1
|
Zhou S, Qin S, Zhang X, Song Y, Zhang Y. Pd-Catalyzed Synthesis of Acyclic 1,2-Dioxygenated Dienes and Their Regioselective Decarboxylative Diels-Alder Cycloaddition/Aromatization Reactions to Access Multisubstituted Phenols. J Org Chem 2025; 90:5813-5827. [PMID: 40247759 DOI: 10.1021/acs.joc.4c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
A Pd-catalyzed protocol that provides efficient access to acyclic 1,2-dioxygenated dienes has been established. The installation of the bifunctional carbonate electrofuge to the diene cores enabled such dienes to undergo a regioselective decarboxylative Diels-Alder cycloaddition/aromatization reaction, affording diverse synthetic challenging multisubstituted phenols with ease.
Collapse
Affiliation(s)
- Shuaikang Zhou
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Siyi Qin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Xifang Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Ying Song
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yuanfei Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
2
|
Xue L, An R, Zhao J, Qiu M, Wang Z, Ren H, Yu D, Zhu X. Self-Healing Hydrogels: Mechanisms and Biomedical Applications. MedComm (Beijing) 2025; 6:e70181. [PMID: 40276645 PMCID: PMC12018771 DOI: 10.1002/mco2.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Hydrogels have emerged as dependable candidates for tissue repair because of their exceptional biocompatibility and tunable mechanical properties. However, conventional hydrogels are vulnerable to damage owing to mechanical stress and environmental factors that compromise their structural integrity and reduce their lifespan. In contrast, self-healing hydrogels with their inherent ability to restore structure and function autonomously offer prolonged efficacy and enhanced appeal. These hydrogels can be engineered into innovative forms including stimulus-responsive, self-degradable, injectable, and drug-loaded variants, thereby enhancing their applicability in wound healing, drug delivery, and tissue engineering. This review summarizes the categories and mechanisms of self-healing hydrogels, along with their biomedical applications, including tissue repair, drug delivery, and biosensing. Tissue repair includes wound healing, bone-related repair, nerve repair, and cardiac repair. Additionally, we explored the challenges that self-healing hydrogels continue to face in tissue repair and presented a forward-looking perspective on their development. Consequently, it is anticipated that self-healing hydrogels will be progressively designed and developed for applications that extend beyond tissue repair to a broader range of biomedical applications.
Collapse
Affiliation(s)
- Lingling Xue
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Ran An
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Junqi Zhao
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Mengdi Qiu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Zhongxia Wang
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Haozhen Ren
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Decai Yu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Xinhua Zhu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
3
|
Zhou M, Peng H, Luo S, Jiao K, Guo L, Fan C, Li J. Functionalization of Nucleic Acid Molecular Machines under Physiological Conditions: A Review. ACS APPLIED BIO MATERIALS 2025; 8:2751-2764. [PMID: 40168177 DOI: 10.1021/acsabm.5c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
In-situ fabrication of nucleic acid molecular machines in biological environments is desirable for smart theranostic applications. However, given the complex nature of biological environments, the integration of multiple functional modules into a coordinated machine remains challenging. Recent advances in nucleic acid nanotechnology offer solutions to these challenges. Here, we outline design principles for nucleic acid-based molecular machines tailored for physiological conditions, drawing on recent examples. We review cutting-edge technologies that facilitate their functionalization in physiological settings, particularly presynthesis modifications using unnatural bases and postsynthesis functionalization via bioorthogonal chemistry and noncovalent biological interactions. We discuss the advantages and limitations of these technologies and suggest future directions to overcome existing challenges.
Collapse
Affiliation(s)
- Mo Zhou
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhangjiang Laboratory, 100 Haike Road, Shanghai 201210, China
| | - Hongzhen Peng
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Kai Jiao
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Linjie Guo
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chunhai Fan
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Huang G, Jiang H, Zeng Q, Zeng W. Cu(II)/Photoredox-Catalyzed Aminoacylation of Vinyl Bromides. Org Lett 2025; 27:3482-3487. [PMID: 40125704 DOI: 10.1021/acs.orglett.5c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A novel C-C coupling reaction of vinyl bromides with carboxamides has been developed through Cu(OAc)2/photocatalysis. This process features regioselective carboxamido carbon-vinylation under mild reaction conditions. Mechanistic studies suggest that the formation of an acyl-Cu(I) intermediate plays a crucial role with regard to enabling this transformation.
Collapse
Affiliation(s)
- Guojin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qiang Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Yang S, Yu B, Yu H. 2D g-C 3N 5 p-Doping of Donor Material for High-Efficiency Organic Solar Cells. SMALL METHODS 2025; 9:e2401307. [PMID: 39402767 DOI: 10.1002/smtd.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Indexed: 04/25/2025]
Abstract
Molecular doping of organic semiconductor is a great strategy for significantly regulating the electronic band structure of organic semiconductor while increasing charge mobility and carrier concentration. Here, a facile strategy is presented by introducing 2D g-C3N5 as a p-dopant into PM6, improving the charge mobility and hole carrier concentration of PM6. Moreover, the electron transfer between PM6 and g-C3N5 can effectively downshift the Fermi energy level and highest occupied molecular orbital (HOMO) energy level of PM6, which leads to the increase the built-in electric field of organic solar cells (OSCs). The addition of g-C3N5 also effectively enhances the crystallization of active layer, thereby improving the stability of OSCs. As a result, a champion bulk-heterojunction (BHJ) and layer-by-layer (LbL) structure OSCs are successfully achieved featuring a high-power conversion efficiency of 18.10%/18.25%, simultaneously having excellent device stability. This work shows that introducing a low concentration dopant into organic donor is an effective method for improving the electrical performance of organic donor and the efficiency of OSCs.
Collapse
Affiliation(s)
- Song Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Bo Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Huangzhong Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
6
|
Wang Q, Yang L, Xing X, Liang W, Wu R, Xiong C, Wu M, Zhong C, Zhang H, Wang S, Xia F, Lou X, Chen D, Dai J. Regio-isomerization Optimization Strategy for Photosensitizers: Achieving Ultrahigh Type I Reactive Oxygen Species Generation to Enhance Cancer Photoimmunotherapy. J Med Chem 2025; 68:6431-6449. [PMID: 40080540 DOI: 10.1021/acs.jmedchem.4c02916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Phototherapy, renowned for its noninvasiveness, is widely employed in tumor treatment. However, the tumor microenvironment is usually hypoxic, with insufficient reactive oxygen species (ROS) production, severely limiting its application. Herein, we introduce a regio-isomerization optimization strategy and have synthesized four regio-isomeric photosensitizers featuring a donor-acceptor (D-A) configuration by tactically varying the linkage sites between D and A. Among them, TAF-3 with excellent photostability has an ultrahigh type I ROS production efficiency (4.79 times that of methylene blue) and a photothermal conversion efficiency of 41.7%. TAF-3 improves the conjugation degree; produces an appropriate intramolecular charge transfer effect, which enhances its optical properties and phototherapeutic efficiency; and promotes a stronger immune cell death effect, reducing postoperative melanoma recurrence by 60%. Overall, the optical attributes of D-A type photosensitizers can be tailored through the precision modulation of regio-isomerization, offering a promising avenue for the advancement of clinical photosensitizers suitable for phototherapy.
Collapse
Affiliation(s)
- Quan Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Lili Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Xiaoyu Xing
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wenjie Liang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Renzhi Wu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chen Xiong
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Zhong
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Gao C, Zhang RZ, Wang M. Modular Synthesis of Monofluorinated 1,2,4-Triazoles/1,3,5-Triazines via Defluorinative Annulations of N-CF 3 Imidoyl Chlorides. Org Lett 2025; 27:2628-2634. [PMID: 40059709 DOI: 10.1021/acs.orglett.5c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Ring-fluorinated azaheterocycles have wide applications in agrochemicals, pharmaceuticals, and synthesis, which prompt continuous endeavors to expand such heterocyclic families. However, monofluorinated triazaheterocycles have hardly been explored. This work reported a novel and modular synthesis of monofluorinated 1,2,4-triazoles and 1,3,5-triazines, which utilizes N-CF3 imidoyl chlorides as unique polyfluoro synthons and their defluorinative annulations with hydrazines/imidazines. Further modifications of these fluorinated heterocycles highlight the potential of the method for accessing functional molecules.
