1
|
Paul P, Dey D, Deb DP, Mia MAR, Iftehimul M, Biswas P, Hossain R, Ullah MS, Hasan MN, Mandal M, Ansari SA, Islam MT, Sarker MZI, Mubarak MS. Uncovering the Efficacy of Cinnamomum tamala Leaf Extract Against Paracetamol-Induced Hepatotoxicity in Swiss Albino Mice. Chem Biodivers 2025:e202500753. [PMID: 40300760 DOI: 10.1002/cbdv.202500753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Cinnamomum tamala belongs to the Lauraceae family, which has diverse traditional and pharmacological roles for treating toothache, diarrhea, gastrointestinal disorders, vomiting, fever, diabetes, hyperlipidemia, and others. This research aims to evaluate its protective effects against paracetamol-induced hepatotoxicity in mice. For this, ethanolic leaf extract of C. tamala (ECT) at different doses was administered via oral gavage with or without the standard hepatoprotective drug silymarin, and liver biochemical and histopathological profiles were checked. Gas chromatography-mass spectrometry (GC-MS) analysis and molecular docking studies were performed to check the possible molecular mechanisms behind its hepatoprotective effect. Results suggest that ECT significantly enhances antioxidant capability with lower animal N-acetyl-p-benzoquinone imine metabolites. The histopathological slides showed minimum inflammation, inflammatory cell infiltrations, and vascular edematous congestion for the ECT individual and co-administration groups. Computational drug discovery approaches validated these results, and the identified compounds from the GC-MS study were subjected to molecular docking, with the top docking score found against the CYP2E1 protein. In molecular dynamics simulation, 1,3-dioxolane, 2-pentadecyl, and butyl 14-methylhexadecanoate showed more root mean square deviation and root-mean-square fluctuation values than silymarin. In conclusion, ECT and its key compounds, butyl 14-methylhexadecanoate (CID 91693030) and 1,3-dioxolane, 2-pentadecyl (CID 552019), may potentially act against paracetamol-induced hepatotoxicity in animals.
Collapse
Affiliation(s)
- Priyanka Paul
- Department of Biochemistry and Molecular Biology, Gopalgonj Science and Technology University, Gopalgonj, Bangladesh
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Gopalgonj Science and Technology University, Gopalgonj, Bangladesh
| | | | - Md Abdur Rashid Mia
- Cooperative Research, Extension, and Education Services (CREES), Northern Marianas College, Saipan, Northern Mariana Islands, USA
| | - Md Iftehimul
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Rajib Hossain
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Md Shafayet Ullah
- Department of Biochemistry and Molecular Biology, Gopalgonj Science and Technology University, Gopalgonj, Bangladesh
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Manoj Mandal
- Department of Biochemistry and Molecular Biology, Gopalgonj Science and Technology University, Gopalgonj, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Torequl Islam
- Department of Pharmacy, Gopalgonj Science and Technology University, Gopalgonj, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Md Zaidul Islam Sarker
- Cooperative Research, Extension, and Education Services (CREES), Northern Marianas College, Saipan, Northern Mariana Islands, USA
| | | |
Collapse
|
2
|
Xiong Y, Ma X, He B, Zhi J, Liu X, Wang P, Zhou Z, Liu D. Multifaceted Effects of Subchronic Exposure to Chlorfenapyr in Mice: Implications from Serum Metabolomics, Hepatic Oxidative Stress, and Intestinal Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7423-7437. [PMID: 38502791 DOI: 10.1021/acs.jafc.3c09682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
As chlorfenapyr is a commonly used insecticide in agriculture, the health risks of subchronic exposure to chlorfenapyr remained unclear. This study aimed to extensively probe the health risks from subchronic exposure to chlorfenapyr at the NOAEL and 10-fold NOAEL dose in mice. Through pathological and biochemical examinations, the body metabolism, hepatic toxicity, and intestinal homeostasis were systematically assessed. After 12 weeks, a 10-fold NOAEL dose of chlorfenapyr resulted in weight reduction, increased daily food intake, and blood lipid abnormalities. Concurrently, this dosage induced hepatotoxicity and amplified oxidative stress in hepatocytes, a finding further supported in HepG2 cells. Moreover, chlorfenapyr resulted in intestinal inflammation, evidenced by increased inflammatory factors (IL-17a, IL-10, IL-1β, IL-6, IL-22), disrupted immune cells (RORγt, Foxp3), and compromised intestinal barriers (ZO-1 and occludin). By contrast, the NOAEL dose presented less toxicity in most evaluations. Serum metabolomic analyses unveiled widespread disruptions in pathways related to hepatotoxicity and intestinal inflammation, including NF-κB signaling, Th cell differentiation, and bile acid metabolism. Microbiomic analysis showed an increase in Lactobacillus, a decrease in Muribaculaceae, and diminished anti-inflammatory microbes, which further propelled the inflammatory response and leaded to intestinal inflammation. These findings revealed the molecular mechanisms underlying chlorfenapyr-induced hepatotoxicity and intestinal inflammation, highlighting the significant role of the gut microbiota.
