1
|
Durden AS, Schlegel HB. Evaluation of Diffuse Basis Sets for Simulations of Strong Field Ionization Using Time-Dependent Configuration Interaction with a Complex Absorbing Potential. J Phys Chem A 2025; 129:3353-3367. [PMID: 40170443 DOI: 10.1021/acs.jpca.5c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
For simulations of strong field ionization using time-dependent configuration with a complex absorbing potential (TDCI-CAP), standard molecular basis set must be augmented by several sets of diffuse functions to support the wave function as it is distorted by the strong field and interacts with the absorbing potential. Various sets of diffuse functions used in previous studies have been extended and evaluated for their ability to model the angular dependence of the strong field ionization. These sets include diffuse s, p, d, and f Gaussian functions with selected even-tempered exponents of the form 0.0001 × 2n placed on each atom. For single-centered test cases, the largest contribution to the ionization rate is from functions with a maximum in the radial distribution close to the onset of the complex absorbing potential, while functions with smaller exponents also contributed to the rate. For molecules, diffuse functions on adjacent centers overlap strongly, leading to linear dependencies. The transformation to remove these linear dependencies mixes functions of different angular momenta making it difficult to assess the importance of individual s, p, d, and f functions in simulating the rate for molecules. As an alternative, a hierarchy of diffuse basis sets was constructed by starting with a small set and adding one or two functions at a time. These basis sets were evaluated for their ability to reproduce the rate and shape of the angular dependence of strong field ionization. When combined with the aug-cc-pVTZ molecular basis set and an absorbing potential starting at 3.5 times the van der Waals radius for each atom, the most diffuse s, p, d, and f functions need to have exponents of 0.0032, 0.0032, 0.0064, and 0.0064, respectively, or smaller. Strong field ionization from electronegative atoms such as oxygen required additional f functions with tight exponents of 0.0512 and 0.1024. Diffuse basis sets that perform well for the angular dependence of the ionization rate with a static field are equally effective for strong field ionization with a linearly polarized 7-cycle 800 nm pulse.
Collapse
Affiliation(s)
- Andrew S Durden
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Lucchini M, Cardosa-Gutierrez M, Murari M, Frassetto F, Poletto L, Nisoli M, Remacle F. Isotope Effect on the Few-Femtosecond Relaxation Dynamics of the Ethylene Cation. J Phys Chem A 2025; 129:3063-3070. [PMID: 40135510 DOI: 10.1021/acs.jpca.5c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Few-femtosecond extreme-ultraviolet (EUV) pulses with tunable energy are employed to initiate the Jahn-Teller structural rearrangement in the ethylene cation. We report on a combined experimental and theoretical investigation of an unusual isotope effect on the low-energy competing H/D-loss and H2/D2-loss channels observed in the ultrafast dynamics induced by an EUV-pump pulse and probed by an infrared (IR) pulse. The relative production yields of C2D4+, C2D3+, and C2D2+ exhibit pronounced oscillations with a period of ∼50 fs as a function of the pump-probe delay, while the oscillatory patterns are less pronounced for C2H4+. By using surface hopping to model the nonadiabatic dynamics in the four lowest electronic states of the cation, we show that the enhanced oscillations in deuterated fragment yields arise from a synergy between the isotope effects on the wave packet relaxation through the network of conical intersections and on the vibrational frequencies of the cation.
Collapse
Affiliation(s)
- Matteo Lucchini
- Department of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
| | | | - Mario Murari
- Department of Physics, Politecnico di Milano, 20133 Milano, Italy
| | - Fabio Frassetto
- Institute for Photonics and Nanotechnologies, IFN-CNR, via Trasea 7, 35131 Padova, Italy
| | - Luca Poletto
- Institute for Photonics and Nanotechnologies, IFN-CNR, via Trasea 7, 35131 Padova, Italy
| | - Mauro Nisoli
- Department of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
| | - Francoise Remacle
- Theoretical Physical Chemistry, UR MOLSYS, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
3
|
Sadeghifaraz A, Irani E. Generation of isolated attosecond pulses in CdS semiconductor using polarization gating technique and tailored two-color pulse system. Sci Rep 2025; 15:7586. [PMID: 40038337 DOI: 10.1038/s41598-025-88696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
This research uses a two-color pulse system and polarization gating technique to generate single attosecond pulses from femtosecond laser interaction with cadmium sulfide semiconductor. The rotating elliptical polarization two-color pulse system is designed to produce attosecond pulses up to 420 as. Also, the intensity of the single attosecond pulse can be improved by using a two-color-polarizing gate technique. In this presented modifications, the isolated attosecond pulse with greater intensity and a shorter time width of about 400 as is generated. Generation of such an intense isolated attosecond pulse is a great achievement that helps for measuring the ultrafast phenomena.
Collapse
Affiliation(s)
- Amin Sadeghifaraz
- Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Elnaz Irani
- Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
4
|
Liu X, Li M, Wan Y. Microscopic time-resolved spectroscopy of organic crystals at the nanometer and micrometer scale. Phys Chem Chem Phys 2025; 27:4078-4091. [PMID: 39907020 DOI: 10.1039/d4cp04875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
How can the photoexcitation dynamics processes of solid substances be measured at the microscopic level? This is a popular topic in many fields of basic and applied sciences. Organic crystals are one of many materials, and understanding their intrinsic properties at the microscopic level is the focus of this discussion. Microscopic time-resolved spectroscopy can study the morphology-dependent photoexcitation dynamics and energy spatial transport processes in organic crystals. In this tutorial review, we introduce the principles and methods of microscopic time-resolved photoluminescence and microscopic transient absorption techniques, which are currently or potentially used to study organic crystals at the nanometer and micrometer scale. Meanwhile, the research status of organic crystals investigated via microscopic time-resolved spectroscopy is discussed, with several examples provided. We then compare the advantages and disadvantages of different methods in detail, offering insights into potential improvements for instrument performance.