Collapse
Affiliation(s)
- Chi Gao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Ru Zhong Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| |
Collapse
|
8
|
Yan L, Zhao Z, Liu Y, Hosseini SH, Li C, Huang Y, Saeb MR, Xiao H, Seidi F. The inverse electron demand diels-alder (IEDDA): A facile bioorthogonal click reaction for development of injectable polysaccharide-based hydrogels for biomedical applications. Carbohydr Polym 2025; 352:123142. [PMID: 39843051 DOI: 10.1016/j.carbpol.2024.123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025]
Abstract
The inverse electron demand Diels-Alder (IEDDA) cycloaddition between tetrazines and strained dienophiles is recognized as a fast and specific reaction. The integrating tetrazines and strained dienophiles onto the backbone of polysaccharides yield appropriate water-soluble precursors for IEDDA cycloaddition. Due to the high specificity of the IEDDA reaction and its outstanding cytocompatibility, a range of cargos (live cells, peptides and pharmaceuticals) can be effectively encapsulated in polysaccharide solutions throughout the hydrogel formation. Within a few minutes, the interaction of aqueous solutions of tetrazine-polysaccharides with polysaccharide derivatives of dienophiles can form the hydrogel. The gelation time can be regulated by the structure of tetrazine/dienophile, degree of substitution, concentration of polysaccharide solutions, and temperature. The hydrogels are utilized in the fields of tissue engineering, cancer treatment, and wound healing. The embedding of stimuli-responsive functionalities within the hydrogel's architecture enhances the precision of its application for designated targets. This review begins by elucidating the principles of IEDDA and identifying the primary factors that influence the rate of cycloaddition. Subsequently, we discuss various strategies for integrating the reactants of IEDDA onto polysaccharides. Finally, the approaches for the fabrication of the relevant injectable hydrogels, their specific characteristics, and their implementation in different biomedical applications are elaborated.
Collapse
Affiliation(s)
- Linying Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenzhen Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Wang H, Chen Y, Liu S, Xu J, Chen N. Multicomponent Tf 2O-Triggered Dearomative Triazinylmethylation of Isoquinolines Using Acetonitrile. J Org Chem 2025; 90:2978-2987. [PMID: 39945530 DOI: 10.1021/acs.joc.4c02834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A Tf2O-triggered dearomative triazinylmethylation of isoquinolines and other azaarenes utilizing acetonitrile as the nucleophile has been developed through a formal five-component reaction. This method showcases a broad substrate scope and exceptional functional group compatibility, presenting a mild and expedient synthetic approach. Kinetic studies, including kinetic isotope effect (KIE) and Hammett analysis, indicate that the activation of isoquinolines by Tf2O constitutes the rate-limiting step.
Collapse
Affiliation(s)
- Huazheng Wang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yixin Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shiqi Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiaxi Xu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ning Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
10
|
Wang L, Huang Y, Wang J, Jiang Y, Jiang BP, Chen H, Liang H, Shen XC. Bioorthogonal Reaction of β-Chloroacroleins with meta-Aminothiophenol to Develop Near-Infrared Fluorogenic Probes for Simultaneous Two-color Imaging. J Am Chem Soc 2025; 147:6707-6716. [PMID: 39932871 DOI: 10.1021/jacs.4c16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Highly fluorogenic probe based bioorthogonal chemistry has become a promising tool in biomedical applications. However, the majority of fluorogenic probes are designed by introducing a bioorthogonal partner as a fluorescence quencher into classical fluorophores, and these probes exhibit a deteriorating fluorogenicity as the emission wavelength shifts toward the near-infrared (NIR) region, greatly limiting their applications in vivo. Herein, we report a novel fluorogenic bioorthogonal reaction involving β-chloroacroleins (β-CAs) and meta-aminothiophenol (m-AT1), whose fluorescence increases more than 500-fold upon in situ generating fluorophores. β-CAs are stable under physiological conditions and react rapidly (β-CA9, k2 = 2.2 × 102 M-1 s-1, in H2O) and chemoselectively with m-AT1 in the presence of biological nucleophiles, and delightfully, the reaction proceeds swiftly even under solvent-free conditions. Furthermore, manipulating the conjugate length of β-CAs enables the emission wavelength of the probes to be fine-tuned from 627 to 778 nm. These probes allow the simultaneous labeling of multiple cellular organelles without washing steps, and two-color tumor visualization is achieved in living mice. We believe this study not only provides new insights for the development of NIR fluorogenic probes with superior turn-on behaviors but also presents a promising fluorogenic bioorthogonal reaction CA-AT with widespread potential applications in biomedical research.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yujie Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jing Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yulan Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
11
|
Xu P, Studer A. Skeletal Editing through Cycloaddition and Subsequent Cycloreversion Reactions. Acc Chem Res 2025; 58:647-658. [PMID: 39875197 DOI: 10.1021/acs.accounts.4c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
ConspectusSkeletal editing, which involves adding, deleting, or substituting single or multiple atoms within ring systems, has emerged as a transformative approach in modern synthetic chemistry. This innovative strategy addresses the ever-present demand for developing new drugs and advanced materials by enabling precise modifications of molecular frameworks without disrupting essential functional complexities. Ideally performed at late stages of synthesis, skeletal editing minimizes the need for the cost- and labor-intensive processes often associated with de novo synthesis, thus accelerating the discovery and optimization of complex molecular architectures. While current efforts in skeletal editing predominantly focus on monatomic-scale modifications, editing molecules through cycloaddition followed by cycloreversion offers a unique strategy to manipulate molecular frameworks on a double-atomic scale. This introduces new possibilities for chemical transformations and enables transformations such as double-atom transmutation, formal single-atom transmutation, and atom insertion. Early examples of such skeletal editing processes often relied on the inherent high reactivity of the substrates, which needed to be sufficiently active to undergo cycloaddition and possess good leaving groups for the subsequent fragmentation (cycloreversion) step. Recently, however, the structural editing of relatively inert substrates has become achievable through substrate activation strategies designed to enhance either the cycloaddition or subsequent cycloreversion step.Along these lines, we recently developed a dearomative process for activating pyridines. In a simple high-yielding chemical operation, oxazinopyridines are readily obtained as activated dearomatized isolable intermediates. This method enabled us to achieve the transformation of pyridines into benzenes and naphthalenes through a cycloaddition/cycloreversion sequence. In this Account, related recent contributions from other research groups are highlighted as well, alongside early examples involving tetrazines, triazines, diazines, and other similar heterocycles as cycloaddition reaction partners. By offering a streamlined route to modify molecular structures, these approaches have demonstrated their ability to interconvert arenes and heteroarenes and have shown significant potential for late-stage editing applications as well as advancing drug discovery and the synthesis of bioactive molecules.In the future, these approaches will undoubtedly see broader development in the field of skeletal editing. New strategies for substrate activation should be devised to enable not only the incorporation of nitrogen and other heteroatoms into rings─rather than their deletion─but also to achieve ring contraction and expand the application of this strategy to non-aromatic rings. We hope that the advancements summarized in this Account will inspire chemists to explore and expand skeletal editing methodologies. By pushing the boundaries of these approaches, researchers can unlock new opportunities for constructing and modifying complex molecular frameworks, eventually paving the way for innovative applications in chemistry, biology, and materials science.
Collapse
Affiliation(s)
- Pengwei Xu
- Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
12
|
Lapray A, Hiebel MA, Oudeyer S, Lohier JF, Suzenet F, Brière JF. 3-Alkyl-1,2,4-triazines as Heterocyclic Platforms for Organocatalytic Enantioselective Benzylic C-H Functionalization. Org Lett 2025. [PMID: 39889202 DOI: 10.1021/acs.orglett.5c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
The α-3-(1,2,4-triazine)-α-cyanoacetate derivatives exhibit a unique and well-defined dearomatized structure undergoing efficient organocatalytic aromatization-alkylation sequences with Michael acceptors in order to construct an all-carbon tetrasubstituted stereocenter with high ee values. These new players in the field of enantioselective catalytic benzylic C-H functionalization afford versatile molecular platforms toward the construction of valuable 3D-heterocycles.