Collapse
Affiliation(s)
- Yabing Xiong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoran Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Bingying He
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jianwen Zhi
- Department of Proctology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Mondal M, Bala J, Mondal KR, Afrin S, Saha P, Saha M, Jamaddar S, Roy UK, Sarkar C. The protective effects of nerol to prevent the toxicity of carbon tetrachloride to the liver in Sprague-Dawley rats. Heliyon 2023; 9:e23065. [PMID: 38125544 PMCID: PMC10731234 DOI: 10.1016/j.heliyon.2023.e23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Carbon-tetrachloride (CCl4) is well-known to cause liver damage due to severe oxidative stress. Nerol, on the other hand, is a monoterpene that is antioxidant, antiviral, antibacterial, anti-inflammatory, and anxiolytic. This study set out to determine if nerol may be used as a prophylactic measure against the oxidative stress mediated hepatic injury caused by CCl4. Materials and methods For the aim of this experiment, 35 male Sprague-Dawley rats ranging in body weight (BW) from 140 to 180 g were split into five separate groups. With the exception of vehicle control group 1, all experimental rats were subjected to carbon tetrachloride exposure through intra-peritoneal injection at a 0.7 mL/kg body weight dose once a week for 4 weeks (28 days). The treatment groups 3 and 4 received oral administration of nerol at 50 and 100 mg/kg BW for 28 days. In the same time period, the standard control group received 100 mg/kg BW silymarin. Results Serum hepatic markers, lipid profiles, albumin, globulin, bilirubin, and total protein were all substantially improved in nerol-treated rats in a dose-dependent manner that had been exposed to CCl4 compared to the only CCl4-treated group. Carbon tetrachloride-exposed rats had lower glutathione, superoxide dismutase, and catalase levels and higher thio-barbituric acid reactive substances (TBARS) levels than normal rats. In contrast, administration of nerol shown a significant augmentation in the concentrations of these antioxidant compounds, while concurrently inducing a decline in the levels of TBARS in the hepatic tissue. In a similar vein, the histo-pathological examination yielded further evidence indicating that nerol offered protection to the hepatocyte against damage generated by CCl4. Conclusion According to the findings of our investigation, nerol has potential as a functional element to shield the liver from harm brought on by ROS that are caused by CCL4.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Jibanananda Bala
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Sadia Afrin
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Protyaee Saha
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Moumita Saha
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Sarmin Jamaddar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Uttam Kumar Roy
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
4
|
Wang R, Yang X, Wang T, Kou R, Liu P, Huang Y, Chen C. Synergistic effects on oxidative stress, apoptosis and necrosis resulting from combined toxicity of three commonly used pesticides on HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115237. [PMID: 37451096 DOI: 10.1016/j.ecoenv.2023.115237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The widespread use of pesticides performs a vital role in safeguarding crop yields and quality, providing the opportunity for multiple pesticides to co-exist, which poses a significant potential risk to human health. To assess the toxic effects caused by exposures to individual pesticides (chlorpyrifos, carbofuran and acetamiprid), binary combinations and ternary combinations, individual and combined exposure models were developed using HepG2 cells and the types of combined effects of pesticide mixtures were assessed using concentration addition (CA), independent action (IA) and combination index (CI) models, respectively, and the expression of biomarkers related to oxidative stress, apoptosis and cell necrosis was further examined. Our results showed that both individual pesticides and mixtures exerted toxic effects on HepG2 cells. The CI model indicated that the toxic effects of pesticide mixtures exhibited synergistic effects. The results of the lactate dehydrogenase (LDH) release and apoptosis assay revealed that the pesticide mixture increased the release of LDH and apoptosis levels. Moreover, our results also showed that individual pesticides and mixtures disrupted redox homeostasis and that pesticide mixtures produced more intense oxidative stress effects. In conclusion, we have illustrated the enhanced combined toxicity of pesticide mixtures by in-vitro experiments, which provides a theoretical basis and scientific basis for further toxicological studies.
Collapse
Affiliation(s)
- Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xi Yang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Tiancai Wang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Ruirui Kou
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Panpan Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Yueqing Huang
- Department of General Medicine, The Affliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou 215026, China.
