1
|
Wang H, Mandemaker LDB, de Ruiter J, Yu X, van der Stam W, Weckhuysen BM. Identical Grain Atomic Force Microscopy Elucidates Facet-Dependent Restructuring of Copper for CO 2 Electroreduction. Angew Chem Int Ed Engl 2025; 64:e202424530. [PMID: 39900540 DOI: 10.1002/anie.202424530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/19/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
Studies on the catalyst restructuring during the electrochemical CO2 reduction reaction (eCO2RR) are limited and mostly focused on Cu (001) or (111) single crystals as model systems. A comprehensive overview of the dynamic restructuring of different Cu facets is lacking. Here, we first reveal the facet-dependent restructuring of polycrystalline Cu electrodes through electron backscatter diffraction (EBSD) and identical grain atomic force microscopy (AFM). This combined analysis provides new insights into the evolution of crystal domains (EBSD) and surface topography (AFM) at varying conditions (e.g., applied potential and oxidative-reductive pulses). The statistic slope distribution function was applied to study the restructuring asymmetry on five Cu facets (i.e., planar vs. atom stepped). We find that planar Cu (001) shows a square-shaped morphology after eCO2RR with 4-fold asymmetry restructuring behavior, while triangular features dominate on Cu (111), evidenced by surface changes with 3-fold asymmetry. 2-fold restructuring is observed for Cu (114), (212), and (124) with atom steps, resulting in forming elongated structures. Therefore, the surface restructuring is dominated by the asymmetry of its facet lattice structure (i.e., planar vs. atom-stepped). This work underscores the potential of combining techniques to elucidate the relationship between surface restructuring and crystal facets on different length scales.
Collapse
Affiliation(s)
- Hui Wang
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Laurens D B Mandemaker
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jim de Ruiter
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Xiang Yu
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Ward van der Stam
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
2
|
Dinges I, Pyschik M, Schütz J, Schneider S, Klemm E, Waldvogel SR, Stöckl M. All Electrochemical Synthesis of Performic Acid Starting from CO 2, O 2, and H 2O. CHEMSUSCHEM 2025:e2500180. [PMID: 40192536 DOI: 10.1002/cssc.202500180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Driven by anthropogenic climate change, innovative approaches to defossilize the chemical industry are required. Herein, the first all-electrochemical feasibility study for the complete electrosynthesis of the strong oxidizer and effective disinfectant performic acid is presented. Its synthesis is achieved solely from CO2, O2, and H2O in a two-step process. Initially, CO2 is electrochemically reduced to formate employing Bi2O3-based gas diffusion electrodes in a phosphate-buffered electrolyte. Thereby, high formate concentration (500.7 ± 0.6 mmol L-1) and high Faradaic efficiency (86.3 ± 0.3%) are achieved at technically relevant current density (150 mA cm-2). Subsequently, the formate acts as (storable) feed electrolyte for the second electrolysis step. Employing carbon-based gas diffusion electrodes, O2 is reduced to H2O2 and performic acid is directly formed in situ. As before, high H2O2 concentration (1.27 ± 0.06 mol L-1) and high Faradaic efficiency (85.3 ± 5.4%) are achieved. Furthermore, performic acid concentration suitable for disinfection is obtained (82 ± 11 mmol L-1). In summary, this innovative feasibility study highlights the potential of combining electrochemical CO2 reduction with H2O2 electrosynthesis, which could provide sustainable access to performic acid in the future.
Collapse
Affiliation(s)
- Ida Dinges
- Chemical Technology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
- Department for Electrosynthesis, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Markus Pyschik
- Chemical Technology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Julian Schütz
- Chemical Technology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Selina Schneider
- Chemical Technology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Elias Klemm
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Siegfried R Waldvogel
- Department for Electrosynthesis, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Markus Stöckl
- Chemical Technology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Oksanen V, Malinen K, Hu T, Reznichenko A, Wirtanen T. TEMPO-Mediated Paired Electrosynthesis of Ethylene Glycol from Formaldehyde and Methanol at High Current Densities. CHEMSUSCHEM 2025:e2500123. [PMID: 40152423 DOI: 10.1002/cssc.202500123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 03/29/2025]
Abstract
Herein, a paired electrosynthesis of ethylene glycol from formaldehyde and methanol facilitated by TEMPO is reported. The use of TEMPO accentuates formaldehyde production at the anode, providing additional formaldehyde into the cathodic coupling process. The reaction is performed in water/methanol solution in a simple undivided cell using sulfuric acid-treated graphite electrodes with industrially feasible current densities between 300 and 350 mA cm-2. Other components of the reaction are sodium chloride which is used as a supporting electrolyte and tributylmethylammonium chloride which raises the current efficiency. With a slight modification in the reaction temperature and current density, the outcome can be tuned from high current efficiency toward higher chemical yields. The conditions of the batch reaction are successfully transferred to a continuous flow-cell arrangement. Mechanistic studies indicate the involvement of hydroxymethyl radicals in the electrolysis, and deuterium-labeling experiments show the partial conversion of methanol into formaldehyde and ethylene glycol.
Collapse
Affiliation(s)
- Valtteri Oksanen
- Chemical and Polymer Synthesis, VTT Technical Research Centre of Finland Ltd.,, Box 1000, FI-02044, Espoo, Finland
| | - Kiia Malinen
- School of Chemical Engineering, Aalto University, Box 11000, FI-00076, Aalto, Finland
| | - Tao Hu
- Research Unit of Sustainable Chemistry, University of Oulu, Box 4300, FI-90014, Oulu, Finland
| | - Alexander Reznichenko
- Chemical and Polymer Synthesis, VTT Technical Research Centre of Finland Ltd.,, Box 1000, FI-02044, Espoo, Finland
| | - Tom Wirtanen
- Chemical and Polymer Synthesis, VTT Technical Research Centre of Finland Ltd.,, Box 1000, FI-02044, Espoo, Finland
| |
Collapse
|
4
|
Cheon S, Kim B, Kim HW, Kim D, Han JI. Dynamic Reconstruction of Cu Catalyst Under Electrochemical NO Reduction to NH 3. CHEMSUSCHEM 2025; 18:e202401978. [PMID: 39448376 DOI: 10.1002/cssc.202401978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
The electrochemical reduction of nitric oxide (NO) to ammonia (NH3) offers a sustainable way of simultaneously treating the air pollutant and producing a useful chemical. Among catalyst candidates, Cu emerges as a stand-out choice for its superb NH3 selectivity and production rate. However, a comprehensive study concerning its catalytic behavior in the NO reduction environment is still lacking. Here, we unravel the dynamic rearrangement of Cu catalysts during NO reduction: the emergence of a bundled nanowire structure dependent on the applied potential. This unique structure is closely linked to an enhancement in double-layer capacitance, leading to a progressive increase in current density from 236 mA cm-2 by 20 % over 1 h, while maintaining a Faradaic efficiency of 95 % for NH3. Characterizations of Cu oxidation states suggest that the nanostructure results from the dissolution-redeposition of Cu in the aqueous electrolyte, influenced by the interaction with NO or other reactive intermediates. This understanding contributes to the broader exploration of Cu-based catalysts for sustainable and efficient NH3 synthesis from NO.
Collapse
Affiliation(s)
- Seonjeong Cheon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Beomseo Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun-Woo Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - DongYeon Kim
- Research Institute, Bluetec, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Lenhard MS, Winter J, Sandvoß A, Gálvez-Vázquez MDJ, Schollmeyer D, Waldvogel SR. Simple and versatile electrochemical synthesis of highly substituted 2,1-benzisoxazoles. Org Biomol Chem 2025; 23:2391-2399. [PMID: 39660434 PMCID: PMC11632592 DOI: 10.1039/d4ob01875c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
A sustainable, general and scalable electrochemical protocol for direct access to 3-(acylamidoalkyl)-2,1-benzisoxazoles by cathodic reduction of widely accessible nitro arenes is established. The method is characterised by a simple undivided set-up under constant current conditions, inexpensive and reusable carbon-based electrodes, and environmentally benign reaction conditions. The versatility of the developed protocol is demonstrated on 39 highly diverse examples with up to 81% yield. A 50-fold scale-up electrolysis highlights its relevance for preparative applications.
