factors cumulatively influence the development and progression of disorders such as cancer. Accumulation of numerous genetic and epigenetic aberrations due to long-term betel quid (with or without tobacco) chewing and tobacco use culminates into the development of head and neck cancers. We review recent evidence that supports putative mechanisms for mutagenicity and carcinogenicity of betel quid chewing along with tobacco (smoking and smokeless) use. The detailed molecular mechanisms of the extent of accumulation and patterns of genetic alterations, indicative of the prior exposure to carcinogens and alkylating agents because of BQ chewing and tobacco use, have not yet been elucidated.
Collapse
|
7
|
Guidolin V, Li Y, Jacobs FC, MacMillan ML, Villalta PW, Hecht SS, Balbo S. Characterization and quantitation of busulfan DNA adducts in the blood of patients receiving busulfan therapy. Mol Ther Oncolytics 2023; 28:197-210. [PMID: 36820303 PMCID: PMC9938526 DOI: 10.1016/j.omto.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
DNA alkylating drugs have been used as cancer chemotherapy with variable outcomes. The establishment of predictive biomarkers to identify patients who will effectively respond to treatment would allow for the development of personalized therapies. As the degree of interaction of alkylating drug with DNA plays a key role in their mechanism of action, our hypothesis is that the measurement of the DNA adducts formed by alkylating drugs could be used to inform patient stratification. Beginning with busulfan, we took advantage of our DNA adductomic approach to characterize DNA adducts formed by reacting busulfan with calf-thymus DNA. Samples collected from six patients undergoing busulfan-based chemotherapy prior to allogeneic hematopoietic cell transplantation were analyzed for the presence of busulfan-derived DNA adducts. Among the 15 adducts detected in vitro, 12 were observed in the patient blood confirming the presence of a large profile of DNA adducts in vivo. Two of the detected adducts were structurally confirmed by comparison with synthetic standards and quantified in patients. These data confirm our ability to comprehensively characterize busulfan-derived DNA damage and set the stage for the development of methods to support personalized chemotherapy.
Collapse
Affiliation(s)
- Valeria Guidolin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Foster C. Jacobs
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Margaret L. MacMillan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,Blood and Marrow Transplantation & Cellular Therapy Program, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA,Corresponding author: Silvia Balbo, Masonic Cancer Center, University of Minnesota, 2231 6 Street SE - 2-145 CCRB, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Li Y, Hecht SS. Metabolism and DNA Adduct Formation of Tobacco-Specific N-Nitrosamines. Int J Mol Sci 2022; 23:5109. [PMID: 35563500 PMCID: PMC9104174 DOI: 10.3390/ijms23095109] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 01/06/2023] Open
Abstract
The tobacco-specific N-nitrosamines 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) always occur together and exclusively in tobacco products or in environments contaminated by tobacco smoke. They have been classified as "carcinogenic to humans" by the International Agency for Research on Cancer. In 1998, we published a review of the biochemistry, biology and carcinogenicity of tobacco-specific nitrosamines. Over the past 20 years, considerable progress has been made in our understanding of the mechanisms of metabolism and DNA adduct formation by these two important carcinogens, along with progress on their carcinogenicity and mutagenicity. In this review, we aim to provide an update on the carcinogenicity and mechanisms of the metabolism and DNA interactions of NNK and NNN.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
9
|
Li Y, Carlson ES, Zarth AT, Upadhyaya P, Hecht SS. Investigation of 2'-Deoxyadenosine-Derived Adducts Specifically Formed in Rat Liver and Lung DNA by N'-Nitrosonornicotine Metabolism. Chem Res Toxicol 2021; 34:1004-1015. [PMID: 33720703 PMCID: PMC11558792 DOI: 10.1021/acs.chemrestox.1c00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The International Agency for Research on Cancer has classified the tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as "carcinogenic to humans" (Group 1). To exert its carcinogenicity, NNN requires metabolic activation to form reactive intermediates which alkylate DNA. Previous studies have identified cytochrome P450-catalyzed 2'-hydroxylation and 5'-hydroxylation of NNN as major metabolic pathways, with preferential activation through the 5'-hydroxylation pathway in some cultured human tissues and patas monkeys. So far, the only DNA adducts identified from NNN 5'-hydroxylation in rat tissues are 2-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxyinosine (Py-Py-dI), 6-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxynebularine (Py-Py-dN), and N6-[4-hydroxy-1-(pyridine-3-yl)butyl]-2'-deoxyadenosine (N6-HPB-dAdo) after reduction. To expand the DNA adduct panel formed by NNN 5'-hydroxylation and identify possible activation biomarkers of NNN metabolism, we investigated the formation of dAdo-derived adducts using a new highly sensitive and specific liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry method. Two types of NNN-specific dAdo-derived adducts, N6-[5-(3-pyridyl)tetrahydrofuran-2-yl]-2'-deoxyadenosine (N6-Py-THF-dAdo) and 6-[2-(3-pyridyl)-N-pyrrolidinyl-5-hydroxy]-2'-deoxynebularine (Py-Py(OH)-dN), were observed for the first time in calf thymus DNA incubated with 5'-acetoxyNNN. More importantly, Py-Py(OH)-dN was also observed in relatively high abundance in the liver and lung DNA of rats treated with racemic NNN in the drinking water for 3 weeks. These new adducts were characterized using authentic synthesized standards. Both NMR and MS data agreed well with the proposed structures of N6-Py-THF-dAdo and Py-Py(OH)-dN. Reduction of Py-Py(OH)-dN by NaBH3CN led to the formation of Py-Py-dN both in vitro and in vivo, which was confirmed by its isotopically labeled internal standard [pyridine-d4]Py-Py-dN. The NNN-specific dAdo adducts Py-THF-dAdo and Py-Py(OH)-dN formed by NNN 5'-hydroxylation provide a more comprehensive understanding of the mechanism of DNA adduct formation by NNN.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Adam T. Zarth