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
5
|
Overview of the Justicia Genus: Insights into Its Chemical Diversity and Biological Potential. Molecules 2023; 28:molecules28031190. [PMID: 36770856 PMCID: PMC9920429 DOI: 10.3390/molecules28031190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023] Open
Abstract
The genus Justicia has more than 600 species distributed in both hemispheres, in the tropics and temperate regions, and it is used in the treatment of numerous pathologies. This study presents a review of the biological activities of plant extracts and isolated chemical constituents of Justicia (ACANTHACEAE), identified in the period from May 2011 to August 2022. We analyzed over 176 articles with various biological activities and chemical compound descriptions present in the 29 species of Justicia. These have a variety of applications, such as antioxidant and antimicrobial, with alkaloids and flavonoids (e.g., naringenin) the most frequently identified secondary metabolites. The most observed species were Justicia gendarussa Burm., Justicia procumbens L., Justicia adhatoda L., Justicia spicigera Schltdl, and Justicia pectoralis Jacq. The frontier molecular orbitals carried out using density functional theory (M062X and basis set 6-311++G(d,p) indicate reactive sites for naringenin compound and a chemical reaction on phytomedicine activity. The energy gap (206.99 kcal/mol) and dimer solid state packing point to chemical stability. Due to the wide variety of pharmacological uses of these species, this review points toward the development of new phytomedicines.
Collapse
|
6
|
Basit A, Ahmad S, Khan KUR, Aati HY, Sherif AE, Ovatlarnporn C, Khan S, Rao H, Arshad MA, Shahzad MN, Perveen S. Evaluation of the anti-inflammatory, antioxidant, and cytotoxic potential of Cardamine amara L. (Brassicaceae): A comprehensive biochemical, toxicological, and in silico computational study. Front Chem 2023; 10:1077581. [PMID: 36688045 PMCID: PMC9853444 DOI: 10.3389/fchem.2022.1077581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction: Cardamine amara L. (Brassicaceae) is an important edible plant with ethnomedicinal significance. This study aimed at evaluating the phytochemical composition, anti-inflammatory, antioxidant and cytotoxicity aspects of the hydro-alcoholic extract of C. amara (HAECA). Methods: The phytochemical composition was evaluated through total phenolic contents (TPC), total flavonoid contents (TFC) determination and UPLC-QTOF-MS profiling. Anti-inflammatory evaluation of HAECA was carried out through the carrageenan induced paw edema model. Four in vitro methods were applied in the antioxidant evaluation of HAECA. MTT assay was used to investigate the toxicity profile of the species against human normal liver cells (HL7702), human liver cancer cell lines (HepG2) and human breast cancer cell lines (MCF-7). Three major compounds (Gentisic acid, skullcapflavone and conidendrine) identified in UPLC-Q-TOF-MS analysis were selected for in silico study against cyclooxygenase (COX-I and COX-II). Results and Discussion: The findings revealed that HAECA is rich in TPC (39.32 ± 2.3 mg GAE/g DE) and TFC (17.26 ± 0.8 mg RE/g DE). A total of 21 secondary metabolites were tentatively identified in UPLC-Q-TOF-MS analysis. In the MTT cytotoxicity assay, the extract showed low toxicity against normal cell lines, while significant anticancer activity was observed against human liver and breast cancer cells. The carrageenan induced inflammation was inhibited by HAECA in a dose dependent manner and showed a marked alleviation in the levels of oxidative stress (catalase, SOD, GSH) and inflammatory markers (TNF-α, IL-1β). Similarly, HAECA showed maximum antioxidant activity through the Cupric reducing power antioxidant capacity (CUPRAC) assay (31.21 ± 0.3 mg TE/g DE). The in silico study revealed a significant molecular docking score of the three studied compounds against COX-I and COX-I. Conclusively the current study encourages the use of C. amara as a novel polyphenolic rich source with anti-inflammatory and antioxidant potential and warrants further investigations on its toxicity profile.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand,Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla, Thailand
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kashif ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan,*Correspondence: Kashif ur Rehman Khan, ; Chitchamai Ovatlarnporn, ; Shagufta Perveen,
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asmaa E. Sherif
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia,Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand,Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla, Thailand,*Correspondence: Kashif ur Rehman Khan, ; Chitchamai Ovatlarnporn, ; Shagufta Perveen,
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Huma Rao
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Adeel Arshad
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, United States,*Correspondence: Kashif ur Rehman Khan, ; Chitchamai Ovatlarnporn, ; Shagufta Perveen,
| |
Collapse
|
7
|
Service CA, Puri D, Hsieh TC, Patel DP. Emerging concepts in male contraception: a narrative review of novel, hormonal and non-hormonal options. Ther Adv Reprod Health 2023; 17:26334941221138323. [PMID: 36909934 PMCID: PMC9996746 DOI: 10.1177/26334941221138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2023] Open
Abstract
Access to reliable contraception is a pillar of modern society. The burden of unintended pregnancy has fallen disproportionately on the mother throughout human history; however, recent legal developments surrounding abortion have sparked a renewed interest in male factor contraceptives beyond surgical sterilization and condoms. Modern efforts to develop reversible male birth control date back nearly a century and initially focused on altering the hypothalamic-pituitary-testes axis. These hormonal contraceptives faced multiple barriers, including systemic side effects, challenging dosing regimens, unfavorable routes of delivery, and the public stigma surrounding steroid use. Novel hormonal agents are seeking to overcome these barriers by limiting the side effects and simplifying use. Non-hormonal contraceptives are agents that target various stages of spermatogenesis; such as inhibitors of retinoic acid, Sertoli cell-germ cell interactions, sperm ion channels, and other small molecular targets. The identification of reproductive tract-specific genes associated with male infertility has led to more targeted drug development, made possible by advances in CRISPR and proteolysis targeting chimeras (PROTACs). Despite multiple human trials, no male birth control agents have garnered regulatory approval in the United States or abroad. This narrative review examines current and emerging male contraceptives, including hormonal and non-hormonal agents.