Collapse
Affiliation(s)
- Marola S Lenhard
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Johannes Winter
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Alexander Sandvoß
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | | | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
6
|
Lv Y, Huang C, Zhao M, Fang M, Dong Q, Tang W, Yang J, Zhu X, Qiao X, Zheng H, Sun C, Zheng L, Zheng M, Xu Y, Lu J. Synergistic Anion-Cation Chemistry Enables Highly Stable Zn Metal Anodes. J Am Chem Soc 2025. [PMID: 40033817 DOI: 10.1021/jacs.4c16932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Engineering aqueous electrolytes with an ionic liquid (IL) for the zinc (Zn) metal anode has been reported to enhance the electrochemical performances of the Zn metal batteries (ZMBs). Despite these advancements, the effects of IL and the mechanisms involving their anions and cations have been scarcely investigated. Here, we introduce a novel electrolyte design strategy that synergizes anion-cation chemistry using a halogen-based IL and elucidates the underlying mechanism. The strongly and preferentially adsorbed halogen anions guide the formation of a water-poor electrical double layer (EDL) by imidazole-based cations, resulting in the formation of a halide-rich inorganic interphase. This synergistic interaction significantly mitigates Zn anode corrosion at the anode-electrolyte interface, while the halide-rich interphase promotes dense Zn deposition. Consequently, the battery exhibits superior performance, including high reversibility (99.74%) and an ultralong cycle life (20,000 cycles). This synergistic anion-cation chemistry strategy combines the traditional single solid electrolyte interphase and the classic EDL mechanism, substantially enhancing the electrochemical performance of ZMBs.
Collapse
Affiliation(s)
- Yanqun Lv
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenyue Huang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Ming Zhao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Mingzhe Fang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qianwen Dong
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wanqi Tang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingting Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xinxin Zhu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xianji Qiao
- Quzhou Institute of Power Battery and Grid Energy Storage, Quzhou, Zhejiang 324000, P. R. China
| | - Hongfei Zheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chuang Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lijun Zheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Mengting Zheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yunkai Xu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
7
|
Raciti D, Moffat TP. Hydride Formation and Decomposition on Cu(111) in HClO 4. J Am Chem Soc 2025; 147:4038-4051. [PMID: 39868750 PMCID: PMC11844892 DOI: 10.1021/jacs.4c12782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Cu electrodeposition and the electrocatalysis of hydrogenation reactions thereupon involve significant interactions with adsorbed hydrogen. Electrochemical mass spectrometry (EC-MS) is used to explore the formation and decomposition of surface hydride on Cu(111) in 0.1 mol L-1 HClO4. Hydride formation is associated with two reduction waves that reflect the potential-dependent Hads coverage and its reconstruction. Voltammetric cycling reveals an additional oxidative and reductive feature at ≈ -0.05 V versus the reversible hydrogen electrode (RHE) that reflects the state of the 2D surface hydride. Extending the voltammetric window to more negative potentials results in an increase in Hads coverage and surface reconstruction that subsequently leads to accelerated hydride decomposition at positive potentials. Voltammetric and chronoamperometric analysis of hydride formation indicates a Hads coverage of ≈0.75 monolayers (ML) between -0.225 V vs RHE and -0.275 V vs RHE with further increases in Hads observed with the onset and acceleration of the HER at more negative potentials. Returning to more positive potentials, hydride decomposition begins above -0.05 V vs RHE. Recombination of Hads to form H2 accounts for desorption of ≈0.5 ML of Hads while its oxidation to H3O+ consumes between ≈0.15 and ≈0.4 ML of Hads, depending on the specific electrochemical conditions. The potential-dependent Hads coverage and surface reconstruction are congruent with trends identified in recent computational and electrochemical scanning tunneling microscopy studies. In contrast to perchloric acid, the presence of strongly adsorbing anions, such as sulfate or halides, favors hydride decomposition via the recombination pathway.
Collapse
Affiliation(s)
- David Raciti
- Materials Science and Engineering
Division, National Institute of Standards
and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Thomas P. Moffat
- Materials Science and Engineering
Division, National Institute of Standards
and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
8
|
Wu H, Zhang J. Dynamic restructuring of electrocatalysts in the activation of small molecules: challenges and opportunities. Chem Commun (Camb) 2025; 61:2190-2202. [PMID: 39801457 DOI: 10.1039/d4cc05165c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Electrochemical activation of small molecules plays an essential role in sustainable electrosynthesis, environmental technologies, energy storage and conversion. The dynamic structural changes of catalysts during the course of electrochemical reactions pose challenges in the study of reaction kinetics and the design of potent catalysts. This short review aims to provide a balanced view of in situ restructuring of electrocatalysts, including its fundamental thermodynamic origins and how these compare to those in thermal and photocatalysis, and highlighting both the positive and negative impacts of in situ restructuring on the electrocatalyst performance. To this end, examples of in situ electrocatalyst restructuring within a focused scope of reactions (i.e. electrochemical CO2 reduction, hydrogen evolution, oxygen reduction and evolution, and dinitrogen and nitrate reduction) are used to demonstrate how restructuring can benefit or adversely affect the desired process outcome. Prospects of manipulating in situ restructuring towards an energy-efficient and durable electrocatalytic process are discussed. The practicality of pulse electrolysis on an industrial scale is questioned, and the need for genius schemes, such as self-healing catalysis, is emphasized.
Collapse
Affiliation(s)
- Hsiwen Wu
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
9
|
Zhou W, Chen P, Xie XQ, Wu Y, Ding H, Yang R, Song XR, Luo MJ, Xiao Q. Electrochemical Three-Component C-H Functionalization of Indoles with Sodium Bisulfite and Alcohols to Access Indole-Containing Sulfonate Esters. J Org Chem 2025; 90:1085-1095. [PMID: 39754573 DOI: 10.1021/acs.joc.4c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Herein, an efficient electrochemical three-component C-H functionalization of indoles with sodium bisulfite and alcohols is described, providing a sustainable and convenient synthetic route for the construction of structurally valuable indole-containing sulfonate esters in moderate to good yields. This protocol proceeds in an undivided cell without any metal catalysts or oxidants, features a broad substrate scope, and has an excellent functional group tolerance. Preliminary mechanistic studies suggest that a radical-radical pathway may be involved in this three-component reaction system.
Collapse
Affiliation(s)
- Wei Zhou
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Peng Chen
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xiao-Qing Xie
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yanli Wu
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Haixin Ding
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ruchun Yang
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xian-Rong Song
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Mu-Jia Luo
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Qiang Xiao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
10
|
Kumari A, Kaur N, Kaur M, Husain FM, Bhowmik PK, Sohal HS. Sustainable corrosion prevention of mild steel in acidic media with Rumex Nepalensis herb extract. RSC Adv 2025; 15:924-937. [PMID: 39807195 PMCID: PMC11726314 DOI: 10.1039/d4ra07958b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025] Open
Abstract
Mild steel provides strength to various building and industrial materials but it is badly affected by corrosion. In the present study, we investigate the efficacy of Rumex nepalensis, a plant-based green corrosion inhibitor to minimize mild steel corrosion in a 1 M H2SO4 solution. Weight loss, surface coverage, inhibition efficiency, and corrosion rate measurements were evaluated for various inhibitor concentrations and time intervals. Rumex nepalensis was found to be 98.35% efficient in preventing mild steel from acid corrosion by forming a barrier that reduces the interaction between mild steel and the acidic environment, it was further validated by UV-Vis and contact angle investigations. The scanning electron microscopy images demonstrated the inhibitor's protective effect, showing a smoother surface. These investigations show that the Rumex nepalensis inhibitor significantly improves mild steel's corrosion resistance, offering immediate and long-term protection in acidic environments, even at deficient concentrations. It shows promise as an effective natural inhibitor and merits further consideration for future applications.