Collapse
Affiliation(s)
- Xi Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| | - Minjie Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
5
|
Jin W, Bromberger H, He L, Johny M, Vinklárek IS, Długołęcki K, Samartsev A, Calegari F, Trippel S, Küpper J. A versatile and transportable endstation for controlled molecule experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:023305. [PMID: 40008952 DOI: 10.1063/5.0228913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
We report on a new versatile transportable endstation for controlled molecule (eCOMO) experiments providing a combination of molecular beam purification by electrostatic deflection and simultaneous ion and electron detection using velocity-map imaging (VMI). The b-type electrostatic deflector provides spatial dispersion of species based on their effective-dipole-moment-to-mass ratio. This enables selective investigation of molecular rotational quantum states, conformers, and molecular clusters. Furthermore, the double-sided VMI spectrometer equipped with two high-temporal-resolution event-driven Timepix3 cameras provides detection of all generated ions independently of their mass-over-charge ratio and electrons. To demonstrate the potential of this novel apparatus, we present experimental results from our investigation of carbonyl sulfide (OCS) after ionization. In particular, we provide the characterization of the molecular beam, electrostatic deflector, and electron- and ion-VMI spectrometer. The eCOMO endstation delivers a platform for ultrafast dynamics studies using a wide range of light sources from table-top lasers to free-electron-laser and synchrotron-radiation facilities. This makes it suitable for research activities spanning from atomic, molecular, and cluster physics, over energy science and chemistry, to structural biology.
Collapse
Affiliation(s)
- Wuwei Jin
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hubertus Bromberger
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Lanhai He
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Melby Johny
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ivo S Vinklárek
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Karol Długołęcki
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Andrey Samartsev
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Francesca Calegari
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sebastian Trippel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
6
|
Dehghanian M, Sabaeian M, Noorizadeh S. A theoretical prediction for generating isolated attosecond pulse in water window utilizing instantaneous frequency change of two-color driving laser pulse. Sci Rep 2025; 15:4008. [PMID: 39893306 PMCID: PMC11787313 DOI: 10.1038/s41598-025-88665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025] Open
Abstract
This work reports on the theoretical generation of isolated soft-X ray 106 attosecond pulse within the water window spectral region, through interacting a chirped two-color femtosecond laser pulse with a hydrogen atom. To construct this pulse, a chirped 3.5 optical cycle (9.33 fs) laser pulse with a wavelength of 800 nm and an intensity of [Formula: see text] is used as the main field. A 37.32 fs laser pulse with a wavelength of 1600 nm and intensity of [Formula: see text], one-quarter of the main field intensity, is employed as the control field. A tangential hyperbolic function is used to impose chirp on the main field. The study simultaneously utilizes the lowest possible intensity and the highest possible pulse duration for both the main and the control field to reach the water window spectral region in high-order harmonic generation up to the 320th harmonic of the driving field.
Collapse
Affiliation(s)
- Masoumeh Dehghanian
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvāz, Iran
| | - Mohammad Sabaeian
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvāz, Iran.
- Center for Research on Laser and Plasma, Shahid Chamran University of Ahvaz, Ahvāz, Iran.
| | - Siamak Noorizadeh
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvāz, Iran
| |
Collapse
|
7
|
Tran T, Worth GA, Robb MA. Coherent Excitation of the CH Stretching Vibrations in C 2H 4 +: The Role of the Derivative Coupling Studied by the Quantum Ehrenfest Method. J Comput Chem 2025; 46:e70028. [PMID: 39797603 PMCID: PMC11724349 DOI: 10.1002/jcc.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025]
Abstract
We report nonadiabatic dynamics computations on C2H4 + initiated on a coherent superposition of the five lowest cationic states, employing the Quantum Ehrenfest method. In addition to the totally symmetric carbon-carbon double bond stretch and carbon-hydrogen stretches, we see that the three non-totally symmetric modes become stimulated; torsion and three different CH stretching patterns. Thus, a coherent superposition of states, of the type involved in an attochemistry experiment, leads to the stimulation of specific non-totally symmetric motions. The computations were also performed on the specific combination of the A and C states. In each case normal mode 9 (cis-asymmetric H2CCH2 stretch), out of the set of non-totally-symmetric normal modes, dominates. Thus, we can steer the nuclear motion along specific non-totally symmetric normal modes using a defined coherent superposition.
Collapse
Affiliation(s)
- Thierry Tran
- Nantes University, CNRS, CEISAM UMR 6230NantesFrance
| | | | - Michael A. Robb
- Department of ChemistryMolecular Sciences Research Hub, Imperial College LondonLondonUK
| |
Collapse
|
8
|
Zhang J, Chen L. A non-Markovian neural quantum propagator and its application in the simulation of ultrafast nonlinear spectra. Phys Chem Chem Phys 2024; 27:182-189. [PMID: 39629696 DOI: 10.1039/d4cp03736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The accurate solution of dissipative quantum dynamics plays an important role in the simulation of open quantum systems. Here, we propose a machine learning-based universal solver for the hierarchical equations of motion, one of the most widely used approaches which takes into account non-Markovian effects and nonperturbative system-environment interactions in a numerically exact manner. We develop a neural quantum propagator model by utilizing the neural network architecture, which avoids time-consuming iterations and can be used to evolve any initial quantum state for arbitrarily long times. To demonstrate the efficacy of our model, we apply it to the simulation of population dynamics and linear and two-dimensional spectra of the Fenna-Matthews-Olson complex.
Collapse
Affiliation(s)
- Jiaji Zhang
- Zhejiang Laboratory, Hangzhou 311100, China.
| | - Lipeng Chen
- Zhejiang Laboratory, Hangzhou 311100, China.
| |
Collapse
|
9
|
Vismarra F, Fernández-Villoria F, Mocci D, González-Vázquez J, Wu Y, Colaizzi L, Holzmeier F, Delgado J, Santos J, Bañares L, Carlini L, Castrovilli MC, Bolognesi P, Richter R, Avaldi L, Palacios A, Lucchini M, Reduzzi M, Borrego-Varillas R, Martín N, Martín F, Nisoli M. Few-femtosecond electron transfer dynamics in photoionized donor-π-acceptor molecules. Nat Chem 2024; 16:2017-2024. [PMID: 39322782 PMCID: PMC11611723 DOI: 10.1038/s41557-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/30/2024] [Indexed: 09/27/2024]
Abstract
The exposure of molecules to attosecond extreme-ultraviolet (XUV) pulses offers a unique opportunity to study the early stages of coupled electron-nuclear dynamics in which the role played by the different degrees of freedom is beyond standard chemical intuition. We investigate, both experimentally and theoretically, the first steps of charge-transfer processes initiated by prompt ionization in prototype donor-π-acceptor molecules, namely nitroanilines. Time-resolved measurement of this process is performed by combining attosecond XUV-pump/few-femtosecond infrared-probe spectroscopy with advanced many-body quantum chemistry calculations. We show that a concerted nuclear and electronic motion drives electron transfer from the donor group on a sub-10-fs timescale. This is followed by a sub-30-fs relaxation process due to the probing of the continuously spreading nuclear wave packet in the excited electronic states of the molecular cation. These findings shed light on the role played by electron-nuclear coupling in donor-π-acceptor systems in response to photoionization.