Collapse
Affiliation(s)
- C. Austin Service
- Department of Urology, University of California
San Diego, San Diego, CA, USA
| | - Dhruv Puri
- Department of Urology, University of California
San Diego, San Diego, CA, USA
| | - Tung-Chin Hsieh
- Department of Urology, University of California
San Diego, San Diego, CA, USA
| | - Darshan P. Patel
- Department of Urology, University of California
San Diego, 9333 Genesee Avenue, Suite 320, La Jolla, CA 92121, USA
| |
Collapse
|
8
|
Sarkar C, Mondal M, Al-Khafaji K, El-Kersh DM, Jamaddar S, Ray P, Roy UK, Afroze M, Moniruzzaman M, Khan M, Asha UH, Khalipha ABR, Mori E, de Lacerda BCGV, Araújo IM, Coutinho HDM, Shill MC, Islam MT. GC–MS analysis, and evaluation of protective effect of Piper chaba stem bark against paracetamol-induced liver damage in Sprague-Dawley rats: Possible defensive mechanism by targeting CYP2E1 enzyme through in silico study. Life Sci 2022; 309:121044. [DOI: 10.1016/j.lfs.2022.121044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|
9
|
New mechanistic insights on Justicia vahlii Roth: UPLC-Q-TOF-MS and GC–MS based metabolomics, in-vivo, in-silico toxicological, antioxidant based anti-inflammatory and enzyme inhibition evaluation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
10
|
Basit A, Ahmad S, Khan KUR, Naeem A, Usman M, Ahmed I, Shahzad MN. Chemical profiling of Justicia vahlii Roth. (Acanthaceae) using UPLC-QTOF-MS and GC-MS analysis and evaluation of acute oral toxicity, antineuropathic and antioxidant activities. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114942. [PMID: 34968664 DOI: 10.1016/j.jep.2021.114942] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Justicia vahlii Roth. (Acanthaceae), also called as kodasoori and bhekkar is an annual therophyte erect or decumbent herb used traditionally in toothache, skin diseases (itching, topical inflammation) and for the treatment of various respiratory disorders. AIM OF THE STUDY The current study aimed at exploring pain cessation potential of J. vahlii Roth. via murine model of neuropathic pain and its phytochemical, toxicological and antioxidant profiles. MATERIALS AND METHODS The hydro-alcoholic extract of J. vahlii (HAEJv) prepared by maceration technique was subjected to preliminary phytochemical screening, total bioactive content determination, UPLC-QTOF-MS and GC-MS analysis. Toxicity assessment was carried out by using brine shrimp lethality assay and acute oral toxicity test. Murine model of neuropathic pain was applied to assess the antineuropathic potential of the species. Furthermore effect of the extract on catalase, superoxide oxide dismutase (SOD), Glutathione (GSH), interleukin-1beta (IL-1β) and total necrosis factor-alpha (TNF-α) was also studied. In vitro antioxidant profile was explored by using four methods; 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis(3-ethylbenothiazoline)-6-sulfonic acid (ABTS), CUPric reducing antioxidant capacity (CUPRAC) and Ferric reducing antioxidant power (FRAP) assay. RESULTS The phytochemical screening revealed the presence of phenols, flavonoids, coumarins, alkaloids and lignans as the major classes of secondary metabolites. The extract was found rich in total phenolics content (TPC) and total flavonoids content (TFC) with identification of total 59 bioactives in UPLC-QTOF-MS and 40 compounds in GC-MS analysis. The extract was found nontoxic up to 4000 mg/kg (p.o.) in mice and no mortality observed in brine shrimp lethality assay. The HAEJv significantly reduced number of acetic acid induced abdominal constrictions at 100 mg/kg (p < 0.01) and 200 mg/kg (p < 0.001) and increased paw withdrawal threshold p < 0.05 at 100 mg/kg and p < 0.001 at 200 mg/kg, and an increase in tail withdrawal latency time p < 0.001 at 200 mg/kg was observed. The extract significantly increased levels of catalase, SOD and GSH while decreased IL-1β and TNF-α levels in sciatic nerve tissue of mice. HAEJv showed highest antioxidant activity through CUPRAC method 121.32 ± 1.22 mg trolox equivalent per gram of dry extract (mg TE/g DE) followed by DPPH 81.334 ± 4.35 mg TE/g DE, FRAP 69.89 ± 3.05 mg TE/g DE and ABTS 38.17 ± 2.12 mg TE/g DE. CONCLUSION The current study back the traditional use of J. vahlii in pain cessation through antioxidant based antineuropathic pain activity and revealed the extract non-toxic with number of functional phytoconstituents and warrants further research on isolation of the compounds and sub-acute toxicity studies.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Kashif Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Muhammad Usman