Collapse
Affiliation(s)
- Amrita Kumari
- Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University Gharuan-140413 Mohali Punjab India
| | - Navneet Kaur
- Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University Gharuan-140413 Mohali Punjab India
| | - Manvinder Kaur
- Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University Gharuan-140413 Mohali Punjab India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University Riyadh-11451 Saudi Arabia
| | - Pradip K Bhowmik
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas 4505 S. Maryland Parkway, Box 454003 Las Vegas NV 89154 USA
| | - Harvinder Singh Sohal
- Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University Gharuan-140413 Mohali Punjab India
| |
Collapse
|
11
|
Al-Gamal AG, Gado WS, Abo El-Khair MA, Zakaria K, Ragab AA, Kabel KI. ZnO doped PAMAM for asphalt improvement as anti-corrosive coatings. Sci Rep 2024; 14:28352. [PMID: 39550404 PMCID: PMC11569143 DOI: 10.1038/s41598-024-78875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Asphalt is widely used as a coating resin due to its excellent adhesion strength and cost-effectiveness; however, its limited corrosion protection necessitates enhancement. In this study, poly(amidoamine) (PAMAM), combined with zinc oxide (ZnO) nanoparticles, was incorporated into the asphalt matrix to improve its anticorrosive properties. Various ratios of PAMAM-ZnO nanocomposite (1, 2, 4, and 6% by weight) were added to the asphalt binder, with the materials characterized using XRD, ¹H-NMR, and SEM techniques. The 2% PAMAM-ZnO/asphalt ratio exhibited the most significant improvement, achieving a corrosion protection efficiency (η%) of 97.93%, as confirmed by Tafel analysis, and a charge transport resistance (RCT) of 75.91 Ω cm² according to electrochemical impedance spectroscopy (EIS) data. A combination of barrier formation and sacrificial protection drives the corrosion inhibition mechanism. The PAMAM-ZnO nanocomposite forms a highly uniform layer on the carbon steel surface, creating an effective physical barrier that prevents the penetration of corrosive agents, thereby minimizing defects like pinholes. This barrier effect is complemented by the sacrificial protection provided by the ZnO nanoparticles, which are more reactive than the underlying steel and preferentially interact with corrosive ions (e.g., chloride ions). This interaction leads to the formation of stable ZnO corrosion products, which enhance the barrier and reduce the likelihood of corrosion on the steel surface. Additionally, PAMAM facilitates the even distribution and strong adhesion of ZnO within the asphalt matrix, ensuring a durable protective layer. The synergic impact between the polymer barrier and sacrificial ZnO protection results in the exceptional corrosion resistance observed in the 2% PAMAM-ZnO/asphalt formulation, offering a promising approach for advanced anticorrosive coatings.
Collapse
Affiliation(s)
| | - Walaa S Gado
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| | | | - Khaled Zakaria
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| | - A A Ragab
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| | - Khalid I Kabel
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| |
Collapse
|
12
|
Liu J, Qian Y, Zhao H, Liu Y, Qin Z, Zhang Z, Rong L. Electrochemical Selenized Reaction of N-Arylbicyclo[1.1.0]butane-1-carboxamides: Access to 3-(Arylselanyl)spiro[cyclobutane-1,3'-indolin]-2'-one Derivatives. J Org Chem 2024; 89:15914-15923. [PMID: 39440833 DOI: 10.1021/acs.joc.4c02085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A novel selenized reaction of N-arylbicyclo [1.1.0]butane-1-carboxamides with diselenide for the synthesis of polycyclic indoline derivatives is developed under electrochemical conditions. The synthesis is achieved by the bicyclo[1.1.0]butane strain-release reaction and intramolecular cyclization process. In addition, this approach features a wide range of substrates, good group tolerance, shorter reaction time, and mild conditions.
Collapse
Affiliation(s)
- Jiyao Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Yuliang Qian
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Haicheng Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Yun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Zhenglong Qin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Zifeng Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Liangce Rong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| |
Collapse
|
13
|
Prenzel T, Schwarz N, Hammes J, Krähe F, Pschierer S, Winter J, Gálvez-Vázquez MDJ, Schollmeyer D, Waldvogel SR. Highly Selective Electrosynthesis of 1 H-1-Hydroxyquinol-4-ones-Synthetic Access to Versatile Natural Antibiotics. Org Process Res Dev 2024; 28:3922-3928. [PMID: 39444427 PMCID: PMC11494660 DOI: 10.1021/acs.oprd.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
1H-1-Hydroxyquinolin-4-ones represent a broad class of biologically active heterocycles having an exocyclic N,O motif. Electrosynthesis offers direct, highly selective, and sustainable access to 1-hydroxyquinol-4-ones by nitro reduction. A versatile synthetic route starting from easily accessible 2-nitrobenzoic acids was established. The broad applicability of this protocol was demonstrated on 26 examples with up to 93% yield, highlighted by the naturally occurring antibiotics Aurachin C and HQNO. The practicability and technical relevance were underlined by multigram scale electrolysis.
Collapse
Affiliation(s)
- Tobias Prenzel
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Nils Schwarz
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Jasmin Hammes
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Franziska Krähe
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Sarah Pschierer
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Johannes Winter
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | | | - Dieter Schollmeyer
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
- Institute
of Biological and Chemical Systems−Functional Molecular Systems
(IBCS-FMS), Karlsruhe Institute of Technology
(KIT), Kaiserstraße
12, 76131 Karlsruhe, Germany
| |
Collapse
|
14
|
Narobe R, Perner MN, Gálvez-Vázquez MDJ, Kuhwald C, Klein M, Broekmann P, Rösler S, Cezanne B, Waldvogel SR. Practical electrochemical hydrogenation of nitriles at the nickel foam cathode. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:10567-10574. [PMID: 39309016 PMCID: PMC11413620 DOI: 10.1039/d4gc03446e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
We report a scalable hydrogenation method for nitriles based on cost-effective materials in a very simple two-electrode setup under galvanostatic conditions. All components are commercially and readily available. The method is very easy to conduct and applicable to a variety of nitrile substrates, leading exclusively to primary amine products in yields of up to 89% using an easy work-up protocol. Importantly, this method is readily transferable from the milligram scale in batch-type screening cells to the multi-gram scale in a flow-type electrolyser. The transfer to flow electrolysis enabled us to achieve a notable 20 g day-1 productivity of phenylethylamine at a geometric current density of 50 mA cm-2 in a flow-type electrolyser with 48 cm2 electrodes. It is noteworthy that this method is sustainable in terms of process safety and reusability of components.
Collapse
Affiliation(s)
- Rok Narobe
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| | - Marcel Nicolas Perner
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| | | | | | | | - Peter Broekmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern 3012 Bern Switzerland
| | - Sina Rösler
- Sigma-Aldrich Production GmbH 9470 Buchs Switzerland
| | | | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| |
Collapse
|
15
|
Luo H, Li B, Ma JG, Cheng P. Molecular enhancement of Cu-based catalysts for CO 2 electroreduction. Chem Commun (Camb) 2024; 60:9298-9309. [PMID: 39104313 DOI: 10.1039/d4cc02619e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The electrochemical carbon dioxide reduction reaction (eCO2RR) represents an effective means of achieving renewable energy storage and a supply of carbon-based raw materials. However, there are still great challenges in selectively producing specific hydrocarbon compounds. The unique ability of the copper (Cu) catalyst to promote proton-coupled electron transfer processes offers clear advantages in generating value-added products. This review presents molecular enhancement strategies for Cu-based catalysts for CO2 electroreduction. We also elucidate the principles of each strategy for enhancing eCO2RR performance, discuss the structure-activity relationships, and propose some promising molecular enhancement strategies. This review will provide guidance for the development of organic-inorganic hybrid Cu-based catalysts as high-performance CO2 electroreduction catalysts.