Collapse
Affiliation(s)
- Federico Vismarra
- Department of Physics, Politecnico di Milano, Milan, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, Milan, Italy
| | - Francisco Fernández-Villoria
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniele Mocci
- Department of Physics, Politecnico di Milano, Milan, Italy
| | | | - Yingxuan Wu
- Department of Physics, Politecnico di Milano, Milan, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, Milan, Italy
| | | | | | - Jorge Delgado
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Santos
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química Orgánica I, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Bañares
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Carlini
- Istituto di Struttura della Materia-CNR (ISM-CNR), Rome, Italy
| | | | - Paola Bolognesi
- Istituto di Struttura della Materia-CNR (ISM-CNR), Rome, Italy
| | - Robert Richter
- Sincrotrone Trieste, Area Science Park, Basovizza, Trieste, Italy
| | - Lorenzo Avaldi
- Istituto di Struttura della Materia-CNR (ISM-CNR), Rome, Italy
| | - Alicia Palacios
- Departamento de Química, Universidad Autónoma de Madrid, Madrid, Spain
| | - Matteo Lucchini
- Department of Physics, Politecnico di Milano, Milan, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, Milan, Italy
| | | | | | - Nazario Martín
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química Orgánica I, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Martín
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain.
- Departamento de Química, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Mauro Nisoli
- Department of Physics, Politecnico di Milano, Milan, Italy.
- Institute for Photonics and Nanotechnologies, IFN-CNR, Milan, Italy.
| |
Collapse
|
10
|
Marchetta M, Morassut C, Toulouse J, Coccia E, Luppi E. Time-dependent ab initio molecular-orbital decomposition for high-harmonic generation spectroscopy. J Chem Phys 2024; 161:204111. [PMID: 39601288 DOI: 10.1063/5.0235179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
We propose a real-time time-dependent ab initio approach within a configuration-interaction-singles ansatz to decompose the high-harmonic generation (HHG) signal of molecules in terms of individual molecular-orbital (MO) contributions. Calculations have been performed by propagating the time-dependent Schrödinger equation with complex energies, in order to account for ionization of the system, and by using tailored Gaussian basis sets for high-energy and continuum states. We have studied the strong-field electron dynamics and the HHG spectra in aligned CO2 and H2O molecules. Contribution from MOs in the strong-field dynamics depends on the interplay between the MO ionization energy and the coupling between the MO and the laser-pulse symmetries. Such contributions characterize different portions of the HHG spectrum, indicating that the orbital decomposition encodes nontrivial information on the modulation of the strong-field dynamics. Our results correctly reproduce the MO contributions to HHG for CO2 as described in the literature experimental and theoretical data and lead to an original analysis of the role of the highest occupied molecular orbitals HOMO, HOMO-1, and HOMO-2 of H2O according to the polarization direction of the laser pulse.
Collapse
Affiliation(s)
- Marco Marchetta
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste 34127, Italy
| | - Chiara Morassut
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste 34127, Italy
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
| | - Julien Toulouse
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
- Institut Universitaire de France, F-75005 Paris, France
| | - Emanuele Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste 34127, Italy
| | - Eleonora Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
| |
Collapse
|
11
|
Ibele LM, Sangiogo Gil E, Villaseco Arribas E, Agostini F. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Phys Chem Chem Phys 2024; 26:26693-26718. [PMID: 39417703 DOI: 10.1039/d4cp02489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This perspective offers an overview of the applications of the exact factorization of the electron-nuclear wavefunction to the domain of theoretical photochemistry, where the aim is to gain insights into the ultrafast dynamics of molecular systems via simulations of their excited-state dynamics beyond the Born-Oppenheimer approximation. The exact factorization offers an alternative viewpoint to the Born-Huang representation for the interpretation of dynamical processes involving the electronic ground and excited states as well as their coupling through the nuclear motion. Therefore, the formalism has been used to derive algorithms for quantum molecular-dynamics simulations where the nuclear motion is treated using trajectories and the electrons are treated quantum mechanically. These algorithms have the characteristic features of being based on coupled and on auxiliary trajectories, and have shown excellent performance in describing a variety of excited-state processes, as this perspective illustrates. We conclude with a discussion on the authors' point of view on the future of the exact factorization.
Collapse
Affiliation(s)
- Lea Maria Ibele
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| | - Eduarda Sangiogo Gil
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Evaristo Villaseco Arribas
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| |
Collapse
|
12
|
Janoš J, Slavíček P, Curchod BFE. Including Photoexcitation Explicitly in Trajectory-Based Nonadiabatic Dynamics at No Cost. J Phys Chem Lett 2024; 15:10614-10622. [PMID: 39405399 PMCID: PMC11514012 DOI: 10.1021/acs.jpclett.4c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Over the last decades, theoretical photochemistry has produced multiple techniques to simulate the nonadiabatic dynamics of molecules. Surprisingly, much less effort has been devoted to adequately describing the first step of a photochemical or photophysical process: photoexcitation. Here, we propose a formalism to include the effect of a laser pulse in trajectory-based nonadiabatic dynamics at the level of the initial conditions, with no additional cost. The promoted density approach (PDA) decouples the excitation from the nonadiabatic dynamics by defining a new set of initial conditions, which include an excitation time. PDA with surface hopping leads to nonadiabatic dynamics simulations in excellent agreement with quantum dynamics using an explicit laser pulse and highlights the strong impact of a laser pulse on the resulting photodynamics and the limits of the (sudden) vertical excitation. Combining PDA with trajectory-based nonadiabatic methods is possible for any arbitrary-sized molecules using a code provided in this work.