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Imtiaz Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
11
|
Hepatoprotective activity of andrographolide possibly through antioxidative defense mechanism in Sprague-Dawley rats. Toxicol Rep 2022; 9:1013-1022. [DOI: 10.1016/j.toxrep.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
|
12
|
Das R, Mitra S, Tareq AM, Emran TB, Hossain MJ, Alqahtani AM, Alghazwani Y, Dhama K, Simal-Gandara J. Medicinal plants used against hepatic disorders in Bangladesh: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114588. [PMID: 34480997 DOI: 10.1016/j.jep.2021.114588] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver disease is a major cause of illness and death worldwide which accounts for approximately 2 million deaths per year worldwide, 1 million due to complications of cirrhosis and 1 million due to viral hepatitis and hepatocellular carcinoma. That's why it is seeking the researchers' attention to find out the effective treatment strategies. Phytochemicals from natural resources are the main leads for the development of noble hepatoprotective drugs. The majority of the natural sources whose active compounds are currently employed actually have an ethnomedical use. Ethnopharmacological research is essential for the development of these bioactive compounds. These studies not only provide scientific evidence on medicinal plants utilized for particular therapeutic purposes, but they also ensure cultural heritage preservation. Plenty of experimental studies have been well-documented that the ethnomedicinal plants are of therapeutics' interest for the advanced pharmacological intervention in terms of hepatic disorders. AIM OF THE STUDY This study summarizes the processes of hepatotoxicity induced by various toxins and explores identified hepatoprotective plants and their phytoconstituents, which can guide the extraction of novel phytochemical constituents from plants to treat liver injury. This review aimed to summarize the hepatoprotective activity of Bangladeshi medicinal plants where the bioactive compounds may be leads for the drug discovery in future. MATERIALS AND METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, SpringerLink, PubMed, Google Scholar, Semantic Scholar, Scopus, BanglaJOL, and so on, were performed using the keywords 'Bangladesh', 'ethnomedicinal plants', 'Hepatoprotective agents' as for primary searches, and secondary search terms were used as follows, either alone or in combination: traditional medicine, medicinal plants, folk medicine, liver, hepatitis, therapeutic uses, and anti-inflammatory. Besides, several books, including the book entitled "Medicinal plants of Bangladesh: chemical constituents and uses" authored by Abdul Ghani, were carefully considered, which contained pharmacological properties and phytoconstituents of many medicinal plants growing and traditionally available in Bangladesh. Among them, the most promising plant species with their latest therapeutic effects against hepatic disorders were deeply considered in this review. RESULTS The results of this study revealed that in most cases, therapy using plant extracts stabilized altered hepatic biochemical markers induced by hepatotoxins. Initially, we investigated 32 plant species for hepatoprotective activity, however after extensive literature searching; we observed that 20 plants offer good pharmacological evidence of hepatoprotective function. Consequently, most bioactive compounds derived from the herbs including berberine, thymoquinone, andrographolide, ursolic acid, luteolin, naringenin, genistein, quercetin, troxerutin, morin, epigallocatechin-3-gallate, chlorogenic acid, emodin, curcumin, resveratrol, capsaicin, ellagic acid, etc. are appeared to be effective against hepatic disorders. CONCLUSIONS Flavonoids, phenolic acids, monoterpenoids, diterpenoids, triterpenoids, alkaloids, chromenes, capsaicinoids, curcuminoids, and anthraquinones are among the phytoconstituents were appraised to have hepatoprotective activities. All the actions displayed by these ethnomedicinal plants could make them serve as leads in the formulation of drugs with higher efficacy to treat hepatic disorders.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareil-ly, 243122, Uttar Pradesh, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004, Ourense, Spain.