Collapse
Affiliation(s)
- Haiqiang Luo
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Bo Li
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jian-Gong Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
16
|
Wu H, Yu H, Chow YL, Webley PA, Zhang J. Toward Durable CO 2 Electroreduction with Cu-Based Catalysts via Understanding Their Deactivation Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403217. [PMID: 38845132 DOI: 10.1002/adma.202403217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024]
Abstract
The technology of CO2 electrochemical reduction (CO2ER) provides a means to convert CO2, a waste greenhouse gas, into value-added chemicals. Copper is the most studied element that is capable of catalyzing CO2ER to obtain multicarbon products, such as ethylene, ethanol, acetate, etc., at an appreciable rate. Under the operating condition of CO2ER, the catalytic performance of Cu decays because of several factors that alters the surface properties of Cu. In this review, these factors that cause the degradation of Cu-based CO2ER catalysts are categorized into generalized deactivation modes, that are applicable to all electrocatalytic systems. The fundamental principles of each deactivation mode and the associated effects of each on Cu-based catalysts are discussed in detail. Structure- and composition-activity relationship developed from recent in situ/operando characterization studies are presented as evidence of related deactivation modes in operation. With the aim to address these deactivation modes, catalyst design and reaction environment engineering rationales are suggested. Finally, perspectives and remarks built upon the recent advances in CO2ER are provided in attempts to improve the durability of CO2ER catalysts.
Collapse
Affiliation(s)
- Hsiwen Wu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Haoming Yu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, China
| | - Yuen-Leong Chow
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Paul A Webley
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
17
|
Winter J, Lühr S, Hochadel K, Gálvez-Vázquez MDJ, Prenzel T, Schollmeyer D, Waldvogel SR. Simple electrochemical synthesis of cyclic hydroxamic acids by reduction of nitroarenes. Chem Commun (Camb) 2024; 60:7065-7068. [PMID: 38904167 PMCID: PMC11223186 DOI: 10.1039/d4cc02118e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The electrochemical reduction of nitroarenes allows direct access to manifold nitrogen containing heterocycles. This work reports the simple and direct electro-organic synthesis of 18 different examples of 2H,4H-4-hydroxy-1,4-benzoxazin-3-ones in up to 81% yield. The scalability of the method was demonstrated on a gram-scale.
Collapse
Affiliation(s)
- Johannes Winter
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Susan Lühr
- Department of Chemistry, Faculty of Science, University of Chile, Las Palmeras 3425, Ñuñoa 775000, Santiago, Chile
| | - Kyra Hochadel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | | | - Tobias Prenzel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
18
|
Huang Q, Liu J, Wan JP. Electrochemical Enaminone-Thioamide Annulation and Thioamide Dimeric Annulation for the Tunable Synthesis of Thiazoles and 1,2,4-Thiadiazole. Org Lett 2024; 26:5263-5268. [PMID: 38875707 DOI: 10.1021/acs.orglett.4c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
A green and sustainable electrochemical oxidative cyclization of enaminones with thioamides under metal- and oxidant-free conditions has been developed, providing an efficient approach for thiazole synthesis. Furthermore, 1,2,4-thiadiazoles can be selectively accessed via the electrochemical dimerization of thioamides in the absence of enaminones.
Collapse
Affiliation(s)
- Qihui Huang
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jianchao Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
19
|
Tully JJ, Houghton D, Breeze BG, Mollart TP, Macpherson JV. Quantitative Measurement Technique for Anodic Corrosion of BDD Advanced Oxidation Electrodes. ACS MEASUREMENT SCIENCE AU 2024; 4:267-276. [PMID: 38910859 PMCID: PMC11191721 DOI: 10.1021/acsmeasuresciau.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 06/25/2024]
Abstract
Electrochemical advanced oxidation (EAO) systems are of significant interest due to their ability to treat a wide range of organic contaminants in water. Boron doped diamond (BDD) electrodes have found considerable use in EAO. Despite their popularity, no laboratory scale method exists to quantify anodic corrosion of BDD electrodes under EAO conditions; all are qualitative using techniques such as scanning electron microscopy, electrochemistry, and spectroscopy. In this work, we present a new method which can be used to quantify average corrosion rates as a function of solution composition, current density, and BDD material properties over relatively short time periods. The method uses white light interferometry (WLI), in conjunction with BDD electrodes integrated into a 3D-printed flow cell, to measure three-dimensional changes in the surface structure due to corrosion over a 72 h period. It is equally applicable to both thin film and thicker, freestanding BDD. A further advantage of WLI is that it lends itself to large area measurements; data are collected herein for 1 cm diameter disk electrodes. Using WLI, corrosion rates as low as 1 nm h-1 can be measured. This enables unequivocal demonstration that organics in the EAO solution are not a prerequisite for BDD anodic corrosion. However, they do increase the corrosion rates. In particular, we quantify that addition of 1 M acetic acid to 0.5 M potassium sulfate results in the average corrosion rate increasing ∼60 times. In the same solution, microcrystalline thin film BDD is also found to corrode ∼twice as fast compared to freestanding polished BDD, attributed to the presence of increased sp2 carbon content. This methodology also represents an important step forward in the prediction of BDD electrode lifetimes for a wide range of EAO applications.
Collapse
Affiliation(s)
- Joshua J. Tully
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Daniel Houghton
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Centre
for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, U.K.
| | - Ben G. Breeze
- Spectroscopy
Research Technology Platforms, University
of Warwick, Coventry CV4 7AL, U.K.
| | | | | |
Collapse
|
20
|
Lian F, Li JL, Xu K. When transition-metal catalysis meets electrosynthesis: a recent update. Org Biomol Chem 2024; 22:4390-4419. [PMID: 38771266 DOI: 10.1039/d4ob00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
While aiming at sustainable synthesis, organic electrosynthesis has attracted increasing attention in the past few years. In parallel, with a deeper understanding of catalyst and ligand design, 3d transition-metal catalysis allows the conception of more straightforward synthetic routes in a cost-effective fashion. Owing to their intrinsic advantages, the merger of organic electrosynthesis with 3d transition-metal catalysis has offered huge opportunities for conceptually novel transformations while limiting ecological footprint. This review summarizes the key advancements in this direction published in the recent two years, with specific focus placed on strategy design and mechanistic aspects.
Collapse
Affiliation(s)
- Fei Lian
- School of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China.
| | - Jiu-Ling Li
- School of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China.
| | - Kun Xu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
21
|
Mast F, Hielscher MM, Wirtanen T, Erichsen M, Gauss J, Diezemann G, Waldvogel SR. Choice of the Right Supporting Electrolyte in Electrochemical Reductions: A Principal Component Analysis. J Am Chem Soc 2024; 146:15119-15129. [PMID: 38785120 DOI: 10.1021/jacs.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We present an analysis of a set of molecular, electrical, and electronic properties for a large number of the cations of quaternary ammonium salts usually employed as supporting electrolytes in cathodic reduction reactions. The goal of the present study is to define a measure for the quality of a supporting electrolyte in terms of the yield of the reaction considered. We performed a principal component analysis using the normalized values of the properties in order to lower the number of relevant reaction coordinates and find that the integral variance of 13 properties can well be represented by three principal components. The yield of the electrochemical hydrodimerization of acrylonitrile employing different quaternary ammonium salts as supporting electrolytes was determined in a series of experiments. We found only a very weak correlation between the yield and the values of the properties but a strong correlation between the yield and the values of the most important principal component. Very similar results are obtained for two further existing systematic experimental studies of the impact of the supporting electrolyte on the yield of cathodic reductions. For all three example reactions, a supervised regression using the two most important principal components as variables yields excellent values for the coefficients of determination. For comparison, we also applied our methodology to sets of purely structure-based features that are usually employed in cheminformatics and obtained results of almost similar quality. We therefore conjecture that our methodology in combination with a small number of experiments can be used to predict the yield of a given cathodic reduction on the basis of the properties of the supporting electrolyte.