Collapse
Affiliation(s)
- Jiří Janoš
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, Prague 6, 166 28, Czech Republic
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United
Kingdom
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, Prague 6, 166 28, Czech Republic
| | - Basile F. E. Curchod
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United
Kingdom
| |
Collapse
|
13
|
Muchová E, Gopakumar G, Unger I, Öhrwall G, Céolin D, Trinter F, Wilkinson I, Chatzigeorgiou E, Slavíček P, Hergenhahn U, Winter B, Caleman C, Björneholm O. Attosecond formation of charge-transfer-to-solvent states of aqueous ions probed using the core-hole-clock technique. Nat Commun 2024; 15:8903. [PMID: 39406706 PMCID: PMC11480494 DOI: 10.1038/s41467-024-52740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Charge transfer between molecules lies at the heart of many chemical processes. Here, we focus on the ultrafast electron dynamics associated with the formation of charge-transfer-to-solvent (CTTS) states following X-ray absorption in aqueous solutions of Na+, Mg2+, and Al3+ ions. To explore the formation of such states in the aqueous phase, liquid-jet photoemission spectroscopy is employed. Using the core-hole-clock method, based on Auger-Meitner (AM) decay upon 1s excitation or ionization of the respective ions, upper limits are estimated for the metal-atom electron delocalization times to the neighboring water molecules. These delocalization processes represent the first steps in the formation of hydrated electrons, which are determined to take place on a timescale ranging from several hundred attoseconds (as) below the 1s ionization threshold to only 20 as far above the 1s ionization threshold. The decrease in the delocalization times as a function of the photon energy is continuous. This indicates that the excited electrons remain in the vicinity of the studied ions even above the ionization threshold, i.e., metal-ion electronic resonances associated with the CTTS state manifolds are formed. The three studied isoelectronic ions exhibit quantitative differences in their electron energetics and delocalization times, which are linked to the character of the respective excited states.
Collapse
Affiliation(s)
- E Muchová
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic.
| | - G Gopakumar
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - I Unger
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
- Center for Free-Electron Laser Science, DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - G Öhrwall
- MAX IV Laboratory, Lund University, Box 118, SE-22100, Lund, Sweden
| | - D Céolin
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48 91192, Gif-sur-Yvette Cedex, Paris, France
| | - F Trinter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - I Wilkinson
- Institute for Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - E Chatzigeorgiou
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - P Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - U Hergenhahn
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - B Winter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - C Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
- Center for Free-Electron Laser Science, DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - O Björneholm
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
14
|
Lang H, Sato T. Time-dependent orbital-optimized coupled-cluster methods families for fermion-mixtures dynamics. J Chem Phys 2024; 161:114114. [PMID: 39291685 DOI: 10.1063/5.0227236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Five time-dependent orbital optimized coupled-cluster methods, of which four can converge to the time-dependent complete active space self-consistent-field method, are presented for fermion-mixtures with arbitrary fermion kinds and numbers. Truncation schemes maintaining the intragroup orbital rotation invariance, as well as equations of motion of coupled-cluster (CC) amplitudes and orbitals, are derived. Present methods are compact CC-parameterization alternatives to the time-dependent multiconfiguration self-consistent-field method for systems consisting of arbitrarily different kinds and numbers of interacting fermions. Theoretical analysis of applications of present methods to various chemical systems is reported.
Collapse
Affiliation(s)
- Haifeng Lang
- Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeshi Sato
- Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Photon Science Center, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Institute for Photon Science and Laser Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Tang Z, Jarupula R, Yong H. Pushing the limits of ultrafast diffraction: Imaging quantum coherences in isolated molecules. iScience 2024; 27:110705. [PMID: 39262780 PMCID: PMC11388184 DOI: 10.1016/j.isci.2024.110705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Quantum coherence governs the outcome and efficiency of photochemical reactions and ultrafast molecular dynamics. Recent ultrafast gas-phase X-ray scattering and electron diffraction have enabled the observation of femtosecond nuclear dynamics driven by vibrational coherence. However, probing attosecond electron dynamics and coupled electron-nuclear dynamics remains challenging. This article discusses advances in ultrafast X-ray scattering and electron diffraction, highlighting their potential to resolve attosecond charge migration and vibronic coupling at conical intersections. Novel techniques, such as X-ray scattering with orbital angular momentum beams and combined X-ray and electron diffraction, promise to selectively probe coherence contributions and visualize charge migration in real-space. These emerging methods could further our understanding of coherence effects in chemical reactions.
Collapse
Affiliation(s)
- Zilong Tang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ramesh Jarupula
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haiwang Yong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Durden AS, Schlegel HB. Reducing the Cost of TD-CI Simulations of Strong Field Ionization. J Phys Chem A 2024; 128:7440-7450. [PMID: 39177145 DOI: 10.1021/acs.jpca.4c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Strong field ionization of molecules by intense laser pulses can be simulated by time-dependent configuration interaction (TD-CI) with a complex absorbing potential (CAP). Standard molecular basis sets need to be augmented with several sets of diffuse functions for effective interaction with the CAP. This dramatically increases the number of configurations and the cost of the TD-CI simulations as the size of the molecules increases. The cost can be reduced by making use of spin symmetry and by employing an orbital energy cutoff to limit the number of virtual orbitals used to construct the excited configurations. Greater reductions in the number of virtual orbitals can be obtained by examining their interaction with the absorbing potential during simulations and their contributions to the strong field ionization rate. This can be determined from the matrix elements of the absorbing potential and the TD-CI coefficients from test simulations. Compared to a simple 3 hartree cutoff in the orbital energies, these approaches reduce the number of virtual orbitals by 20-35% for neutral molecules and 5-10% for cations. As a result, the cost of simulations is reduced by 35-60% for neutral molecules. The number of virtual orbitals needed can also be estimated by second-order perturbation theory without the need for test simulations. The number of virtual orbitals can be reduced further by adapting orbitals to the laser field using natural orbitals derived from test simulations. This is particularly effective for cations, yielding reductions of more than 20%.
Collapse
Affiliation(s)
- Andrew S Durden
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
17
|
Sun S, Yong H, Chernyak VY, Mukamel S. Self-Heterodyne Diffractive Imaging of Ultrafast Electron Dynamics Monitored by Single-Electron Pulses. PHYSICAL REVIEW LETTERS 2024; 133:093001. [PMID: 39270182 DOI: 10.1103/physrevlett.133.093001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024]
Abstract
The direct imaging of time-evolving molecular charge densities on atomistic scale and at femtosecond resolution has long been an elusive task. In this theoretical study, we propose a self-heterodyne electron diffraction technique based on single electron pulses. The electron is split into two beams, one passes through the sample and its interference with the second beam produces a heterodyne diffraction signal that images the charge density. Application to probing the ultrafast electronic dynamics in Mg-phthalocyanine demonstrates its potential for imaging chemical dynamics.