Collapse
Affiliation(s)
- Anthony Lapray
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, CARMeN UMR 6064, INC3M FR 3038, F-76000 Rouen, France
| | | | - Sylvain Oudeyer
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, CARMeN UMR 6064, INC3M FR 3038, F-76000 Rouen, France
| | | | - Franck Suzenet
- Université d'Orléans, CNRS, ICOA, UMR 7311, 45067 Orléans, France
| | - Jean-François Brière
- CNRS, INSA Rouen Normandie, Univ Rouen Normandie, Normandie Univ, CARMeN UMR 6064, INC3M FR 3038, F-76000 Rouen, France
| |
Collapse
|
13
|
Chen C, Tang M, Zeng Z, Liu Y, Huang W, Tang Y. Synthesis and Properties of Thermostable Energetic Benzotriazines. J Org Chem 2025; 90:350-356. [PMID: 39705544 DOI: 10.1021/acs.joc.4c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
In an effort to balance energy and molecular stability effectively, several energetic compounds (3-6) based on benzotriazine were designed and synthesized. These structures were comprehensively characterized using NMR, IR, and elemental analysis, with compounds 3, 5, and 6 further confirmed by single-crystal X-ray diffraction. Notably, 3-amino-5,7-dinitrobenzo[e][1,2,4]triazine 1-oxide (5), which features a face-to-face crystal stacking arrangement, exhibits good detonation velocity (Dv = 8050 m/s), a high thermal decomposition temperature (Td = 290 °C), and low sensitivities (impact sensitivity >40 J, friction sensitivity >360 N). The preparation of compound 5 was further optimized by using a commercially available flow microreactor system, achieving an improved yield of 62%. Overall, the comprehensive properties of compound 5 make it a promising candidate for heat-resistant explosive applications.
Collapse
Affiliation(s)
- Chunhui Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Tang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhiwei Zeng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuji Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yongxing Tang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
14
|
Pal S, Nandi R, Manna AS, Bag D, Rahaman R, Maiti DK. Cu(I)-Catalyzed C(sp 3)-H Functionalization of Amino Acids with Benzimidate and Reactive Oxygen Species (ROS) To Synthesize Triazines and 2-Pyrrolidinones. Org Lett 2024. [PMID: 39526848 DOI: 10.1021/acs.orglett.4c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An easily accessible Cu(I)-catalyzed regioselective oxidative C-N/C-O cross-coupling organic transformation has been disclosed for the syntheses of variably functionalized triazines and N-benzoylpyrrolidin-2-ones through the involvement of C(sp3)-H bond functionalization, which is unknown in the literature. This general synthetic method is extended for decarboxylative oxidation of amino acids to install carbonyl functionality. It facilitates the formation of 2-3 new bonds through the cross-coupling strategy involving benzimidates, amino acids, and in situ-generated reactive oxygen species (ROS) from the aerial O2 as the sole oxidant. The key utilities of the new reactions are demonstrated by its operational simplicity, regioselectivity, robustness, and broad substrate scope with high yields.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Debanjana Bag
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajjakfur Rahaman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| |
Collapse
|
15
|
Wei X, Zhang Y, Lin R, Zhu Q, Xie X, Zhang Y, Fang W, Chen Z. Transition-Metal-Free Late-Stage Decarboxylative gem-Difluoroallylation of Primary Alkyl Acids. J Org Chem 2024; 89:15234-15247. [PMID: 39377598 DOI: 10.1021/acs.joc.4c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A transition-metal-free late-stage decarboxylative gem-difluoroallylation of carboxylic acids with α-trifluoromethyl alkenes has been described by the use of organo-photoredox catalysis. Both primary alkyl and heteroaryl acids were readily incorporated. This approach merits feedstock materials, mild reaction conditions, and wide functionality tolerance. The synthetic utility of this approach has been highlighted by the late-stage functionalization of a variety of acid-containing natural products and drug molecules.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qi Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yumeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
16
|
Wang SC, Zhou X, Li YX, Zhang CY, Zhang ZY, Xiong YS, Lu G, Dong J, Weng J. Enabling Modular Click Chemistry Library through Sequential Ligations of Carboxylic Acids and Amines. Angew Chem Int Ed Engl 2024; 63:e202410699. [PMID: 38943043 DOI: 10.1002/anie.202410699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
High-throughput synthesis and screening of chemical libraries play pivotal roles in drug discovery. Click chemistry has emerged as a powerful strategy for constructing highly modular chemical libraries. However, the development of new click reactions and unlocking new clickable building blocks remain exceedingly challenging. Herein, we describe a double-click strategy that enables the sequential ligations of widely available carboxylic acids and amines with fluorosulfuryl isocyanate (FSO2NCO) via a modular amidation/SuFEx (sulfur-fluoride exchange) process. This method provides facile access to chemical libraries of N-fluorosulfonyl amides (RCONHSO2F) and N-acylsulfamides (RCONHSO2NR'R'') in near-quantitative yields under simple and practical conditions. The robustness and efficiency of this double click strategy is showcased by the facile construction of chemical libraries in 96-well microtiter plates from a large number of carboxylic acids and amines. Preliminary biological activity screening reveals that some compounds exhibit high antimicrobial activities against Gram-positive bacterium S. aureus and drug-resistant MRSA (MIC up to 6.25 μg ⋅ mL-1). These results provide compelling evidence for the potential application of modular click chemistry library as an enabling technology in high-throughput medicinal chemistry.
Collapse
Affiliation(s)
- Sheng-Cai Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Xiang Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Ying-Xian Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Chun-Yan Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Zi-Yan Zhang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Yan-Shi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Gui Lu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Jiajia Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiang Weng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| |
Collapse
|
17
|
Lehman VA, Ma Y, Scheerer JR. Construction of the 4-Azafluorenone Core in a Single Operation and Synthesis of Onychine. J Org Chem 2024; 89:11078-11082. [PMID: 39014934 DOI: 10.1021/acs.joc.4c01298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
This study describes the synthesis of the 4-azafluorenone core in a single operation using readily available starting materials. Condensation of an amidrazone with ninhydrin intercepts an intermediate 1,2,4-triazine derivative, which engages norbornadiene in a merged [4 + 2]/bis-retro[4 + 2] sequence to deliver the azafluorenone core. The tricyclic core established in this manner was elaborated to onychine, the simplest natural product in the 4-azafluorenone alkaloid family.
Collapse
Affiliation(s)
- Victoria A Lehman
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Yun Ma
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Jonathan R Scheerer
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| |
Collapse
|
18
|
Demonti L, Joven-Sancho D, Saffon-Merceron N, Baya M, Nebra N. Synthesis and Lewis Acid Properties of Neutral Silver(III) Adducts Containing the Ag III(CF 3) 3 Moiety. Chemistry 2024; 30:e202400881. [PMID: 38567827 DOI: 10.1002/chem.202400881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 05/09/2024]
Abstract
The acetonitrile AgIII complex [AgIII(CF3)3(NCCH3)] (2) has been reported independently by Eujen and Naumann in the last century, albeit with intriguing NMR discrepancy. In their reports, 2 was claimed to be obtained starting from either [AgIII(CF3)3Cl]- (3⋅Cl) or [AgIII(CF3)4]- (1) via halide abstraction using AgNO3 or acidic treatment, resp. These two synthetic routes are herein reinvestigated. The feasibility of Naumann's method is demonstrated, thus providing 2 yet accompanied by its s-triazinyl derivative [AgIII(CF3)3(C6H9N3)] (2'). The formation of 2' is unprecedented and was thereby investigated. Both 2 and 2' were isolated in pure fashion and fully characterized. In turn, halide extraction from 3⋅Cl leads to the AgIII-ONO2 anion 5 instead of 2, as evidenced by NMR spectroscopy, EA and Sc-XRD.
Collapse
Affiliation(s)
- Luca Demonti
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Daniel Joven-Sancho
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse ICT-UAR2599, Université Paul Sabatier, CNRS, 31062, Toulouse Cedex, France
| | - Miguel Baya
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
19
|
Boswell BR, Zhao Z, Gonciarz RL, Pandya KM. Regioselective Pyridine to Benzene Edit Inspired by Water-Displacement. J Am Chem Soc 2024; 146:19660-19666. [PMID: 38996188 DOI: 10.1021/jacs.4c05999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Late-stage derivatization of drug-like functional groups can accelerate drug discovery efforts by swiftly exchanging hydrogen-bond donors with acceptors, or by modulating key physicochemical properties like logP, solubility, or polar surface area. A proven derivatization strategy to improve ligand potency is to extend the ligand to displace water molecules that are mediating the interactions with a receptor. Inspired by this application, we developed a method to regioselectively transmute the nitrogen atom from pyridine into carbon bearing an ester, a flexible functional group handle. We applied this method to a variety of substituted pyridines, as well as late-stage transformation of FDA-approved drugs.