Collapse
Affiliation(s)
- Florian Mast
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Maximilian M Hielscher
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Tom Wirtanen
- Chemical and Polymer Synthesis, VTT Technical Research Centre of Finland Ltd, Box 1000, FI-02044 Espoo, Finland
| | - Max Erichsen
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Gregor Diezemann
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R Waldvogel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
22
|
Ko YJ, Lim C, Jin J, Kim MG, Lee JY, Seong TY, Lee KY, Min BK, Choi JY, Noh T, Hwang GW, Lee WH, Oh HS. Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalysts for CO 2 electrolysis. Nat Commun 2024; 15:3356. [PMID: 38637502 PMCID: PMC11026478 DOI: 10.1038/s41467-024-47490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
To realize economically feasible electrochemical CO2 conversion, achieving a high partial current density for value-added products is particularly vital. However, acceleration of the hydrogen evolution reaction due to cathode flooding in a high-current-density region makes this challenging. Herein, we find that partially ligand-derived Ag nanoparticles (Ag-NPs) could prevent electrolyte flooding while maintaining catalytic activity for CO2 electroreduction. This results in a high Faradaic efficiency for CO (>90%) and high partial current density (298.39 mA cm‒2), even under harsh stability test conditions (3.4 V). The suppressed splitting/detachment of Ag particles, due to the lipid ligand, enhance the uniform hydrophobicity retention of the Ag-NP electrode at high cathodic overpotentials and prevent flooding and current fluctuations. The mass transfer of gaseous CO2 is maintained in the catalytic region of several hundred nanometers, with the smooth formation of a triple phase boundary, which facilitate the occurrence of CO2RR instead of HER. We analyze catalyst degradation and cathode flooding during CO2 electrolysis through identical-location transmission electron microscopy and operando synchrotron-based X-ray computed tomography. This study develops an efficient strategy for designing active and durable electrocatalysts for CO2 electrolysis.
Collapse
Affiliation(s)
- Young-Jin Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Chulwan Lim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Junyoung Jin
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 37673, Republic of Korea
| | - Ji Yeong Lee
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Tae-Yeon Seong
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kwan-Young Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Byoung Koun Min
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Taegeun Noh
- Platform Technology Research Center, LG Chem Ltd., 30, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Gyu Weon Hwang
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Woong Hee Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
23
|
Moreno-García P, de Gálvez-Vázquez MDJ, Prenzel T, Winter J, Gálvez-Vázquez L, Broekmann P, Waldvogel SR. Self-Standing Metal Foam Catalysts for Cathodic Electro-Organic Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307461. [PMID: 37917032 DOI: 10.1002/adma.202307461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Although electro-organic synthesis is currently receiving renewed interest because of its potential to enable sustainability in chemical processes to value-added products, challenges in process development persist: For reductive transformations performed in protic media, an inherent issue is the limited choice of metallic cathode materials that can effectively suppress the parasitic hydrogen evolution reaction (HER) while maintaining a high activity toward the targeted electro-organic reaction. Current development trends are aimed at avoiding the previously used HER-suppressing elements (Cd, Hg, and Pb) because of their toxicity. Here, this work reports the rational design of highly porous foam-type binary and ternary electrocatalysts with reduced Pb content. Optimized cathodes are tested in electro-organic reductions using an oxime to nitrile transformation as a model reaction relevant for the synthesis of fine chemicals. Their electrocatalytic performance is compared with that of the model CuSn7Pb15 bronze alloy that has recently been endorsed as the best cathode replacement for bare Pb electrodes. All developed metal foam catalysts outperform both bare Pb and the CuSn7Pb15 benchmark in terms of chemical yield and energetic efficiency. Moreover, post-electrolysis analysis of the crude electrolyte mixture and the cathode's surfaces through inductively coupled plasma mass spectrometry (ICP-MS) and scanning electron microscopy (SEM), respectively, reveal the foam catalysts' elevated resistance to cathodic corrosion.
Collapse
Affiliation(s)
- Pavel Moreno-García
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, 3012, Switzerland
| | | | - Tobias Prenzel
- Department of Chemistry, Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Johannes Winter
- Department of Chemistry, Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Liliana Gálvez-Vázquez
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Peter Broekmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
24
|
Acosta-Santoyo G, Treviño-Reséndez J, Robles I, Godínez LA, García-Espinoza JD. A review on recent environmental electrochemistry approaches for the consolidation of a circular economy model. CHEMOSPHERE 2024; 346:140573. [PMID: 38303389 DOI: 10.1016/j.chemosphere.2023.140573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/02/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
Availability of raw materials in the chemical industry is related to the selection of the chemical processes in which they are used as well as to the efficiency, cost, and eventual evolution to more competitive dynamics of transformation technologies. In general terms however, any chemically transforming technology starts with the extraction, purification, design, manufacture, use, and disposal of materials. It is important to create a new paradigm towards green chemistry, sustainability, and circular economy in the chemical sciences that help to better employ, reuse, and recycle the materials used in every aspect of modern life. Electrochemistry is a growing field of knowledge that can help with these issues to reduce solid waste and the impact of chemical processes on the environment. Several electrochemical studies in the last decades have benefited the recovery of important chemical compounds and elements through electrodeposition, electrowinning, electrocoagulation, electrodialysis, and other processes. The use of living organisms and microorganisms using an electrochemical perspective (known as bioelectrochemistry), is also calling attention to "mining", through plants and microorganisms, essential chemical elements. New process design or the optimization of the current technologies is a major necessity to enhance production and minimize the use of raw materials along with less generation of wastes and secondary by-products. In this context, this contribution aims to show an up-to-date scenario of both environmental electrochemical and bioelectrochemical processes for the extraction, use, recovery and recycling of materials in a circular economy model.
Collapse
Affiliation(s)
- Gustavo Acosta-Santoyo
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico
| | - José Treviño-Reséndez
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Querétaro, Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Luis A Godínez
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico
| | - Josué D García-Espinoza
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico.
| |
Collapse
|
25
|
Zhou W, Li ZQ, Cheng C, Lu L, Yang R, Song XR, Luo MJ, Xiao Q. Electrochemical Arene Radical Cation Promoted Spirocyclization of Biaryl Ynones: Access to Alkoxylated Spiro[5,5]trienones. Org Lett 2023; 25:9158-9163. [PMID: 38101415 DOI: 10.1021/acs.orglett.3c03678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Herein, a novel electrochemical arene radical cation promoted dearomative spirocyclization of biaryl ynones with alcohols is described, providing a conceptually novel transformation mode for producing diverse alkoxylated spiro[5,5]trienones. The catalyst- and chemical-oxidant-free spirocyclization protocol features broad substrate scope and high functional group tolerance. Mechanistic studies reveal that the generation of arene radical cation via anodic single-electron oxidation is crucial, with sequential 6-endo-dig cyclization, dissociation of hemiketal, anodic oxidation, and nucleophilic attack of alcohols.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Zi-Qiong Li
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Chaozhihui Cheng
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Lin Lu
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Ruchun Yang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
26
|
Oksanen V, Rautiainen S, Wirtanen T. Nickel-Electrocatalyzed Synthesis of Bifuran-Based Monomers. Chemistry 2023; 29:e202302572. [PMID: 37735957 DOI: 10.1002/chem.202302572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Bifuran motifs can be accessed with nickel-bipyridine electrocatalyzed homocouplings of bromine-substituted methyl furancarboxylates, which, in turn, can be prepared from hemicellulose-derived furfural. The described protocol uses sustainable carbon-based graphite electrodes in the simplest setup - an undivided cell with constant current electrolysis. The reported method avoids using a sacrificial anode by employing triethanolamine as an electron donor.
Collapse
Affiliation(s)
- Valtteri Oksanen
- Industrial Synthesis & Catalysis, VTT Technical Research Centre of Finland Ltd., Box 1000, FI-02044, Espoo, Finland
| | - Sari Rautiainen
- Industrial Synthesis & Catalysis, VTT Technical Research Centre of Finland Ltd., Box 1000, FI-02044, Espoo, Finland
| | - Tom Wirtanen
- Industrial Synthesis & Catalysis, VTT Technical Research Centre of Finland Ltd., Box 1000, FI-02044, Espoo, Finland
| |
Collapse
|
27
|
Zeng L, Wang J, Wang D, Yi H, Lei A. Comprehensive Comparisons between Directing and Alternating Current Electrolysis in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202309620. [PMID: 37606535 DOI: 10.1002/anie.202309620] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Organic electrosynthesis has consistently aroused significant interest within both academic and industrial spheres. Despite the considerable progress achieved in this field, the majority of electrochemical transformations have been conducted through the utilization of direct-current (DC) electricity. In contrast, the application of alternating current (AC), characterized by its polarity-alternating nature, remains in its infancy within the sphere of organic synthesis, primarily due to the absence of a comprehensive theoretical framework. This minireview offers an overview of recent advancements in AC-driven organic transformations and seeks to elucidate the differences between DC and AC electrolytic methodologies by probing into their underlying physical principles. These differences encompass the ability of AC to preclude the deposition of metal catalysts, the precision in modulating oxidation and reduction intensities, and the mitigation of mass transfer processes.