Collapse
Affiliation(s)
| | | | - Vladimir Y Chernyak
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
- Department of Mathematics, Wayne State University, 656 West Kirby, Detroit, Michigan 48202, USA
| | | |
Collapse
|
18
|
Schrader SE, Kristiansen HE, Pedersen TB, Kvaal S. Time evolution as an optimization problem: The hydrogen atom in strong laser fields in a basis of time-dependent Gaussian wave packets. J Chem Phys 2024; 161:044105. [PMID: 39037132 DOI: 10.1063/5.0213576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Recent advances in attosecond science have made it increasingly important to develop stable, reliable, and accurate algorithms and methods to model the time evolution of atoms and molecules in intense laser fields. A key process in attosecond science is high-harmonic generation, which is challenging to model with fixed Gaussian basis sets, as it produces high-energy electrons, with a resulting rapidly varying and highly oscillatory wave function that extends over dozens of ångström. Recently, Rothe's method, where time evolution is rephrased as an optimization problem, has been applied to the one-dimensional Schrödinger equation. Here, we apply Rothe's method to the hydrogen wave function and demonstrate that thawed, complex-valued Gaussian wave packets with time-dependent width, center, and momentum parameters are able to reproduce spectra obtained from essentially exact grid calculations for high-harmonic generation with only 50-181 Gaussians for field strengths up to 5 × 1014 W/cm2. This paves the way for the inclusion of continuum contributions into real-time, time-dependent electronic-structure theory with Gaussian basis sets for strong fields and eventually accurate simulations of the time evolution of molecules without the Born-Oppenheimer approximation.
Collapse
Affiliation(s)
- Simon Elias Schrader
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Håkon Emil Kristiansen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Thomas Bondo Pedersen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
19
|
Ghosh S, Pandey G, Tiwari AK. Efficient Control of Electron Localization and Probability Modulation with Synthesized Two-Color Intense Laser Pulses. J Phys Chem A 2024. [PMID: 39058686 DOI: 10.1021/acs.jpca.4c03416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
A coupled electron-nuclear dynamical study at attosecond time scale is performed on the HD+ and H2+ molecular ions under the influence of synthesized intense two-color electric fields. We have employed ω - 2ω and also, ω - 3ω two-color fields in the infrared/mid-infrared regime to study the different fragmentation processes originating from the interference of n - (n + i) (i = 1, 2) photon absorption pathways. The branching ratios corresponding to different photofragments are controlled by tuning the relative phase as well as intensity of the two-color pulses, while the effect of the initial nuclear wave function is also studied by taking an individual vibrational eigenstate or a coherent superposition of several eigenstates of HD+ and H2+. By comprehensive analysis, the efficacy of the two different types of synthesized two-color pulses (ω - 2ω and ω - 3ω) are analyzed with respect to one-color intense pulses in terms of controlling the probability modulation and electron localization asymmetry and compared with previous theoretical calculations and experimental findings. Through the detailed investigation, we have addressed which one is the major controlling knob to have better electron localization as well as probability modulation.
Collapse
Affiliation(s)
- Sandip Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal 741246, India
| | - Gaurav Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal 741246, India
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium
| | - Ashwani K Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal 741246, India
| |
Collapse
|
20
|
Rodríguez-Cuenca E, Picón A, Oberli S, Kuleff AI, Vendrell O. Core-Hole Coherent Spectroscopy in Molecules. PHYSICAL REVIEW LETTERS 2024; 132:263202. [PMID: 38996324 DOI: 10.1103/physrevlett.132.263202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/08/2024] [Accepted: 05/20/2024] [Indexed: 07/14/2024]
Abstract
We study the ultrafast dynamics initiated by a coherent superposition of core-excited states of nitrous oxide molecule. Using high-level ab initio methods, we show that the decoherence caused by the electronic decay and the nuclear dynamics is substantially slower than the induced ultrafast quantum beatings, allowing the system to undergo several oscillations before it dephases. We propose a proof-of-concept experiment using the harmonic up-conversion scheme available at x-ray free-electron laser facilities to trace the evolution of the created core-excited-state coherence through a time-resolved x-ray photoelectron spectroscopy.
Collapse
|
21
|
Xu Y, Han L, Jiang W, Zuo Z, Pan S, Fleischer A, Ueda K, Wu J. Attosecond ionic photoionization spectroscopy. OPTICS LETTERS 2024; 49:3412-3415. [PMID: 38875633 DOI: 10.1364/ol.523947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024]
Abstract
Photoionization is one of the most fundamental processes in light-matter interaction. Advanced attosecond photoelectron spectroscopy provides the possibility to characterize the ultrafast photoemission process in an extremely short attosecond time scale. Following scattering symmetry rules, residual ions encode ultrafast photoionization prints at the instant of electron removal forming an alternative electron emission chronoscope. Here, we experimentally illustrate the attosecond ion reconstruction of attosecond beating by interference of two-photon transition (RABBIT)-like interferometry through the development of high-resolution ion momentum detection in atomic photoionization processes. Our ion interferometry presents identical momentum- and time-dependent scattering phase shift, as we observed in photoelectron spectroscopy, and thus demonstrates that ion interferometry can be a possible alternative attosecond approach to resolve the photoionization process, without the electron homogeneity limitation.
Collapse
|
22
|
Wanie V, Bloch E, Månsson EP, Colaizzi L, Ryabchuk S, Saraswathula K, Ordonez AF, Ayuso D, Smirnova O, Trabattoni A, Blanchet V, Ben Amor N, Heitz MC, Mairesse Y, Pons B, Calegari F. Capturing electron-driven chiral dynamics in UV-excited molecules. Nature 2024; 630:109-115. [PMID: 38778116 PMCID: PMC11153151 DOI: 10.1038/s41586-024-07415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/11/2024] [Indexed: 05/25/2024]
Abstract
Chiral molecules, used in applications such as enantioselective photocatalysis1, circularly polarized light detection2 and emission3 and molecular switches4,5, exist in two geometrical configurations that are non-superimposable mirror images of each other. These so-called (R) and (S) enantiomers exhibit different physical and chemical properties when interacting with other chiral entities. Attosecond technology might enable influence over such interactions, given that it can probe and even direct electron motion within molecules on the intrinsic electronic timescale6 and thereby control reactivity7-9. Electron currents in photoexcited chiral molecules have indeed been predicted to enable enantiosensitive molecular orientation10, but electron-driven chiral dynamics in neutral molecules have not yet been demonstrated owing to the lack of ultrashort, non-ionizing and perturbative light pulses. Here we use time-resolved photoelectron circular dichroism (TR-PECD)11-15 with an unprecedented temporal resolution of 2.9 fs to map the coherent electronic motion initiated by ultraviolet (UV) excitation of neutral chiral molecules. We find that electronic beatings between Rydberg states lead to periodic modulations of the chiroptical response on the few-femtosecond timescale, showing a sign inversion in less than 10 fs. Calculations validate this and also confirm that the combination of the photoinduced chiral current with a circularly polarized probe pulse realizes an enantioselective filter of molecular orientations following photoionization. We anticipate that our approach will enable further investigations of ultrafast electron dynamics in chiral systems and reveal a route towards enantiosensitive charge-directed reactivity.