Collapse
Affiliation(s)
- Benjamin R Boswell
- Discovery Chemistry, Exelixis Inc., Alameda, California 94502, United States
| | - Zhensheng Zhao
- Discovery Chemistry, Exelixis Inc., Alameda, California 94502, United States
| | - Ryan L Gonciarz
- Discovery Chemistry, Exelixis Inc., Alameda, California 94502, United States
| | - Keyur M Pandya
- Pharmaceutical Operations & Supply Chain, Exelixis Inc., Alameda, California 94502, United States
| |
Collapse
|
20
|
Biswas S, Empel C, Sanchez-Palestino LM, Arman H, Koenigs RM, Doyle MP. Denitrogenative dismantling of heteroaromatics by nucleophilic substitution reactions with diazomethyl compounds. Chem Sci 2024; 15:11065-11071. [PMID: 39027303 PMCID: PMC11253183 DOI: 10.1039/d4sc01578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/16/2024] [Indexed: 07/20/2024] Open
Abstract
Nucleophiles from deprotonation of diazomethyl compounds having diverse electron withdrawing groups react with 4-carboxylato-1,2,3-triazines at the 6-position to extrude dinitrogen and produce diazovinylketoesters compounds with five or six linear contiguous sp2-hybridized carbons, whereas these same nucleophiles react with 4-carboxylato-1,2,3-triazine 1-oxides, also at the 6-position, to form pyrazolines with the expulsion of nitrous oxide and cyanocarboxylate. This disparity is due to the significant difference in reactivity of the nucleophilic addition products.
Collapse
Affiliation(s)
- Soumen Biswas
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Luis Mario Sanchez-Palestino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
- Escuela Superior de Medicina, Instituto Politécnico Nacional Mexico City 11340 Mexico
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
21
|
Zhang Y, Zhu T, Lin Y, Wei X, Xie X, Lin R, Zhang Z, Fang W, Zhang JJ, Zhang Y, Hu MY, Cai L, Chen Z. Organo-photoredox catalyzed gem-difluoroallylation of ketone-derived dihydroquinazolinones via C(sp 3)-C bond and C(sp 3)-F bond cleavage. Org Biomol Chem 2024; 22:5561-5568. [PMID: 38916128 DOI: 10.1039/d4ob00671b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
An organo-photoredox catalyzed gem-difluoroallylation of both acyclic and cyclic ketone derivatives with α-trifluoromethyl alkenes has been demonstrated, thus giving access to a diverse set of gem-difluoroalkenes in moderate to high yields. Pro-aromatic dihydroquinazolinones can be either pre-formed or in situ generated for ketone activation. This reaction is characterized by readily available starting materials, mild reaction conditions, and broad substrate scope. The feasibility of this reaction has been highlighted by the late-stage modification of several natural products and drug-like molecules as well as the in vitro antifungal activity.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Tianshuai Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yuqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Zhijie Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yue Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, Jiangsu, China.
| | - Meng-Yang Hu
- DreamChem (Tianjin) Co., Ltd., No. 4, Haitai Development 2nd Road, Binhai High-tech Zone, Tianjin, 300380, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
22
|
Zeng Z, Chen C, Xu X, Liu Y, Huang W, Tang Y. Diazotization of o-Aminoamidoximes for the Preparation of Energetic 6,5,6-Fused 1,2,3-Triazine-3-oxides. J Org Chem 2024; 89:9516-9520. [PMID: 38872301 DOI: 10.1021/acs.joc.4c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Two 6,5,6-fused 1,2,3-triazine-3-oxides (4 and 6) were designed and synthesized via the reaction of o-aminoamidoximes with sodium nitrite. In addition, the ring-opening products (5, 7, and 8) derived from 1,2,3-triazine-3-oxides were isolated and characterized. A comprehensive exploration of the reaction mechanism governing the ring-opening process was performed through a combination of theoretical and experimental studies. Notably, compound 4 exhibited commendable detonation properties and low sensitivity, demonstrating its promising potential as an energetic material.
Collapse
Affiliation(s)
- Zhiwei Zeng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chunhui Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuran Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuji Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yongxing Tang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
23
|
Tang H, Zhang HN, Gao X, Zou Y, Jin GX. The Topological Transformation of Trefoil Knots to Solomon Links via Diels-Alder Click Reaction. J Am Chem Soc 2024; 146:16020-16027. [PMID: 38815259 DOI: 10.1021/jacs.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The quest for more efficient, user-friendly, and less wasteful topological transformations remains a significant challenge in the realm of postassembly modifications. In this article, high yields of two molecular trefoil knots (Rh-1, Ir-1) were obtained using ligand 3,6-bis(3-(pyridin-4-yl)phenyl)-1,2,4,5-tetrazine (L1) with reactive tetrazine units and binuclear half-sandwich organometallic units [Cp*2M2(μ-TPPHZ)(OTf)2](OTf)2 (Rh-B, M = RhIII; Ir-B, M = IrIII). 2,5-Norbornadiene was used as an inducer of the Diels-Alder click reaction to modulate rapidly and efficiently the transformation of Trefoil knots to Solomon links. However, the key to achieving this topological structural change is the subtle increase in site steric of the pyridazine fragments (L2), which allows the molecular structures to spread and bend in three-dimensional space, as confirmed by single-crystal X-ray diffraction, ESI-TOF/MS, elementary analysis and detailed solution-state NMR techniques.
Collapse
Affiliation(s)
- Haitong Tang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Hai-Ning Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Yan Zou
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| |
Collapse
|
24
|
Zuo Q, Li Y, Lai X, Bao G, Chen L, He Z, Song X, E R, Wang P, Shi Y, Luo H, Sun W, Wang R. Cysteine-Specific Multifaceted Bioconjugation of Peptides and Proteins Using 5-Substituted 1,2,3-Triazines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308491. [PMID: 38466927 DOI: 10.1002/advs.202308491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Peptide and protein postmodification have gained significant attention due to their extensive impact on biomolecule engineering and drug discovery, of which cysteine-specific modification strategies are prominent due to their inherent nucleophilicity and low abundance. Herein, the study introduces a novel approach utilizing multifunctional 5-substituted 1,2,3-triazine derivatives to achieve multifaceted bioconjugation targeting cysteine-containing peptides and proteins. On the one hand, this represents an inaugural instance of employing 1,2,3-triazine in biomolecular-specific modification within a physiological solution. On the other hand, as a powerful combination of precision modification and biorthogonality, this strategy allows for the one-pot dual-orthogonal functionalization of biomolecules utilizing the aldehyde group generated simultaneously. 1,2,3-Triazine derivatives with diverse functional groups allow conjugation to peptides or proteins, while bi-triazines enable peptide cyclization and dimerization. The examination of the stability of bi-triazines revealed their potential for reversible peptide modification. This work establishes a comprehensive platform for identifying cysteine-selective modifications, providing new avenues for peptide-based drug development, protein bioconjugation, and chemical biology research.
Collapse
Affiliation(s)
- Quan Zuo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Xuanliang Lai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Lu Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Xinyi Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Pengxin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Yuntao Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Huixin Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
25
|
Zeng CY, Deng WJ, Zhao KQ, Redshaw C, Donnio B. Phenanthrothiophene-Triazine Star-Shaped Discotic Liquid Crystals: Synthesis, Self-Assembly, and Stimuli-Responsive Fluorescence Properties. Chemistry 2024; 30:e202400296. [PMID: 38427538 DOI: 10.1002/chem.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Lipophilic biphenylthiophene- and phenanthrothiophene-triazine compounds, BPTTn and CPTTn, respectively, were prepared by a tandem procedure involving successive Suzuki-Miyaura coupling and Scholl cyclodehydrogenation reactions. These compounds display photoluminescence in solution and in thin film state, solvatochromism with increasing solvent's polarity, as well as acidochromism and metal ion recognition stimuli-responsive fluorescence. Protonation of BPTT10 and CPTT10 by trifluoroacetic acid results in fluorescence quenching, which is reversibly restored once treated with triethylamine (ON-OFF switch). DFT computational studies show that intramolecular charge transfer (ICT) phenomena occurs for both molecules, and reveal that protonation enhances the electron-withdrawing ability of the triazine core and reduces the band gap. This acidochromic behavior was applied to a prototype fluorescent anti-counterfeiting device. They also specifically recognize Fe3+ through coordination, and the recognition mechanism is closely related to the photoinduced electron transfer between Fe3+ and BPTT10/CPTT10. CPTTn self-assemble into columnar rectangular (Colrec) mesophase, which can be modulated by oleic acid via the formation of a hydrogen-bonded supramolecular liquid crystal hexagonal Colhex mesophase. Finally, CPTTn also form organic gels in alkanes at low critical gel concentration (3.0 mg/mL). Therefore, these star-shaped triazine molecules possess many interesting features and thus hold great promises for information processing, liquid crystal semiconductors and organogelators.