| |
Collapse
|
13
|
Reveals of candidate active ingredients in Justicia and its anti-thrombotic action of mechanism based on network pharmacology approach and experimental validation. Sci Rep 2021; 11:17187. [PMID: 34433871 PMCID: PMC8387432 DOI: 10.1038/s41598-021-96683-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/13/2021] [Indexed: 11/08/2022] Open
Abstract
Thrombotic diseases seriously threaten human life. Justicia, as a common Chinese medicine, is usually used for anti-inflammatory treatment, and further studies have found that it has an inhibitory effect on platelet aggregation. Therefore, it can be inferred that Justicia can be used as a therapeutic drug for thrombosis. This work aims to reveal the pharmacological mechanism of the anti-thrombotic effect of Justicia through network pharmacology combined with wet experimental verification. During the analysis, 461 compound targets were predicted from various databases and 881 thrombus-related targets were collected. Then, herb-compound-target network and protein-protein interaction network of disease and prediction targets were constructed and cluster analysis was applied to further explore the connection between the targets. In addition, Gene Ontology (GO) and pathway (KEGG) enrichment were used to further determine the association between target proteins and diseases. Finally, the expression of hub target proteins of the core component and the anti-thrombotic effect of Justicia's core compounds were verified by experiments. In conclusion, the core bioactive components, especially justicidin D, can reduce thrombosis by regulating F2, MMP9, CXCL12, MET, RAC1, PDE5A, and ABCB1. The combination of network pharmacology and the experimental research strategies proposed in this paper provides a comprehensive method for systematically exploring the therapeutic mechanism of multi-component medicine.
Collapse
|
14
|
Mondal M, Saha S, Sarkar C, Hossen MS, Hossain MS, Khalipha ABR, Islam MF, Wahed TB, Islam MT, Rauf A, Mubarak MS, Kundu SK. Role of Citrus medica L. Fruits Extract in Combatting the Hematological and Hepatic Toxic Effects of Carbofuran. Chem Res Toxicol 2021; 34:1890-1902. [PMID: 34264070 DOI: 10.1021/acs.chemrestox.1c00166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Citrus medica L. is rich in numerous vital bioactive constituents, though it is an underutilized among the citrus genus. Therefore, the aim of the present investigation was to evaluate the protective role of the C. medica fruit (CMF) methanol extract against carbofuran (CF)-induced toxicity in experimental rats. In addition, this work aims at detecting and measuring polyphenolic compounds by means of high-performance liquid chromatography (HPLC) and evaluation of the antioxidant activity of this extract. For this, studies dealing with serum hematological and biochemical parameters, liver endogenous antioxidants, as well as hepatic histo-architectural features have been carried out to assess the protective ability of CMF against CF-induced toxicity. Additionally, total phenol, flavonoid, and antioxidant capability were measured and the antioxidant action was investigated using DPPH and nitric oxide radical scavenging assays as well as reducing power assessments. HPLC results revealed the presence of benzoic acid, cinnamic acid, gallic acid, quercetin, and salicylic acid in CMF extract. Furthermore, results showed that CMF has considerable total phenol, flavonoid, and antioxidant capability and exhibits significant free radical scavenging and reducing potentialities. On the other hand, CF intoxication of rats significantly altered the hematological and serum biochemical parameters with hepatocytes disruption. Carbofuran also caused an upsurge in malondialdehyde (MDA) level and a decline in hepatic cellular antioxidant enzymes levels in rats compared to the control group. Co-administration of CMF amended the anomalies and improved the histo-architectural arrangement of hepatocytes in treated groups. CMF also inhibited the alteration of endogenous antioxidant enzymes and MDA levels as compared to the carbofuran treated group and returned them to their normal state. Taken all together, results from this investigation highlight the protective role of CMF against CF-induced toxicity which might be attributed to the polyphenolic constituents of the extract.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Sushmita Saha
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Sakib Hossen
- Department of Biochemistry, Primeasia University, Banani, Dhaka 1212, Bangladesh
| | - Md Solayman Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Abul Bashar Ripon Khalipha
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Fokhrul Islam
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Tania Binte Wahed
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Ambar, Swabi, Khyber Pakhtunkhwa 94640, Pakistan
| | | | | |
Collapse
|
15
|
Islam MT, Quispe C, Islam MA, Ali ES, Saha S, Asha UH, Mondal M, Razis AFA, Sunusi U, Kamal RM, Kumar M, Sharifi-Rad J. Effects of nerol on paracetamol-induced liver damage in Wistar albino rats. Biomed Pharmacother 2021; 140:111732. [PMID: 34130201 DOI: 10.1016/j.biopha.2021.111732] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 02/02/2023] Open
Abstract
Nerol, a monoterpene is evident to possess diverse biological activities, including antioxidant, anti-microbial, anti-spasmodic, anthelmintic, and anti-arrhythmias. This study aims to evaluate its hepatoprotective effect against paracetamol-induced liver toxicity in a rat model. Five groups of rats (n = 7) were orally treated (once daily) with 0.05% tween 80 dissolved in 0.9% NaCl solution (vehicle), paracetamol 640 mg/kg (negative control), 50 mg/kg silymarin (positive control), or nerol (50 and 100 mg/kg) for 14 days, followed by the hepatotoxicity induction using paracetamol (PCM). The blood samples and livers of the animals were collected and subjected to biochemical and microscopical analysis. The histological findings suggest that paracetamol caused lymphocyte infiltration and marked necrosis, whereas maintenance of the normal hepatic structural was observed in group pre-treated with silymarin and nerol. The rats pre-treated with nerol significantly and dose-dependently reduced the hepatotoxic markers in animals. Nerol at 100 mg/kg significantly reversed the paracetamol-induced altered situations, including the liver enzymes, plasma proteins, antioxidant enzymes and serum bilirubin, lipid peroxidation (LPO) and cholesterol [e.g., total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c)] levels in animals. Taken together, nerol exerted significant hepatoprotective activity in rats in a dose-dependent manner. PCM-induced toxicity and nerol induced hepatoprotective effects based on expression of inflammatory and apoptosis factors will be future line of work for establishing the precise mechanism of action of nerol in Wistar albino rats.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique, 1110939, Chile.