Collapse
Affiliation(s)
- Li Zeng
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jianxing Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Daoxin Wang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| |
Collapse
|
28
|
Liu Z, Lv X, Kong S, Liu M, Liu K, Zhang J, Wu B, Zhang Q, Tang Y, Qian L, Zhang L, Zheng G. Interfacial Water Tuning by Intermolecular Spacing for Stable CO 2 Electroreduction to C 2+ Products. Angew Chem Int Ed Engl 2023; 62:e202309319. [PMID: 37673793 DOI: 10.1002/anie.202309319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/19/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Electroreduction of CO2 to multi-carbon (C2+ ) products is a promising approach for utilization of renewable energy, in which the interfacial water quantity is critical for both the C2+ product selectivity and the stability of Cu-based electrocatalytic sites. Functionalization of long-chain alkyl molecules on a catalyst surface can help to increase its stability, while it also tends to block the transport of water, thus inhibiting the C2+ product formation. Herein, we demonstrate the fine tuning of interfacial water by surface assembly of toluene on Cu nanosheets, allowing for sustained and enriched CO2 supply but retarded water transfer to catalytic surface. Compared to bare Cu with fast cathodic corrosion and long-chain alkyl-modified Cu with main CO product, the toluene assembly on Cu nanosheet surface enabled a high Faradaic efficiency of 78 % for C2+ and a partial current density of 1.81 A cm-2 . The toluene-modified Cu catalyst further exhibited highly stable CO2 -to-C2 H4 conversion of 400 h in a membrane-electrode-assembly electrolyzer, suggesting the attractive feature for both efficient C2+ selectivity and excellent stability.
Collapse
Affiliation(s)
- Zhengzheng Liu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Shuyi Kong
- State Key Laboratory of High Performance Ceramics and Superfine, Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Mingtai Liu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Kunhao Liu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Junbo Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Bowen Wu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Quan Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yi Tang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Linping Qian
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Lijuan Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
29
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
30
|
Zhou W, Chen P, Li ZQ, Xiao LT, Bai J, Song XR, Luo MJ, Xiao Q. Electrochemical 1,3-Alkyloxylimidation of Arylcyclopropane Radical Cations: Four-Component Access to Imide Derivatives. Org Lett 2023; 25:6919-6924. [PMID: 37695045 DOI: 10.1021/acs.orglett.3c02744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Herein, a general electrochemical radical-cation-mediated four-component ring-opening 1,3-alkyloxylimidation of arylcyclopropanes, acetonitrile, carboxylic acids, and alcohols is described, providing a facile and sustainable approach to quickly construct structurally diverse imide derivatives from easily available raw materials in an operationally simple undivided cell. This metal-catalyst- and oxidant-free single-electron oxidation strategy offers a green alternative for the formation of highly reactive cyclopropane-derived radical cations, and this protocol features a broad functional group tolerance.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Peng Chen
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Zi-Qiong Li
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Li-Tong Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Jiang Bai
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, China
| |
Collapse
|
31
|
Hu X, Tao M, Gong K, Feng Q, Hu X, Li Y, Sun S, Liang D. Electrochemical or Photoelectrochemical Alkenylpolyfluoroalkylation of 3-Aza-1,5-dienes: Regioselective Entry to Polyfluoroalkylated 4-Pyrrolin-2-ones. J Org Chem 2023; 88:12935-12948. [PMID: 37673796 DOI: 10.1021/acs.joc.3c00790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
An electrochemical or photoelectrochemical regioselective polyfluoroalkylation/cyclization cascade of 3-aza-1,5-dienes with sodium fluoroalkanesulfinates is presented. This protocol proceeds with a broad substrate scope and good functional group tolerance under mild, oxidant-free, transition-metal-free, and electrolyte-free conditions to provide 3-polyfluoroalkylated 4-pyrrolin-2-ones in one step from readily available N-vinylacrylamides, and it is readily scalable to the Gram scale.
Collapse
Affiliation(s)
- Xi Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Minglin Tao
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Kaixing Gong
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Qin Feng
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xiao Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yanni Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Shaoguang Sun
- Medical College, Panzhihua University, Panzhihua 617000, China
| | - Deqiang Liang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
32
|
Staerz AF, van Leeuwen M, Priamushko T, Saatkamp T, Endrődi B, Plankensteiner N, Jobbagy M, Pahlavan S, Blom MJW, Janáky C, Cherevko S, Vereecken PM. Effects of Iron Species on Low Temperature CO 2 Electrolyzers. Angew Chem Int Ed Engl 2023:e202306503. [PMID: 37466922 DOI: 10.1002/anie.202306503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Electrochemical energy conversion devices are considered key in reducing CO2 emissions and significant efforts are being applied to accelerate device development. Unlike other technologies, low temperature electrolyzers have the ability to directly convert CO2 into a range of value-added chemicals. To make them commercially viable, however, device efficiency and durability must be increased. Although their design is similar to more mature water electrolyzers and fuel cells, new cell concepts and components are needed. Due to the complexity of the system, singular component optimization is common. As a result, the component interplay is often overlooked. The influence of Fe-species clearly shows that the cell must be considered holistically during optimization, to avoid future issues due to component interference or cross-contamination. Fe-impurities are ubiquitous, and their influence on single components is well-researched. The activity of non-noble anodes has been increased through the deliberate addition of iron. At the same time, however, Fe-species accelerate cathode and membrane degradation. Here, we interpret literature on single components to gain an understanding of how Fe-species influence low temperature CO2 electrolyzers holistically. The role of Fe-species serves to highlight the need for considerations regarding component interplay in general.
Collapse
Affiliation(s)
- Anna F Staerz
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Marieke van Leeuwen
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Tatiana Priamushko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstraße 1, 91058, Erlangen, Germany
| | - Torben Saatkamp
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Balázs Endrődi
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich sq. 1., 6720, Szeged, Hungary
| | - Nina Plankensteiner
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Matias Jobbagy
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
| | - Sohrab Pahlavan
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Martijn J W Blom
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich sq. 1., 6720, Szeged, Hungary
- eChemicles Zrt., Alsó Kikötő sor 11, 6726, Szeged, Hungary
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstraße 1, 91058, Erlangen, Germany
| | - Philippe M Vereecken
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
33
|
Richter J, Pietsch T, Ruck M. Cobalt Deposition from Ionothermally Dissolved Cobalt Oxides. CHEMSUSCHEM 2023; 16:e202300090. [PMID: 36872889 DOI: 10.1002/cssc.202300090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 05/06/2023]
Abstract
Owing to the environmental problems of numerous metal production processes, there is a growing need for more energy-efficient approaches. Cobalt is considered a strategic element that is extracted not only from ores but also from spent Li-ion batteries. One promising new approach is ionometallurgy, which is the extraction of metal oxides by ionic liquids (ILs). This study concerns new investigations into ionometallurgical processing of CoO, Co3 O4 , and LiCoO2 in the IL betainium bis(trifluoromethylsulfonyl)imide, [Hbet][NTf2 ]. Three crystal structures of cobalt-betaine complex compounds and combined spectroscopic and diffraction studies provide insights into the dissolution process. In addition, an optimized dissolution procedure for metal oxides is presented, avoiding the previously reported decomposition of the IL. Subsequent cobalt electrodeposition is only possible from cationic complex species, highlighting the importance of a thorough understanding of the complex equilibria. The presented method is also compared to other recently reported approaches.