Collapse
Affiliation(s)
- Chong-Yang Zeng
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Wen-Jing Deng
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Carl Redshaw
- Department of Chemistry, University of Hull, School of Natural Sciences, Hull, HU6 7RX, UK
| | - Bertrand Donnio
- Institut de Chimie et Physique des Matériaux de Strasbourg, UMR 7504, CNRS-University of Strasbourg, 67034, Strasbourg, France
| |
Collapse
|
26
|
Fang Y, Hillman AS, Fox JM. Advances in the Synthesis of Bioorthogonal Reagents: s-Tetrazines, 1,2,4-Triazines, Cyclooctynes, Heterocycloheptynes, and trans-Cyclooctenes. Top Curr Chem (Cham) 2024; 382:15. [PMID: 38703255 PMCID: PMC11559631 DOI: 10.1007/s41061-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/01/2024] [Indexed: 05/06/2024]
Abstract
Aligned with the increasing importance of bioorthogonal chemistry has been an increasing demand for more potent, affordable, multifunctional, and programmable bioorthogonal reagents. More advanced synthetic chemistry techniques, including transition-metal-catalyzed cross-coupling reactions, C-H activation, photoinduced chemistry, and continuous flow chemistry, have been employed in synthesizing novel bioorthogonal reagents for universal purposes. We discuss herein recent developments regarding the synthesis of popular bioorthogonal reagents, with a focus on s-tetrazines, 1,2,4-triazines, trans-cyclooctenes, cyclooctynes, hetero-cycloheptynes, and -trans-cycloheptenes. This review aims to summarize and discuss the most representative synthetic approaches of these reagents and their derivatives that are useful in bioorthogonal chemistry. The preparation of these molecules and their derivatives utilizes both classical approaches as well as the latest organic chemistry methodologies.
Collapse
Affiliation(s)
- Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| | - Ashlyn S Hillman
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
27
|
Cheng Q, Bhattacharya D, Haring M, Cao H, Mück-Lichtenfeld C, Studer A. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat Chem 2024; 16:741-748. [PMID: 38238464 PMCID: PMC11087273 DOI: 10.1038/s41557-023-01428-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/15/2023] [Indexed: 05/12/2024]
Abstract
Skeletal editing is a straightforward synthetic strategy for precise substitution or rearrangement of atoms in core ring structures of complex molecules; it enables quick diversification of compounds that is not possible by applying peripheral editing strategies. Previously reported skeletal editing of common arenes mainly relies on carbene- or nitrene-type insertion reactions or rearrangements. Although powerful, efficient and applicable to late-stage heteroarene core structure modification, these strategies cannot be used for skeletal editing of pyridines. Here we report the direct skeletal editing of pyridines through atom-pair swap from CN to CC to generate benzenes and naphthalenes in a modular fashion. Specifically, we use sequential dearomatization, cycloaddition and rearomatizing retrocycloaddition reactions in a one-pot sequence to transform the parent pyridines into benzenes and naphthalenes bearing diversified substituents at specific sites, as defined by the cycloaddition reaction components. Applications to late-stage skeletal diversification of pyridine cores in several drugs are demonstrated.
Collapse
Affiliation(s)
- Qiang Cheng
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | | | - Malte Haring
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Hui Cao
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | | | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
28
|
Lin R, Shan Y, Li Y, Wei X, Zhang Y, Lin Y, Gao Y, Fang W, Zhang JJ, Wu T, Cai L, Chen Z. Organo-Photoredox Catalyzed gem-Difluoroallylation of Glycine and Glycine Residue in Peptides. J Org Chem 2024; 89:4056-4066. [PMID: 38449357 DOI: 10.1021/acs.joc.3c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
An organo-photoredox catalyzed gem-difluoroallylation of glycine with α-trifluoromethyl alkenes via direct C(sp3)-H functionalization of glycine and C-F bond activation of α-trifluoromethyl alkenes has been described. As a consequence, a broad range of gem-difluoroalkene-containing unnatural amino acids are afforded in moderate to excellent yields. This reaction exhibits multiple merits such as readily available starting materials, broad substrate scope, and mild reaction conditions. The feasibility of this reaction has been highlighted by the late-stage modification of several peptides as well as the improved in vitro antifungal activity of compound 3v toward Valsa mali compared to that with commercial azoxystrobin.
Collapse
Affiliation(s)
- Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yujie Shan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yuqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yiman Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Lab for Biomass Chemical Utilization, Nanjing, Jiangsu 210042, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
29
|
Hao W, Wang L, Zhang J, Teng D, Cao G. Synthesis of spiropyridazine-benzosultams by the [4 + 2] annulation reaction of 3-substituted benzoisothiazole 1,1-dioxides with 1,2-diaza-1,3-dienes. Beilstein J Org Chem 2024; 20:280-286. [PMID: 38379732 PMCID: PMC10877075 DOI: 10.3762/bjoc.20.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
A simple and efficient method for the synthesis of spiropyridazine-benzosultams has been developed by means of [4 + 2] annulation reaction of 3-substituted benzoisothiazole 1,1-dioxides with 1,2-diaza-1,3-dienes. This approach displays advantages such as mild reaction conditions, wide substrate range tolerance, simple operation, compatibility with gram-scale preparation.
Collapse
Affiliation(s)
- Wenqing Hao
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Lu, Qingdao 266042, China
| | - Long Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Lu, Qingdao 266042, China
| | - Jinlei Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Lu, Qingdao 266042, China
| | - Dawei Teng
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Lu, Qingdao 266042, China
| | - Guorui Cao
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Lu, Qingdao 266042, China
| |
Collapse
|
30
|
Liang Q, Cai Y, Jiang W, Pang M, Fan L, Zhang G. Palladium-catalyzed allylation and carbonylation: access to allylhydrazones and allyl acylhydrazones. Chem Commun (Camb) 2024; 60:1638-1641. [PMID: 38235749 DOI: 10.1039/d3cc05531k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A palladium-catalyzed allylation of hydrazines with allyl alcohols and aldehydes was developed, enabling the syntheses of a series of allylhydrazones in good to excellent yields with high regioselectivity. Furthermore, the four-component tandem allylation carbonylation of hydrazines with allyl alcohols and aldehydes was established using the catalytic system, producing various allyl acylhydrazones. Additionally, the functionalized allyl acylhydrazones could be smoothly constructed with the catalytic system employing allylhydrazones as a partner. The catalytic system exhibited good functional tolerance with excellent regioselectivities and scaled-up capability, overcoming the limitations of chemoselectivity of the multicomponent transformation and poor conversion of the weak nucleophile.
Collapse
Affiliation(s)
- Qianqian Liang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yan Cai
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030001, China
| | - Wenjun Jiang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030001, China
| | - Mengdi Pang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030001, China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030001, China
| | - Guoying Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Májek M, Trtúšek M. Discovery of new tetrazines for bioorthogonal reactions with strained alkenes via computational chemistry. RSC Adv 2024; 14:4345-4351. [PMID: 38304564 PMCID: PMC10828936 DOI: 10.1039/d3ra08712c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
Tetrazines are widely employed reagents in bioorthogonal chemistry, as they react readily with strained alkenes in inverse electron demand Diels-Alder reactions, allowing for selective labeling of biomacromolecules. For optimal performance, tetrazine reagents have to react readily with strained alkenes, while remaining inert against nucleophiles like thiols. Balancing these conditions is a challenge, as reactivity towards strained alkenes and nucleophiles is governed by the same factor - the energy of unoccupied orbitals of tetrazine. Herein, we utilize computational chemistry to screen a set of tetrazine derivatives, aiming to identify structural elements responsible for a better ratio of reactivity with strained alkenes vs. stability against nucleophiles. This advantageous trait is present in sulfone- and sulfoxide-substituted tetrazines. In the end, the distortion/interaction model helped us to identify that the reason behind this enhanced reactivity profile is a secondary orbital interaction between the strained alkene and sulfone-/sulfoxide-substituted tetrazine. This insight can be used to design new tetrazines for bioorthogonal chemistry with improved reactivity/stability profiles.