| | - Md Amirul Islam
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh.
| | - Eunus S Ali
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Australia.
| | - Sushmita Saha
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh.
| | - Umma Hafsa Asha
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka), 8100, Bangladesh.
| | - Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka), 8100, Bangladesh.
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Bayero University Kano, PMB 3011, Kano, Nigeria.
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Pharmacology, Federal University Dutse, PMB 7156 Dutse, Jigawa state, Nigeria.
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on CottonTechnology, Mumbai, 400019, Maharashtra, India
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Mondal M, Hossen MS, Rahman MA, Saha S, Sarkar C, Bhoumik NC, Kundu SK. Antioxidant mediated protective effect of Bridelia tomentosa leaf extract against carbofuran induced oxidative hepatic toxicity. Toxicol Rep 2021; 8:1369-1380. [PMID: 34285883 PMCID: PMC8278150 DOI: 10.1016/j.toxrep.2021.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022] Open
Abstract
Bridelia tomentosa is a traditional medicinal plant that is used against colitis, traumatic injury, diarrhea, and diabetes. Gallic acid, Tannic acid, salicylic acid, and naringin were isolated from the leaf of B. tomentosa for the first time. B. tomentosa extract amended serum biochemical markers, MDA levels, and improved the levels of hepatic antioxidant enzymes. Phenolic and flavonoid compounds of the B. tomentosa can be used as nutraceuticals for treating oxidative hepatic ailments.
Bridelia tomentosa (B. tomentosa) is a traditional medicinal plant for treating diverse ailments. Hence, we designed our study to scrutinize the protective effect of the methanol extract of B. tomentosa leaf (BTL) against carbofuran-induced oxidative stress-mediated hepato-toxicity in Sprague-Dawley rats for the first time, along with the identification and quantification of phenolic acids and flavonoids by high-performance liquid chromatography (HPLC) and evaluation of antioxidant and antiradical activities of this extract. HPLC analysis confirmed the existence of tannic acid, gallic acid, salicylic acid, and naringin in B. tomentosa leaf extract which showed in-vitro antioxidant potentialities with DPPH, nitric oxide, hydrogen peroxide, and hydroxyl radical scavenging properties. Co-administration of B. tomentosa leaf extract with carbofuran showed dose-dependent significant protective effects of hepatic toxicity on serum markers such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, γ-glutamyl-transferase, lactate dehydrogenase, total bilirubin, total protein, albumin, globulin, lipid profile, urea, uric acid, and creatinine. Carbofuran intoxication also revealed an upsurge in malondialdehyde (MDA) and a decline in cellular endogenous antioxidant enzyme levels in rats compared with the control group. However, B. tomentosa leaf extract co-treatment increased the levels of hepatic antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, and amended the MDA level. Similarly, histopathological evaluation further assured that BTL could keep the hepatocyte from carbofuran-induced damage. Therefore, all of our findings may conclude that the phenolic acids and flavonoids of B. tomentosa leaf extract are responsible to neutralize the toxic free radical-mediated oxidative hepatic damages.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Corresponding author.