Collapse
Affiliation(s)
- Janine Richter
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Tobias Pietsch
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Michael Ruck
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| |
Collapse
|
34
|
Luo MJ, Zhou W, Yang R, Ding H, Song XR, Xiao Q. Electrochemically enabled decyanative C(sp 3)-H oxygenation of N-cyanomethylamines to formamides. Org Biomol Chem 2023; 21:2917-2921. [PMID: 36942930 DOI: 10.1039/d3ob00313b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Selective oxygenation of C(sp3)-H bonds adjacent to nitrogen atoms is a highly attractive strategy for synthesizing various formamide derivatives while preserving the substrate skeletons. Herein, an environmentally benign electrochemically enabled decyanative C(sp3)-H oxygenation of N-cyanomethylamines using H2O as a carbonyl oxygen atom source is described, leading to the synthesis of a large class of formamides in good to excellent yields with a broad substrate scope under metal- and oxidant-free conditions. This electrochemical technology highlights the facile incorporation of N-formyl into some important bioactive molecules.
Collapse
Affiliation(s)
- Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Wei Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Ruchun Yang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Haixin Ding
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
35
|
Koleda O, Prenzel T, Winter J, Hirohata T, de Jesús Gálvez-Vázquez M, Schollmeyer D, Inagi S, Suna E, Waldvogel SR. Simple and scalable electrosynthesis of 1 H-1-hydroxy-quinazolin-4-ones. Chem Sci 2023; 14:2669-2675. [PMID: 36908965 PMCID: PMC9993888 DOI: 10.1039/d3sc00266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Cathodic synthesis provides sustainable access to 1-hydroxy- and 1-oxy-quinazolin-4-ones from easily accessible nitro starting materials. Mild reaction conditions, inexpensive and reusable carbon-based electrode materials, an undivided electrochemical setup, and constant current conditions characterise this method. Sulphuric acid is used as a simple supporting electrolyte as well as a catalyst for cyclisation. The broad applicability of this protocol is demonstrated in 27 differently substituted derivatives in high yields of up to 92%. Moreover, mechanistic studies based on cyclic voltammetry measurements highlight a selective reduction of the nitro substrate to hydroxylamine as a key step. The relevance for preparative applications is demonstrated by a 100-fold scale-up for gram-scale electrolysis.
Collapse
Affiliation(s)
- Olesja Koleda
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany https://www.aksw.uni-mainz.de/
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| | - Tobias Prenzel
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany https://www.aksw.uni-mainz.de/
| | - Johannes Winter
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany https://www.aksw.uni-mainz.de/
| | - Tomoki Hirohata
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany https://www.aksw.uni-mainz.de/
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
| | - María de Jesús Gálvez-Vázquez
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany https://www.aksw.uni-mainz.de/
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany https://www.aksw.uni-mainz.de/
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
| | - Edgars Suna
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany https://www.aksw.uni-mainz.de/
- Institute of Biological and Chemical Systems -Functional Molecular Systems (IBCS-FMS) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
36
|
Winter J, Prenzel T, Wirtanen T, Schollmeyer D, Waldvogel SR. Direct Electrochemical Synthesis of 2,3-Disubstituted Quinoline N-oxides by Cathodic Reduction of Nitro Arenes. Chemistry 2023; 29:e202203319. [PMID: 36426660 DOI: 10.1002/chem.202203319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/26/2022]
Abstract
The use of electric current in synthetic organic chemistry offers a sustainable tool for the selective reductive synthesis of quinoline N-oxides starting from easily accessible nitro compounds. The reported method employs mild and reagent-free conditions, a simple undivided cell, and constant current electrolysis set-up which provides conversion with a high atom economy. The synthesis of 30 differently substituted quinoline N-oxides was successfully performed in up to 90 % yield. Using CV studies, the mechanism of the selective formation of the quinoline N-oxides was elucidated. The technical relevance of the described reaction could be shown in a 50-fold scale-up reaction.
Collapse
Affiliation(s)
- Johannes Winter
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Tobias Prenzel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Tom Wirtanen
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
37
|
Li Y, Wen L, Guo W. A guide to organic electroreduction using sacrificial anodes. Chem Soc Rev 2023; 52:1168-1188. [PMID: 36727623 DOI: 10.1039/d3cs00009e] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Organic electrosynthesis is a green strategy for the synthesis of valuable molecules. Electrochemical reactions using sacrificial metal anodes enable new reactivity to be uncovered that could not be achieved with traditional non-electrochemical methods. Compared with reactions using metal powder as the reducing reagent, the mild electroreduction protocols usually exhibit diverse reactivity and excellent selectivity. The inexpensive metal anodes possess low oxidation potential, which could prevent undesired overoxidation of substrates, active intermediates and products. The in situ generated metal ions from sacrificial anodes could not only serve as Lewis acids to activate the reactants but also as a promoter or mediator. This tutorial review highlights the recent achievements in this rapidly growing area within the past five years. The sacrificial anode-enabled electroreductions are discussed according to the reaction type.
Collapse
Affiliation(s)
- Yufeng Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Lirong Wen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Weisi Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
38
|
Linden M, Hofmann S, Herman A, Ehler N, Bär RM, Waldvogel SR. Electrochemical Synthesis of Pyrazolines and Pyrazoles via [3+2] Dipolar Cycloaddition. Angew Chem Int Ed Engl 2023; 62:e202214820. [PMID: 36478106 DOI: 10.1002/anie.202214820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Pyrazolines and pyrazoles are common and important motifs of pharmaceutical agents and agrochemicals. Herein, the first electrochemical approach for their direct synthesis from easily accessible hydrazones and dipolarophiles up to decagram scale is presented. The application of a biphasic system (aqueous/organic) even allows for the conversion of highly sensitive alkenes, wherein inexpensive sodium iodide is employed in a dual role as supporting electrolyte and mediator. In addition, mechanistic insight into the reaction is given by the isolation of key step intermediates. The relevance of the presented reaction is underlined by the synthesis of commercial herbicide safener mefenpyr-diethyl in good yields.
Collapse
Affiliation(s)
- Martin Linden
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Silja Hofmann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Antonia Herman
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Nicole Ehler
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Robin M Bär
- Research & Development, Crop Science, Bayer AG, Alfred-Nobel-Str. 50, 40789, Monheim am Rhein, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
39
|
Sharma S, Shaheeda S, Shaw K, Bisai A, Paul A. Two-Electron- and One-Electron-Transfer Pathways for TEMPO-Catalyzed Greener Electrochemical Dimerization of 3-Substituted-2-Oxindoles. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Saina Shaheeda
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Kundan Shaw
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741 246, India
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
40
|
Xiang H, He J, Qian W, Qiu M, Xu H, Duan W, Ouyang Y, Wang Y, Zhu C. Electroreductively Induced Radicals for Organic Synthesis. Molecules 2023; 28:857. [PMID: 36677915 PMCID: PMC9866059 DOI: 10.3390/molecules28020857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Organic electrochemistry has attracted tremendous interest within the novel sustainable methodologies that have not only reduced the undesired byproducts, but also utilized cleaner and renewable energy sources. Particularly, oxidative electrochemistry has gained major attention. On the contrary, reductive electrolysis remains an underexplored research direction. In this context, we discuss advances in transition-metal-free cathodically generated radicals for selective organic transformations since 2016. We highlight the electroreductive reaction of alkyl radicals, aryl radicals, acyl radicals, silyl radicals, fluorosulfonyl radicals and trifluoromethoxyl radicals.
Collapse
Affiliation(s)
| | | | | | - Mingqiang Qiu
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | | | | | | | | | - Cuiju Zhu
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| |
Collapse
|
41
|
Klein M, Waldvogel SR. Counter Electrode Reactions-Important Stumbling Blocks on the Way to a Working Electro-organic Synthesis. Angew Chem Int Ed Engl 2022; 61:e202204140. [PMID: 35668714 PMCID: PMC9828107 DOI: 10.1002/anie.202204140] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 01/12/2023]
Abstract
Over the past two decades, electro-organic synthesis has gained significant interest, both in technical and academic research as well as in terms of applications. The omission of stoichiometric oxidizers or reducing agents enables a more sustainable route for redox reactions in organic chemistry. Even if it is well-known that every electrochemical oxidation is only viable with an associated reduction reaction and vice versa, the relevance of the counter reaction is often less addressed. In this Review, the importance of the corresponding counter reaction in electro-organic synthesis is highlighted and how it can affect the performance and selectivity of the electrolytic conversion. A selection of common strategies and unique concepts to tackle this issue are surveyed to provide a guide to select appropriate counter reactions for electro-organic synthesis.