Collapse
Affiliation(s)
- Vincent Wanie
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Etienne Bloch
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, Talence, France
| | - Erik P Månsson
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Lorenzo Colaizzi
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Physics Department, Universität Hamburg, Hamburg, Germany
- Department of Physics, Politecnico di Milano, Milano, Italy
| | - Sergey Ryabchuk
- Physics Department, Universität Hamburg, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
| | - Krishna Saraswathula
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Physics Department, Universität Hamburg, Hamburg, Germany
| | - Andres F Ordonez
- Department of Physics, Imperial College London, London, UK
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - David Ayuso
- Department of Physics, Imperial College London, London, UK
- Max-Born-Institut, Berlin, Germany
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Olga Smirnova
- Max-Born-Institut, Berlin, Germany
- Technische Universität Berlin, Berlin, Germany
| | - Andrea Trabattoni
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Institute of Quantum Optics, Leibniz Universität Hannover, Hannover, Germany
| | - Valérie Blanchet
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, Talence, France
| | - Nadia Ben Amor
- CNRS, UPS, LCPQ (Laboratoire de Chimie et Physique Quantiques), FeRMI, Toulouse, France
| | - Marie-Catherine Heitz
- CNRS, UPS, LCPQ (Laboratoire de Chimie et Physique Quantiques), FeRMI, Toulouse, France
| | - Yann Mairesse
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, Talence, France
| | - Bernard Pons
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, Talence, France.
| | - Francesca Calegari
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Physics Department, Universität Hamburg, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
23
|
Woźniak AP, Adamowicz L, Pedersen TB, Kvaal S. Gaussians for Electronic and Rovibrational Quantum Dynamics. J Phys Chem A 2024; 128:3659-3671. [PMID: 38687971 PMCID: PMC11089519 DOI: 10.1021/acs.jpca.4c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
The assumptions underpinning the adiabatic Born-Oppenheimer (BO) approximation are broken for molecules interacting with attosecond laser pulses, which generate complicated coupled electronic-nuclear wave packets that generally will have components of electronic and dissociation continua as well as bound-state contributions. The conceptually most straightforward way to overcome this challenge is to treat the electronic and nuclear degrees of freedom on equal quantum-mechanical footing by not invoking the BO approximation at all. Explicitly correlated Gaussian (ECG) basis functions have proved successful for non-BO calculations of stationary molecular states and energies, reproducing rovibrational absorption spectra with very high accuracy. In this Article, we present a proof-of-principle study of the ability of fully flexible ECGs (FFECGs) to capture the intricate electronic and rovibrational dynamics generated by short, high-intensity laser pulses. By fitting linear combinations of FFECGs to accurate wave function histories obtained on a large real-space grid for a regularized 2D model of the hydrogen atom and for the 2D Morse potential, we demonstrate that FFECGs provide a very compact description of laser-driven electronic and rovibrational dynamics.
Collapse
Affiliation(s)
| | - Ludwik Adamowicz
- Department
of Chemistry and Biochemistry, University
of Arizona, 1306 E University Blvd, Tucson, Arizona 85721-0041, United States
| | - Thomas Bondo Pedersen
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Simen Kvaal
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
24
|
Cardosa-Gutierrez M, Levine RD, Remacle F. Electronic Coherences Excited by an Ultra Short Pulse Are Robust with Respect to Averaging over Randomly Oriented Molecules as Shown by Singular Value Decomposition. J Phys Chem A 2024; 128:2937-2947. [PMID: 38568803 DOI: 10.1021/acs.jpca.3c07856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We report a methodology for averaging quantum photoexcitation vibronic dynamics over the initial orientations of the molecules with respect to an ultrashort light pulse. We use singular value decomposition of the ensemble density matrix of the excited molecules, which allows the identification of the few dominant principal molecular orientations with respect to the polarization direction of the electric field. The principal orientations provide insights into the specific stereodynamics of the corresponding principal molecular vibronic states. The massive compaction of the vibronic density matrix of the ensemble of randomly oriented pumped molecules enables a most efficient fully quantum mechanical time propagation scheme. Two examples are discussed for the quantum dynamics of the LiH molecule in the manifolds of its electronically excited Σ and Π states. Our results show that electronic and vibrational coherences between excited states of the same symmetry are resilient to averaging over an ensemble of molecular orientations and can be selectively excited at the ensemble level by tuning the pulse parameters.
Collapse
Affiliation(s)
| | - Raphael D Levine
- Fritz Haber Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Francoise Remacle
- Theoretical Physical Chemistry, UR MOLSYS, University of Liege, Liege B-4000, Belgium
- Fritz Haber Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
25
|
Galán MF, Serrano J, Jarque EC, Borrego-Varillas R, Lucchini M, Reduzzi M, Nisoli M, Brahms C, Travers JC, Hernández-García C, San Roman J. Robust Isolated Attosecond Pulse Generation with Self-Compressed Subcycle Drivers from Hollow Capillary Fibers. ACS PHOTONICS 2024; 11:1673-1683. [PMID: 38645995 PMCID: PMC11027177 DOI: 10.1021/acsphotonics.3c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024]
Abstract
High-order harmonic generation (HHG) arising from the nonperturbative interaction of intense light fields with matter constitutes a well-established tabletop source of coherent extreme-ultraviolet and soft X-ray radiation, which is typically emitted as attosecond pulse trains. However, ultrafast applications increasingly demand isolated attosecond pulses (IAPs), which offer great promise for advancing precision control of electron dynamics. Yet, the direct generation of IAPs typically requires the synthesis of near-single-cycle intense driving fields, which is technologically challenging. In this work, we theoretically demonstrate a novel scheme for the straightforward and compact generation of IAPs from multicycle infrared drivers using hollow capillary fibers (HCFs). Starting from a standard, intense multicycle infrared pulse, a light transient is generated by extreme soliton self-compression in a HCF with decreasing pressure and is subsequently used to drive HHG in a gas target. Owing to the subcycle confinement of the HHG process, high-contrast IAPs are continuously emitted almost independently of the carrier-envelope phase (CEP) of the optimally self-compressed drivers. This results in a CEP-robust scheme which is also stable under macroscopic propagation of the high harmonics in a gas target. Our results open the way to a new generation of integrated all-fiber IAP sources, overcoming the efficiency limitations of usual gating techniques for multicycle drivers.