Collapse
Affiliation(s)
- Michal Májek
- Comenius University Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry Mlynská Dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Matej Trtúšek
- Comenius University Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry Mlynská Dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| |
Collapse
|
32
|
Wei X, Zhang Y, Zhang JJ, Fang W, Chen Z. Solvent-Controllable C-F Bond Activation for Masked Formylation of α-Trifluoromethyl Alkenes via Organo-Photoredox Catalysis. J Org Chem 2024; 89:624-632. [PMID: 38115588 DOI: 10.1021/acs.joc.3c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A solvent-controllable organo-photoredox-catalyzed C-F bond activation for masked formylation of α-trifluoromethyl alkenes with low-priced 1,3-dioxolane as masked formyl radical equivalent has been described. Consequently, a diversity of masked formylated gem-difluoroalkenes and monofluoroalkenes are constructed in moderate to high yields. This approach merits readily available starting materials, mild reaction conditions, and broad substrate scope. The feasibility of this approach has been highlighted by the one-pot masked formylation/hydrolysis sequence to form γ,γ-difluoroallylic aldehydes and late-stage modification of pharmaceutical and natural product derivatives.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
33
|
Xu X, Deng X, Li Y, Xia S, Baryshnikov G, Bondarchuk SV, Ågren H, Wang X, Liu P, Tan Y, Huang T, Zhang H, Wei Y. Applications of Boron Cluster Supramolecular Frameworks as Metal-Free Chemodynamic Therapy Agents for Melanoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307029. [PMID: 37712137 DOI: 10.1002/smll.202307029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Chemodynamic therapy (CDT) is a highly targeted approach to treat cancer since it converts hydrogen peroxide into harmful hydroxyl radicals (OH·) through Fenton or Fenton-like reactions. However, the systemic toxicity of metal-based CDT agents has limited their clinical applications. Herein, a metal-free CDT agent: 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12 H12 ]2- (TPT@ B12 H12 ) is reported. Compared to the traditional metal-based CDT agents, TPT@B12 H12 is free of metal avoiding cumulative toxicity during long-term therapy. Density functional theory (DFT) calculation revealed that TPT@B12 H12 decreased the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. Mechanismly, the theory calculation indicated that both [B12 H12 ]-· and [TPT-H]2+ have the capacity to decompose hydrogen into 1 O2 , OH·, and O2 -· . With electron paramagnetic resonance and fluorescent probes, it is confirmed that TPT@B12 H12 increases the levels of 1 O2 , OH·, and O2 -· . More importantly, TPT@B12 H12 effectively suppress the melanoma growth both in vitro and in vivo through 1 O2 , OH·, and O2 -· generation. This study specifically highlights the great clinical translational potential of TPT@B12 H12 as a CDT reagent.
Collapse
Affiliation(s)
- Xiaoran Xu
- Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Xuefan Deng
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yi Li
- Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Shiying Xia
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan, 430072, China
| | - Glib Baryshnikov
- Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| | - Sergey V Bondarchuk
- Department of Chemistry and Nanomaterials Science, Bogdan Khmelnitsky Cherkasy National University, Shevchenko 81, Cherkasy, 18031, Ukraine
| | - Hans Ågren
- Department of Physics and Astronomy, Division of X-ray Photon Science, Uppsala University, Lägerhyddsvägen 1, Uppsala, SE-75121, Sweden
| | - Xinyu Wang
- Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Pan Liu
- Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Yujia Tan
- Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| |
Collapse
|
34
|
Zhang X, Wang D, Chang M, Wang W, Shen Z, Xu X. CuBr-mediated synthesis of 1,4-naphthoquinones via ring expansion of 2-aryl-1,3-indandiones. Chem Commun (Camb) 2023; 59:12326-12329. [PMID: 37753616 DOI: 10.1039/d3cc03753c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
A CuBr-mediated direct insertion of alkenes into unstrained ring 2-aryl-1,3-indandiones is reported, which provides a one-carbon ring expansion strategy for the synthesis of 1,4-naphthoquinones. Entirely differing from the existing reports, the alkenes herein behave as C1 units to participate in annulation reactions. This transformation provides a facile route to access a class of highly functionalized 1,4-naphthoquinones with good yields, good functional-group tolerance and high atom-economy. Further research on the application of this reaction is currently underway in our laboratory.
Collapse
Affiliation(s)
- Xu Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Di Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Mengfan Chang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Wanya Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Zhi Shen
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xuefeng Xu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
35
|
Choudhary S, Gayyur, Kant R, Ghosh N. Leveraging Zn(II) Catalyst: Synthesis of Amidoquinolines via (3 + 3) Heteroannulation of Aromatic Amines and Ynamides. J Org Chem 2023. [PMID: 37466147 DOI: 10.1021/acs.joc.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Herein, we present a Zn(II)-catalyzed (3 + 3) heteroannulation reaction between aromatic amines and 1,3-diynamides for the synthesis of amidoquinolines. A large number of aromatic amines are well tolerated, furnishing quinoline derivatives in up to excellent yield. Notably, various reactive functional groups have survived under the optimal reaction conditions, highlighting the mildness of the developed protocol. In addition, amines derived from bioactive molecules show modest reactivity.
Collapse
Affiliation(s)
- Shivani Choudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gayyur
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nayan Ghosh
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
36
|
De Angelis L, Haug GC, Rivera G, Biswas S, Al-Sayyed A, Arman H, Larionov O, Doyle MP. Site Reversal in Nucleophilic Addition to 1,2,3-Triazine 1-Oxides. J Am Chem Soc 2023; 145:13059-13068. [PMID: 37294869 PMCID: PMC10755600 DOI: 10.1021/jacs.3c01347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of the most important reactions of 1,2,3-triazines with a dienophile is inverse electron demand Diels-Alder (IEDDA) cycloaddition, which occurs through nucleophilic addition to the triazine followed by N2 loss and cyclization to generate a heterocycle. The site of addition is either at the 4- or 6-position of the symmetrically substituted triazine core. Although specific examples of the addition of nucleophiles to triazines are known, a comprehensive understanding has not been reported, and the preferred site for nucleophilic addition is unknown and unexplored. With access to unsymmetrical 1,2,3-triazine-1-oxides and their deoxygenated 1,2,3-triazine compounds, we report C-, N-, H-, O-, and S-nucleophilic additions on 1,2,3-triazine and 1,2,3-triazine-1-oxide frameworks where the 4- and 6-positions could be differentiated. In the IEDDA cycloadditions using C- and N-nucleophiles, the site of addition is at C-6 for both heterocyclic systems, but product formation with 1,2,3-triazine-1-oxides is faster. Other N-nucleophile reactions with triazine 1-oxides show addition at either the 4- or 6-position of the triazine 1-oxide ring, but nucleophilic attack only occurs at the 6-position on the triazine. Hydride from NaBH4 undergoes addition at the 6-position on the triazine and the triazine 1-oxide core. Alkoxides show a high nucleophilic selectivity for the 4-position of the triazine 1-oxide. Thiophenoxide, cysteine, and glutathione undergo nucleophilic addition on the triazine core at the 6-position, while addition occurs at the 4-position of the triazine 1-oxide. These nucleophilic additions proceed under mild reaction conditions and show high functional group tolerance. Computational studies clarified the roles of the nucleophilic addition and nitrogen extrusion steps and the influence of steric and electronic factors in determining the outcomes of the reactions with different nucleophiles.