Collapse
Affiliation(s)
- Martin Klein
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
42
|
Wei Q, Wang P, Ma Y, Du K, Yin H, Zhu H, Wang D. The correlation of the nickel (1 1 1) facet with the hydrogen evolution performance of Ni electrodes in alkaline solutions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Hilt G, Jamshidi M, Fastie C. Applications of Alternating Current/Alternating Potential Electrolysis in Organic Synthesis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractThis review summarises the rarely used method of alternating current electrolysis for the synthesis of organic products. Different waveforms have been investigated which opens the possibility for further influence the outcome of the electrolysis by variation of the frequency as well as the highest peak current. In recent years alternating current electrolysis has been applied in increasingly more complex transformations. Especially the functionalisation of (hetero)arenes, functional group manipulation, metathesis reactions, and transition-metal-catalysed cross-coupling reactions were reported in recent years and the results of these and some other investigations are summarized in this review article.1 Introduction1.1 Waveforms1.2 Objectives1.3 Early Examples of the Optimisation of Alternating Current Electrolysis2 Recent Applications of Alternating Current Electrolysis for Organic Synthesis2.1 Substitution Reaction on Arenes2.2 Nitrogen–Sulfur Bond Formation and Sulfur–Sulfur Bond Metathesis2.3 Oxidation and Reduction2.4 Cross-Coupling Reactions2.5 Frequency Optimisation3 Conclusion
Collapse
|
44
|
Samal PP, Dekshinamoorthy A, Arunachalam S, Vijayaraghavan S, Krishnamurty S. Free base phthalocyanine coating as a superior corrosion inhibitor for copper surfaces: A combined experimental and theoretical study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Kisukuri CM, Bednarz RJ, Kampf C, Arndt S, Waldvogel SR. Robust and Self-Cleaning Electrochemical Production of Periodate. CHEMSUSCHEM 2022; 15:e202200874. [PMID: 35670517 PMCID: PMC9546426 DOI: 10.1002/cssc.202200874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/05/2022] [Indexed: 05/19/2023]
Abstract
Periodate, a platform oxidizer, can be electrochemically recycled in a self-cleaning process. Electrosynthesis of periodate is well established at boron-doped diamond (BDD) anodes. However, recovered iodate and other iodo species for recycling can contain traces of organic impurities from previous applications. For the first time, it was shown that the organic impurities do not hamper the electrochemical re-oxidation of used periodate. In a hydroxyl-mediated environment, the organic compounds form CO2 and H2 O during the degradation process. This process is often referred to as "cold combustion" and provides orthogonal conditions to periodate synthesis. To demonstrate the strategy, different dyes, pharmaceutically active ingredients, and iodine compounds were added as model contaminations into the process of electrochemical periodate production. UV/Vis spectroscopy, NMR spectroscopy, and mass spectrometry (MS) were used to monitor the degradation of organic molecules, and liquid chromatography-MS was used to control the purity of periodate. As a representative example, dimethyl 5-iodoisophthalate (2 mm), was degraded in 90, 95, and 99 % while generating 0.042, 0.054, and 0.082 kilo equiv. of periodate, respectively. In addition, various organic iodo compounds could be fed into the periodate generation for upcycling such iodo-containing waste, for example, contrast media.
Collapse
Affiliation(s)
- Camila M. Kisukuri
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | | | - Christopher Kampf
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Sebastian Arndt
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
46
|
Beck AD, Haufe S, Waldvogel SR. Boron‐catalyzed electrochemical oxidative Si‐C bond formation. ChemElectroChem 2022. [DOI: 10.1002/celc.202200840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander D. Beck
- Johannes Gutenberg Universität Mainz: Johannes Gutenberg Universitat Mainz Department Chemie GERMANY
| | - Stefan Haufe
- Wacker Group: Wacker Chemie AG Consortium für Elektrochemie GERMANY
| | - Siegfried R Waldvogel
- Johannes Gutenberg-Universität Mainz Institut für Organische Chemie Duesbergweg 10-14 55128 Mainz GERMANY
| |
Collapse
|
47
|
Multidimensional antimony nanomaterials tailored by electrochemical engineering for advanced sodium-ion and potassium-ion batteries. J Colloid Interface Sci 2022; 628:41-52. [PMID: 35973256 DOI: 10.1016/j.jcis.2022.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022]
Abstract
Downsizing the dimensions of materials holds great importance for promoting the alkali-ion storage properties, which is considered to be one of the most efficient methods for improving the cycling stability and rate capability of alloy anodes. Nevertheless, efficient, affordable, and scalable methods to prepare low-dimensional electrode materials are lacking. In this study, we developed a tunable electrochemical strategy for synthesizing multidimensional antimony (Sb) nanomaterials. Depending on different reaction mechanisms in different electrolytes, we fabricated zero-dimensional Sb nanoparticles, two-dimensional (2D) antimonene nanosheets, and a three-dimensional porous Sb network through the electrochemical delamination of bulk Sb in lithium hexafluorophosphate in propylene carbonate, tetraethylammonium hydroxide aqueous solution, and tetraethylammonium hexafluorophosphate in N, N-dimethylformamide, respectively. In the preferred electrolyte, 2D antimonene nanosheets deliver a large sodium storage capacity of 572.5 mAh g-1 after 200 cycles at 0.2 A g-1 and an excellent rate capability of 553.6 mAh g-1 at 5 A g-1. When used as anode materials for potassium-ion batteries, we obtained a high capacity of 550.3 mAh g-1 after 300 cycles, and observed a high rate capability of 302.3 mAh g-1 at 4 A g-1. These results provide an easy and tunable strategy for designing high-performance low-dimensional materials for next-generation batteries.
Collapse
|
48
|
Bottecchia C, Lehnherr D, Lévesque F, Reibarkh M, Ji Y, Rodrigues VL, Wang H, Lam YH, Vickery TP, Armstrong BM, Mattern KA, Stone K, Wismer MK, Singh AN, Regalado EL, Maloney KM, Strotman NA. Kilo-Scale Electrochemical Oxidation of a Thioether to a Sulfone: A Workflow for Scaling up Electrosynthesis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cecilia Bottecchia
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dan Lehnherr
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - François Lévesque
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yining Ji
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Heather Wang
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yu-hong Lam
- Computational and Structural Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Thomas P. Vickery
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Brittany M. Armstrong
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Keith A. Mattern
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Kevin Stone
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael K. Wismer
- Scientific Engineering and Design, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Andrew N. Singh
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Erik L. Regalado
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Kevin M. Maloney
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Neil A. Strotman
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
49
|
Waldvogel SR, Streb C. Redox mediators facilitate selective electrocatalytic nitroarene-to-aniline reduction. Chem 2022. [DOI: 10.1016/j.chempr.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Kaeffer N, Leitner W. Electrocatalysis with Molecular Transition-Metal Complexes for Reductive Organic Synthesis. JACS AU 2022; 2:1266-1289. [PMID: 35783173 PMCID: PMC9241009 DOI: 10.1021/jacsau.2c00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalysis enables the formation or cleavage of chemical bonds by a genuine use of electrons or holes from an electrical energy input. As such, electrocatalysis offers resource-economical alternative pathways that bypass sacrificial, waste-generating reagents often required in classical thermal redox reactions. In this Perspective, we showcase the exploitation of molecular electrocatalysts for electrosynthesis, in particular for reductive conversion of organic substrates. Selected case studies illustrate that efficient molecular electrocatalysts not only are appropriate redox shuttles but also embrace the features of organometallic catalysis to facilitate and control chemical steps. From these examples, guidelines are proposed for the design of molecular electrocatalysts suited to the reduction of organic substrates. We finally expose opportunities brought by catalyzed electrosynthesis to functionalize organic backbones, namely using sustainable building blocks.
Collapse
Affiliation(s)
- Nicolas Kaeffer
- Max Planck Institute for Chemical
Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical
Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|