Collapse
Affiliation(s)
- Marina Fernández Galán
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| | - Javier Serrano
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| | - Enrique Conejero Jarque
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| | - Rocío Borrego-Varillas
- Institute
for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Matteo Lucchini
- Institute
for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Maurizio Reduzzi
- Institute
for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Mauro Nisoli
- Institute
for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Christian Brahms
- School
of Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh, EH14 4AS, United
Kingdom
| | - John C. Travers
- School
of Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh, EH14 4AS, United
Kingdom
| | - Carlos Hernández-García
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| | - Julio San Roman
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| |
Collapse
|
26
|
Mukherjee D, Harbola U, Mukamel S. Ionization Pathway Interference in Photoionization Time Delays in Molecules. J Phys Chem Lett 2024; 15:3866-3870. [PMID: 38557109 DOI: 10.1021/acs.jpclett.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The photoionization time-delay in linear conjugated molecules is computed using the Wigner scattering approach. We find that, in general, there are two additive contributions to the ionization time-delays. One originates from interferences between various ionization pathways that belong to different cationic eigenstates, while the other is due to time delays associated with each pathway and originates due to electron-electron correlations in the molecule. The former contribution scales up rapidly with the conjugation length, leading to larger time delays, as observed in recent experiments, while the latter is much less sensitive to the molecular conjugation.
Collapse
Affiliation(s)
- Deep Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Upendra Harbola
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
27
|
Suchan J, Liang F, Durden AS, Levine BG. Prediction challenge: First principles simulation of the ultrafast electron diffraction spectrum of cyclobutanone. J Chem Phys 2024; 160:134310. [PMID: 38573851 DOI: 10.1063/5.0198333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Computer simulation has long been an essential partner of ultrafast experiments, allowing the assignment of microscopic mechanistic detail to low-dimensional spectroscopic data. However, the ability of theory to make a priori predictions of ultrafast experimental results is relatively untested. Herein, as a part of a community challenge, we attempt to predict the signal of an upcoming ultrafast photochemical experiment using state-of-the-art theory in the context of preexisting experimental data. Specifically, we employ ab initio Ehrenfest with collapse to a block mixed quantum-classical simulations to describe the real-time evolution of the electrons and nuclei of cyclobutanone following excitation to the 3s Rydberg state. The gas-phase ultrafast electron diffraction (GUED) signal is simulated for direct comparison to an upcoming experiment at the Stanford Linear Accelerator Laboratory. Following initial ring-opening, dissociation via two distinct channels is observed: the C3 dissociation channel, producing cyclopropane and CO, and the C2 channel, producing CH2CO and C2H4. Direct calculations of the GUED signal indicate how the ring-opened intermediate, the C2 products, and the C3 products can be discriminated in the GUED signal. We also report an a priori analysis of anticipated errors in our predictions: without knowledge of the experimental result, which features of the spectrum do we feel confident we have predicted correctly, and which might we have wrong?
Collapse
Affiliation(s)
- Jiří Suchan
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| | - Fangchun Liang
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Andrew S Durden
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Benjamin G Levine
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
28
|
Guo Z, Zhang Z, Deng Y, Wang J, Ye D, Liu J, Liu Y. Probing H_{2} Double Ionization with Bicircular Laser Fields. PHYSICAL REVIEW LETTERS 2024; 132:143201. [PMID: 38640361 DOI: 10.1103/physrevlett.132.143201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/30/2023] [Accepted: 03/14/2024] [Indexed: 04/21/2024]
Abstract
We present a kinematically complete study on strong-field double ionization of H_{2} molecules in two-color bicircular laser fields. The releasing times of electrons and protons are recorded with the double-hand attoclock. We observe the relative emission angles of two electrons oscillate with the kinetic energy release of protons, indicating the internal concerted four-body fragmentation. Using a three-dimensional molecular semiclassical ensemble model, we have disentangled the attosecond correlated electron emission in H_{2} double ionization. This work reveals the strong electron-nuclear coupling in the molecular bond breaking and may open up a new approach to experimentally accessing the intramolecular electron and bond dynamics with bicircular fields.
Collapse
Affiliation(s)
- Zhenning Guo
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zhihe Zhang
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
| | - Yongkai Deng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Jiguo Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Difa Ye
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Jie Liu
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
- Graduate School, China Academy of Engineering Physics, Beijing 100193, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
29
|
Tran T, Ferté A, Vacher M. Simulating Attochemistry: Which Dynamics Method to Use? J Phys Chem Lett 2024; 15:3646-3652. [PMID: 38530933 PMCID: PMC11000647 DOI: 10.1021/acs.jpclett.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Attochemistry aims to exploit the properties of coherent electronic wavepackets excited via attosecond pulses to control the formation of photoproducts. Such molecular processes can, in principle, be simulated with various nonadiabatic dynamics methods, yet the impact of the approximations underlying the methods is rarely assessed. The performances of widely used mixed quantum-classical approaches, Tully surface hopping, and classical Ehrenfest methods are evaluated against the high-accuracy DD-vMCG quantum dynamics. This comparison is conducted for the valence ionization of fluorobenzene. Analyzing the nuclear motion induced in the branching space of the nearby conical intersection, the results show that the mixed quantum-classical methods reproduce quantitatively the average motion of a quantum wavepacket when initiated on a single electronic state. However, they fail to properly capture the nuclear motion induced by an electronic wavepacket along the derivative coupling, the latter originating from the quantum electronic coherence property, key to attochemistry.