Collapse
Affiliation(s)
- Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Graham C Haug
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, Mexico
| | - Soumen Biswas
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ammar Al-Sayyed
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
37
|
Blanco-Carapia RE, Aguilar-Rangel EA, Rincón-Guevara MA, Islas-Jácome A, González-Zamora E. Synthesis of New Polyheterocyclic Pyrrolo[3,4- b]pyridin-5-ones via an Ugi-Zhu/Cascade/Click Strategy. Molecules 2023; 28:molecules28104087. [PMID: 37241828 DOI: 10.3390/molecules28104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
A diversity-oriented synthesis (DOS) of two new polyheterocyclic compounds was performed via an Ugi-Zhu/cascade (N-acylation/aza Diels-Alder cycloaddition/decarboxylation/dehydration)/click strategy, both step-by-step to optimize all involved experimental stages, and in one pot manner to evaluate the scope and sustainability of this polyheterocyclic-focused synthetic strategy. In both ways, the yields were excellent, considering the high number of bonds formed with release of only one carbon dioxide and two molecules of water. The Ugi-Zhu reaction was carried out using the 4-formylbenzonitrile as orthogonal reagent, where the formyl group was first transformed into the pyrrolo[3,4-b]pyridin-5-one core, and then the remaining nitrile group was further converted into two different nitrogen-containing polyheterocycles, both via click-type cycloadditions. The first one used sodium azide to obtain the corresponding 5-substituted-1H-tetrazolyl-pyrrolo[3,4-b]pyridin-5-one, and the second one with dicyandiamide to synthesize the 2,4-diamino-1,3,5-triazine-pyrrolo[3,4-b]pyridin-5-one. Both synthesized compounds may be used for further in vitro and in silico studies because they contain more than two heterocyclic moieties of high interest in medicinal chemistry, as well as in optics due to their high π-conjugation.
Collapse
Affiliation(s)
- Roberto E Blanco-Carapia
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, Mexico City 09310, Mexico
| | - Enrique A Aguilar-Rangel
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, Mexico City 09310, Mexico
| | - Mónica A Rincón-Guevara
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, Mexico City 09310, Mexico
| | - Alejandro Islas-Jácome
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, Mexico City 09310, Mexico
| | - Eduardo González-Zamora
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, Mexico City 09310, Mexico
| |
Collapse
|
38
|
Flemming A, Dutmer BC, Gilbert TM. Additivity of Diene Substituent Gibbs Free Energy Contributions for Diels-Alder Reactions between Me 2C=CMe 2 and Substituted Cyclopentadienes. ACS OMEGA 2023; 8:14160-14170. [PMID: 37091433 PMCID: PMC10116529 DOI: 10.1021/acsomega.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Systematic computational studies of pericyclic Diels-Alder reactions between (H3C)2C=C(CH3)2, 1, and all permutations of substituted cyclopentadienes c-C5R1R2R3R4R5aR5b (R = H, CH3, CF3, F) allowed isolation of substitutional effects on Gibbs free energy barrier heights and reaction Gibbs free energies. "Average Substitution Gibbs Free Energy Correction" ΔG ASC# ‡/ΔG ASC# values for each substituent in each position appeared to be additive. Substituent effects on barriers showed interesting contrasts. Methyl substitution at positions 5a and 5b increased barriers significantly, while substitution at all other positions had essentially no impact. In contrast, fluoro substitution at positions 5a and 5b lowered barriers more than substitution at other positions. Trifluoromethyl substitution mixed these effects, in that substitution at positions 5a and 5b increased barriers, but substitution at other positions lowered them. Despite the variances, ΔG ASC# ‡/ΔG ASC# values allowed reliable prediction of barriers and exergonicities for reactions between 1 and highly substituted cyclopentadienes, and between 1 and cyclopentadienes with random mixtures of CH3/CF3/F substituents. ΔG ASC# ‡/ΔG ASC# values were correlated with steric considerations and quantum theory of atoms in molecules (QTAIM) calculations. Overall, the ASC values provide a resource for predicting which Diels-Alder reactions of this type should occur at rapid rates and/or give stable bicyclic products.
Collapse
Affiliation(s)
- Austin
S. Flemming
- Department
of Chemistry, Highland Community College, Freeport, Illinois 61032, United States
| | - Brendan C. Dutmer
- Department
of Chemistry, Highland Community College, Freeport, Illinois 61032, United States
| | - Thomas M. Gilbert
- Department
of Chemistry and Biochemistry, Northern
Illinois University, DeKalb, Illinois 60115, United States
| |
Collapse
|
39
|
Hu X, Tang R, Bai L, Liu S, Liang G, Sun X. CBT‐Cys click reaction for optical bioimaging in vivo. VIEW 2023. [DOI: 10.1002/viw.20220065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
40
|
Dong G, Jiang Y, Zhang F, Zhu F, Liu J, Xu Z. Recent updates on 1,2,3-, 1,2,4-, and 1,3,5-triazine hybrids (2017-present): The anticancer activity, structure-activity relationships, and mechanisms of action. Arch Pharm (Weinheim) 2023; 356:e2200479. [PMID: 36372519 DOI: 10.1002/ardp.202200479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
Cancer is one of the leading causes of death across the world, and the prevalence and mortality rates of cancer will continue to grow. Chemotherapeutics play a critical role in cancer therapy, but drug resistance and side effects are major hurdles to effective treatment, evoking an immediate need for the discovery of new anticancer agents. Triazines including 1,2,3-, 1,2,4-, and 1,3,5-triazine have occupied a propitious place in drug design and development due to their excellent pharmacological profiles. Mechanistically, triazine derivatives could interfere with various signaling pathways to induce cancer cell death. Hence, triazine derivatives possess potential in vitro and in vivo efficacy against diverse cancers. In particular, triazine hybrids are able to overcome drug resistance and reduce side effects. Moreover, several triazine hybrids such as brivanib (indole-containing pyrrolo[2,1-f][1,2,4]triazine), gedatolisib (1,3,5-triazine-urea hybrid), and enasidenib (1,3,5-triazine-pyridine hybrid) have already been available in the market. Accordingly, triazine hybrids are useful scaffolds for the discovery of novel anticancer chemotherapeutics. This review focuses on the anticancer activity of 1,2,3-, 1,2,4-, and 1,3,5-triazine hybrids, together with the structure-activity relationships and mechanisms of action developed from 2017 to the present. The enriched structure-activity relationships may be useful for further rational drug development of triazine hybrids as potential clinical candidates.
Collapse
Affiliation(s)
- Gaoli Dong
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Yingchun Jiang
- College of Medicine, Huanghuai University, Zhumadian, China
| | - Feng Zhang
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Fengyun Zhu
- College of Biology and Food Engineering, Huanghuai University, Zhumadian, China
| | - Junna Liu
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, China
| | - Zhi Xu
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, China
| |
Collapse
|
41
|
Biswas S, De Angelis L, Rivera G, Arman H, Doyle MP. Inverse Electron Demand Diels-Alder-Type Heterocycle Syntheses with 1,2,3-Triazine 1-Oxides: Expanded Versatility. Org Lett 2023; 25:1104-1108. [PMID: 36787541 DOI: 10.1021/acs.orglett.2c04360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
1,2,3-Triazine 1-oxides are remarkably effective substrates for inverse electron demand Diels-Alder reactions. Formed from vinyldiazoacetates via reaction with tert-butyl nitrite, these stable heterocyclic compounds undergo clean nucleophilic addition with amidines to form pyrimidines, with β-ketocarbonyl compounds and related nitrile derivatives to form polysubstituted pyridines and with 3/5-aminopyrazoles to form pyrazolo[1,5-a]pyrimidines, in high yield. These practical reactions are rapid at room temperature, are base catalyzed, and offer a diversity of structural modifications.
Collapse
Affiliation(s)
- Soumen Biswas
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, México
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
42
|
Cai JH, Zhu XZ, Guo PY, Rose P, Liu XT, Liu X, Zhu YZ. Recent updates in click and computational chemistry for drug discovery and development. Front Chem 2023; 11:1114970. [PMID: 36825226 PMCID: PMC9941707 DOI: 10.3389/fchem.2023.1114970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Drug discovery is a costly and time-consuming process with a very high failure rate. Recently, click chemistry and computer-aided drug design (CADD) represent popular areas for new drug development. Herein, we summarized the recent updates in click and computational chemistry for drug discovery and development including clicking to effectively synthesize druggable candidates, synthesis and modification of natural products, targeted delivery systems, and computer-aided drug discovery for target identification, seeking out and optimizing lead compounds, ADMET prediction as well as compounds synthesis, hopefully, inspires new ideas for novel drug development in the future.