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Li Y, Hecht SS. Identification of an N'-Nitrosonornicotine-Specific Deoxyadenosine Adduct in Rat Liver and Lung DNA. Chem Res Toxicol 2021; 34:992-1003. [PMID: 33705110 DOI: 10.1021/acs.chemrestox.1c00013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are considered to be two of the most important carcinogens in unburned tobacco and its smoke. They readily cause tumors in laboratory animals and are classified as "carcinogenic to humans" by the International Agency for Research on Cancer. DNA adduct formation by these two carcinogens is believed to play a critical role in tobacco carcinogenesis. Among all the DNA adducts formed by NNN and NNK, 2'-deoxyadenosine (dAdo)-derived adducts have not been fully characterized. In the study reported here, we characterized the formation of N6-[4-(3-pyridyl)-4-oxo-1-butyl]-2'-deoxyadenosine (N6-POB-dAdo) and its reduced form N6-PHB-dAdo formed by NNN 2'-hydroxylation in rat liver and lung DNA. More importantly, we characterized a new dAdo adduct N6-[4-hydroxy-1-(pyridine-3-yl)butyl]-2'-deoxyadenosine (N6-HPB-dAdo) formed after NaBH3CN or NaBH4 reduction both in vitro in calf thymus DNA reacted with 5'-acetoxy-N'-nitrosonornicotine and in vivo in rat liver and lung upon treatment with NNN. This adduct was specifically formed by NNN 5'-hydroxylation. Chemical standards of N6-HPB-dAdo and the corresponding isotopically labeled internal standard [pyridine-d4]N6-HPB-dAdo were synthesized using a four-step method. Both NMR and high-resolution mass spectrometry data agreed well with the proposed structure of N6-HPB-dAdo. The new adduct coeluted with the synthesized internal standard under various LC conditions. Its product ion patterns of MS2 and MS3 transitions were also consistent with the proposed fragmentation patterns. Chromatographic resolution of the two diastereomers of N6-HPB-dAdo was successfully achieved. Quantitation suggested a dose-dependent response of the levels of this new adduct in the liver and lung of rats treated with NNN. However, its level was lower than that of 2-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxyinosine, a previously reported dGuo adduct that is also formed from NNN 5'-hydroxylation. The identification of N6-HPB-dAdo in this study leads to new insights pertinent to the mechanism of carcinogenesis by NNN and to the development of biomarkers of NNN metabolic activation.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Abstract
Genome integrity is constantly challenged by endogenous or exogenous genotoxic agents, which can give rise to various DNA adducts. After metabolic activation, tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) can lead to pyridyloxobutylphosphotriesters (POB-PTEs) in DNA. Here, we synthesized oligodeoxyribonucleotides containing a site-specifically inserted SP- or RP-POB-PTE flanked by two thymidines, and we examined the impact that these lesions have on DNA replication in Escherichia coli cells. We found that these two lesions are not strong impediments to DNA replication, and their replicative bypass is not modulated by genetic depletion of the three SOS-induced DNA polymerases or Ada protein. In addition, neither SP- nor RP-POB-PTEs was mutagenic in E. coli cells. Together, our study unveiled, for the first time, the influence of tobacco-specific nitrosamine-induced POB-PTE lesions on DNA replication in vivo.
Collapse
|
12
|
Liquid chromatography- mass spectrometry for analysis of DNA damages induced by environmental exposure. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Ma B, Stepanov I, Hecht SS. Recent Studies on DNA Adducts Resulting from Human Exposure to Tobacco Smoke. TOXICS 2019; 7:E16. [PMID: 30893918 PMCID: PMC6468371 DOI: 10.3390/toxics7010016] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
Abstract
DNA adducts are believed to play a central role in the induction of cancer in cigarette smokers and are proposed as being potential biomarkers of cancer risk. We have summarized research conducted since 2012 on DNA adduct formation in smokers. A variety of DNA adducts derived from various classes of carcinogens, including aromatic amines, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, alkylating agents, aldehydes, volatile carcinogens, as well as oxidative damage have been reported. The results are discussed with particular attention to the analytical methods used in those studies. Mass spectrometry-based methods that have higher selectivity and specificity compared to 32P-postlabeling or immunochemical approaches are preferred. Multiple DNA adducts specific to tobacco constituents have also been characterized for the first time in vitro or detected in vivo since 2012, and descriptions of those adducts are included. We also discuss common issues related to measuring DNA adducts in humans, including the development and validation of analytical methods and prevention of artifact formation.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|