| | - Md. Sakib Hossen
- Department of Biochemistry, Primeasia University, Banani, 1213, Bangladesh
| | | | - Sushmita Saha
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Nikhil Chandra Bhoumik
- Wazed Miah Science Research Centre, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Sukalyan Kumar Kundu
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| |
Collapse
|
17
|
Vasantharaj S, Shivakumar P, Sathiyavimal S, Senthilkumar P, Vijayaram S, Shanmugavel M, Pugazhendhi A. Antibacterial activity and photocatalytic dye degradation of copper oxide nanoparticles (CuONPs) using Justicia gendarussa. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01939-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Chen S, Yu Y, Ma J, Wen C, Wang X, Zhou Q. Simultaneous determination of carbofuran and 3-hydroxycarbofuran in duck liver by an UPLC-MS/MS. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2020.00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractCarbofuran is a carbamate pesticide, a broad-spectrum, high-efficiency, low-residue, and highly toxic insecticide, acaricide, and nematicide, widely used in agriculture. Carbofuran is most harmful to birds, and birds or insects killed by furan poisoning can be killed by secondary poisoning after being foraged by raptors, small mammals, or reptiles. In this paper, an UPLC-MS/MS method was developed for the determination of carbofuran and its metabolite, 3-hydroxycarbofuran, in duck liver. Liver tissue was first ground into a homogenate and then passed through ethyl acetate liquid-liquid extraction processing samples. Multiple reaction monitoring (MRM) mode was used for quantitative analysis, m/z 222.1 → 165.1 for carbofuran, m/z 238.1 → 180.9 for 3-hydroxycarbofuran and m/z 290.2 → 198.2 for an internal standard. The standard curves of carbofuran and 3-hydroxycarbofuran in duck liver were within a range of 2–2000 ng/g, where the linearity was good, the lower limit of quantification was 2 ng/g. The intra-day precision of carbofuran and 3-hydroxycarbofuran was <14%, and the inter-day precision was <13%, the accuracy range was between 91.8 and 108.9%, the average extraction efficiency was higher than 75.1% with a matrix effect between 93.4 and 107.7%. The developed method was applied to a situation of suspected duck poisoning at a local farm.
Collapse
Affiliation(s)
- Siyuan Chen
- 1Institute of Forensic Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yang Yu
- 2Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianshe Ma
- 1Institute of Forensic Science, Wenzhou Medical University, Wenzhou 325000, China
- 2Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Congcong Wen
- 1Institute of Forensic Science, Wenzhou Medical University, Wenzhou 325000, China
- 2Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xianqin Wang
- 1Institute of Forensic Science, Wenzhou Medical University, Wenzhou 325000, China
- 2Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Quan Zhou
- 3The Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui 323000, China
| |
Collapse
|
19
|
Mondal M, Quispe C, Sarkar C, Bepari TC, Alam MJ, Saha S, Ray P, Rahim MA, Islam MT, Setzer WN, Salehi B, Ahmadi M, Abdalla M, Sharifi-Rad J, Kundu SK. Analgesic and Anti-Inflammatory Potential of Essential Oil of Eucalyptus camaldulensis Leaf: In Vivo and in Silico Studies. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211007634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The objective of our present study is to scrutinize the analgesic and anti-inflammatory potentials of essential oil of Eucalyptus camaldulensis leaf using different in vivo assay models at doses of 100, 200, and 400 mg/kg body weight. Twenty chemical compounds, which were isolated from the leaves essential oil of E. camaldulensis, were docked using AutodockVina against cyclooxygenase 2, tumor necrosis factor-α, and interleukin-1β convertase to elucidate the analgesic and anti-inflammatory activity. The essential oil of E. camaldulensis exhibited noteworthy analgesic activities in the writhing test. In the tail immersion and hot-plate test, the essential oil significantly extended the latency period. The number of licks in the formalin-induced paw licking test was markedly reduced following essential oil administration. In addition, E. camaldulensis essential oil revealed notable anti-inflammatory responses in carrageenan-induced paw edema, xylene induced ear edema and cotton pellet induced granuloma methods. Among 20 compounds, 5 ( cis-sabinol, globulol, α-eudesmol, β-eudesmol, and γ-eudesmol) showed better binding for cyclooxygenase-2 while β-eudesmol exhibited higher affinity for TNFα than that of TNF-alpha-IN-1 and standard drug. In the case of interleukin 1β convertase, maximum affinity was shown by α-eudesmol than the synthetic drug belnacasan. Chemical components of the essential oil interacted with diverse amino acid residues which were similar to the natural substrate and standard drugs. In conclusion, E. camaldulensis essential oil can be an effective source of analgesic and anti-inflammatory treatment and additional modification and docking studies will be required to justify the efficiency of globulol, α-eudesmol, β-eudesmol, and γ-eudesmol.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Md. Jahir Alam
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Sushmita Saha
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Pranta Ray
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, USA
- Aromatic Plant Research Center, Lehi, UT, USA
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Ahmadi
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Shandong Province, P.R. China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | | |
Collapse
|