Collapse
Affiliation(s)
- Jiang Hong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Xuan Zhe Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Peng Yue Guo
- Department of Clinical Pharmacy, School of Pharmacy, Second Military University, Shanghai, China
| | - Peter Rose
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Xiao Tong Liu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military University, Shanghai, China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Catalyzed Methods to Synthesize Pyrimidine and Related Heterocyclic Compounds. Catalysts 2023. [DOI: 10.3390/catal13010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This review covers articles published in the period from 2010 to mid-2022 on synthetic advances in the formation of pyrimidine and related heterocyclic compounds. Special emphasis has been given to the different types of cycloadditions, taking into account the number of their components and leading to the formation of the pyrimidine ring. Due to the large number of publications on the Biginelli reaction and related reactions, this will be dealt with in a separate review in the near future.
Collapse
|
44
|
Wu ZC, Boger DL. 1,2,3,5-Tetrazines: A General Synthesis, Cycloaddition Scope, and Fundamental Reactivity Patterns. J Org Chem 2022; 87:16829-16846. [PMID: 36461931 PMCID: PMC9771955 DOI: 10.1021/acs.joc.2c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Despite the explosion of interest in heterocyclic azadienes, 1,2,3,5-tetrazines remain unexplored. Herein, the first general synthesis of this new class of heterocycles is disclosed. Its use in the preparation of a series of derivatives, and the first study of substituent effects on their cycloaddition reactivity, mode, and regioselectivity provide the foundation for future use. Their reactions with amidine, electron-rich, and strained dienophiles reveal unique fundamental reactivity patterns (4,6-dialkyl-1,2,3,5-tetrazines > 4,6-diaryl-1,2,3,5-tetrazines for amidines but slower with strained dienophiles), an exclusive C4/N1 mode of cycloaddition, and dominant alkyl versus aryl control on regioselectivity. An orthogonal reactivity of 1,2,3,5-tetrazines and the well-known isomeric 1,2,4,5-tetrazines is characterized, and detailed kinetic and mechanistic investigations of the remarkably fast reaction of 1,2,3,5-tetrazines with amidines, especially 4,6-dialkyl-1,2,3,5-tetrazines, established the mechanistic origins underlying the reactivity patterns and key features needed for future applications.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
45
|
Tanimoto H. Development of Synthetic Chemistry on Organic Azides by Breaking their 1,3-Dipolar Characteristics. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Hoff LV, Hauser JM, Gademann K. Cross-Coupling Reactions of 5-Bromo-1,2,3-triazine. J Org Chem 2022; 87:15684-15692. [PMID: 36305330 DOI: 10.1021/acs.joc.2c02082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An efficient Pd catalyzed cross-coupling method for 5-bromo-1,2,3-triazine is described. Optimization of the reaction conditions allowed for the preparation of a representative scope of (hetero)aryl-1,2,3-triazines (20 examples, up to 97% yield). The reaction scope was evaluated using a data science enabled boronic acid chemical space to assess the generality of the method. Additionally, diversification of the resulting products enabled the preparation of pyrimidines and pyridines in yields of up to 80% and in only two steps.
Collapse
Affiliation(s)
- Lukas V Hoff
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Joana M Hauser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
47
|
Hooper AR, Oštrek A, Milian‐Lopez A, Sarlah D. Bioinspired Total Synthesis of Pyritide A2 through Pyridine Ring Synthesis. Angew Chem Int Ed Engl 2022; 61:e202212299. [PMID: 36123301 PMCID: PMC9827874 DOI: 10.1002/anie.202212299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 01/12/2023]
Abstract
Pyritides belong to the ribosomally synthesized and post-translationally modified peptide class of natural products that were recently genome-predicted and are structurally defined by unique pyridine-containing macrocycles. Inspired by their biosynthesis, proceeding through peptide modification and cycloaddition to form the heterocyclic core, we report the chemical synthesis of pyritide A2 involving pyridine ring synthesis from an amino acid precursor through aza-Diels-Alder reaction. This strategy permitted the preparation of the decorated pyridine core with an appended amino acid residue in two steps from a commercially available arginine derivative and secured pyritide A2 in ten steps. Moreover, the synthetic logic enables efficient preparation of different pyridine subunits associated with pyritides, allowing rapid and convergent access to this new class of natural products and analogues thereof.
Collapse
Affiliation(s)
- Annie R. Hooper
- Department of Chemistry and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - Andraž Oštrek
- Department of Chemistry and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Department of ChemistryUniversity of PaviaViale Taramelli 1227100PaviaItaly
| | - Ana Milian‐Lopez
- Department of Chemistry and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - David Sarlah
- Department of Chemistry and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Department of ChemistryUniversity of PaviaViale Taramelli 1227100PaviaItaly
| |
Collapse
|
48
|
Bokor É, Ferenczi A, Hashimov M, Juhász-Tóth É, Götz Z, Zaki AI, Somsák L. First Synthesis of 3-Glycopyranosyl-1,2,4-Triazines and Some Cycloadditions Thereof. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227801. [PMID: 36431902 PMCID: PMC9692545 DOI: 10.3390/molecules27227801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
C-glycopyranosyl derivatives of six-membered heterocycles are scarcely represented in the chemical literature and the title 3-glycopyranosyl-1,2,4-triazines are completely unknown. In this paper, the first synthesis of this compound class is accomplished by the cyclocondensation of C-glycosyl formamidrazones and 1,2-dicarbonyl derivatives. In addition, the synthesis of C-glycopyranosyl 1,2,4-triazin-5(4H)-ones was also carried out by the transformation of the above formamidrazones with α-keto-carboxylic esters. Inverse electron demand Diels-Alder reactions of 3-glycopyranosyl-1,2,4-triazines with a bicyclononyne derivative yielded the corresponding annulated 2-glycopyranosyl pyridines.
Collapse
Affiliation(s)
- Éva Bokor
- Correspondence: (É.B.); (L.S.); Tel.: +36-525-129-00 (ext. 22474) (É.B.); +36-525-129-00 (ext. 22348) (L.S.)
| | | | | | | | | | | | - László Somsák
- Correspondence: (É.B.); (L.S.); Tel.: +36-525-129-00 (ext. 22474) (É.B.); +36-525-129-00 (ext. 22348) (L.S.)
| |
Collapse
|
49
|
Zhang Y, Zeng JL, Chen Z, Wang R. Base-Promoted (3 + 2) Cycloaddition of Trifluoroacetohydrazonoyl Chlorides with Imidates En Route to Trifluoromethyl-1,2,4-Triazoles. J Org Chem 2022; 87:14514-14522. [PMID: 36264227 DOI: 10.1021/acs.joc.2c01926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A base-mediated (3 + 2) cycloaddition of trifluoroacetohydrazonoyl chlorides with imidates for the construction of 3-trifluoromethyl-1,2,4-triazoles has been described. This reaction is characterized by readily starting materials, simple reaction conditions, good yields, a broad substrate scope, and excellent regioselectivity. The utility of this protocol has been validated by the synthesis of a drug-like molecule.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jun-Liang Zeng
- School of Chemistry and Chemical Engineering, Xuchang University, Henan 461000, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ren Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
50
|
Zhu Z, Boger DL. Acyclic and Heterocyclic Azadiene Diels-Alder Reactions Promoted by Perfluoroalcohol Solvent Hydrogen Bonding: Comprehensive Examination of Scope. J Org Chem 2022; 87:14657-14672. [PMID: 36239452 PMCID: PMC9637783 DOI: 10.1021/acs.joc.2c02000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, the first use of perfluoroalcohol H-bonding in accelerating acyclic azadiene inverse electron demand cycloaddition reactions is described, and its use in the promotion of heterocyclic azadiene cycloaddition reactions is generalized through examination of a complete range of azadienes. The scope of dienophiles was comprehensively explored; relative reactivity trends and solvent compatibilities were established with respect to the dienophile as well as azadiene; H-bonding solvent effects that lead to rate enhancements, yield improvements, and their impact on regioselectivity and mode of cycloaddition are defined; new viable diene/dienophile reaction partners in the cycloaddition reactions are disclosed; and key comparison rate constants are reported. The perfluoroalcohol effectiveness at accelerating an inverse electron demand Diels-Alder cycloaddition is directly correlated with its H-bond potential (pKa). Not only are the reactions of electron-rich dienophiles accelerated but those of strained and even unactivated alkenes and alkynes are improved, including representative bioorthogonal click reactions.
Collapse
Affiliation(s)
- Zixi Zhu
- Department of Chemistry and the Skaggs Institute for Chemical-Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute for Chemical-Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|