Collapse
Affiliation(s)
- Thierry Tran
- Nantes Université, CNRS, CEISAM
UMR 6230, F-44000 Nantes, France
| | - Anthony Ferté
- Nantes Université, CNRS, CEISAM
UMR 6230, F-44000 Nantes, France
| | - Morgane Vacher
- Nantes Université, CNRS, CEISAM
UMR 6230, F-44000 Nantes, France
| |
Collapse
|
30
|
Morassut C, Ravindran A, Ciavardini A, Luppi E, De Ninno G, Coccia E. High-Harmonic Generation Spectroscopy of Gas-Phase Bromoform. J Phys Chem A 2024; 128:2015-2024. [PMID: 38469750 DOI: 10.1021/acs.jpca.3c07699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
High-Harmonic Generation (HHG) spectra of randomly aligned bromoform (CHBr3) molecules have been experimentally measured and theoretically simulated at various laser pulse intensities. From the experiments, we obtained a significant number of harmonics that goes beyond the cutoff limit predicted by the three-step model (3SM) with ionization from HOMO. To interpret the experiment, we resorted to real-time time-dependent configuration interaction with single excitations. We found that electronic bound states provide an appreciable contribution to the harmonics. More in detail, we analyzed the electron dynamics by decomposing the HHG signal in terms of single molecular-orbital contributions, to explain the appearance of harmonics around 20-30 eV beyond the expected cutoff due to HOMO. HHG spectra can be therefore explained by considering the contribution at high energy of HOMO-6 and HOMO-9, thus indicating a complex multiple-orbital strong-field dynamics. However, even though the presence of the bromoform cation should be not enough to produce such a signal, we could not exclude a priori that the origin of harmonics in the H29-H45 to be due to the cation, which has more energetic ionization channels.
Collapse
Affiliation(s)
- Chiara Morassut
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Arun Ravindran
- Laboratory of Quantum Optics, University of Nova Gorica, Si-5270 Ajdovščina, Slovenija
| | - Alessandra Ciavardini
- Laboratory of Quantum Optics, University of Nova Gorica, Si-5270 Ajdovščina, Slovenija
| | - Eleonora Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
| | - Giovanni De Ninno
- Laboratory of Quantum Optics, University of Nova Gorica, Si-5270 Ajdovščina, Slovenija
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14-km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Emanuele Coccia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
31
|
Fransén L, Tran T, Nandi S, Vacher M. Dissociation and Isomerization Following Ionization of Ethylene: Insights from Nonadiabatic Dynamics Simulations. J Phys Chem A 2024; 128:1457-1465. [PMID: 38358308 PMCID: PMC10911106 DOI: 10.1021/acs.jpca.3c06512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Photoionized and electronically excited ethylene C2H4+ can undergo H-loss, H2-loss, and ethylene-ethylidene isomerization, where the latter entails a hydrogen migration. Recent pioneering experiments with few-femtosecond extreme ultraviolet pulses and complementary theoretical studies have shed light on the photodynamics of this prototypical organic cation. However, no theoretical investigation based on dynamics simulations reported to date has described the mechanisms and time scales of dissociation and isomerization. Herein, we simulate the coupled electron-nuclear dynamics of ethylene following vertical ionization and electronic excitation to its four lowest-lying cationic states. The electronic structure is treated at the CASSCF level, with an active space large enough to describe bond breaking and formation. The simulations indicate that dissociation and isomerization take place mainly on the cationic ground state and allow the probing of previous hypotheses concerning the correlation between the photochemical outcome and the traversed conical intersections. The results, moreover, support the long-standing view that H2-loss may occur from the ethylidene form. However, the ethylene-ethylidene isomerization time predicted by the simulations is considerably longer than those previously inferred from indirect experimental measurements.
Collapse
Affiliation(s)
- Lina Fransén
- Nantes
Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Thierry Tran
- Nantes
Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Saikat Nandi
- Université
de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, F-69622 Villeurbanne, France
| | - Morgane Vacher
- Nantes
Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
32
|
Li Y, He F, Sato T, Ishikawa KL. Implementation of the Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Diatomic Molecules. J Phys Chem A 2024; 128:1523-1532. [PMID: 38373288 DOI: 10.1021/acs.jpca.3c06799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
We present a computational approach that implements the time-dependent complete-active-space self-consistent-field method, as introduced in [Phys. Rev. A 88, 023402 (2013)]. Our implementation addresses the challenge of diatomic molecules subjected to an intense laser pulse by considering the full dimensionality of the problem using prolate spheroidal coordinates. The method incorporates the gauge-invariant frozen-core approximation, boosts the evaluation of the electron-electron interaction term using finite-element discrete-variable representation with Neumann expansion, and utilizes an exponential time differencing scheme tailored for the stable propagation of the stiff nonlinear orbital functions. We have successfully applied this methodology to study high-harmonic generation in diatomic molecules such as H2, LiH, and N2, shedding light on the impact of electron correlations in these systems.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Feng He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| | - Takeshi Sato
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Photon Science Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Institute for Photon Science and Laser Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenichi L Ishikawa
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Photon Science Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Institute for Photon Science and Laser Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Kuraoka T, Goto S, Kanno M, Díaz-Tendero S, Reino-González J, Trinter F, Pier A, Sommerlad L, Melzer N, McGinnis OD, Kruse J, Wenzel T, Jahnke T, Xue H, Kishimoto N, Yoshikawa K, Tamura Y, Ota F, Hatada K, Ueda K, Martín F. Tracing Photoinduced Hydrogen Migration in Alcohol Dications from Time-Resolved Molecular-Frame Photoelectron Angular Distributions. J Phys Chem A 2024; 128:1241-1249. [PMID: 38324399 PMCID: PMC10895665 DOI: 10.1021/acs.jpca.3c07640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
The recent implementation of attosecond and few-femtosecond X-ray pump/X-ray probe schemes in large-scale free-electron laser facilities has opened the way to visualize fast nuclear dynamics in molecules with unprecedented temporal and spatial resolution. Here, we present the results of theoretical calculations showing how polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) can be used to visualize the dynamics of hydrogen migration in methanol, ethanol, propanol, and isopropyl alcohol dications generated by X-ray irradiation of the corresponding neutral species. We show that changes in the PA-MFPADs with the pump-probe delay as a result of intramolecular photoelectron diffraction carry information on the dynamics of hydrogen migration in real space. Although visualization of this dynamics is more straightforward in the smaller systems, methanol and ethanol, one can still recognize the signature of that motion in propanol and isopropyl alcohol and assign a tentative path to it. A possible pathway for a corresponding experiment requires an angularly resolved detection of photoelectrons in coincidence with molecular fragment ions used to define a molecular frame of reference. Such studies have become, in principle, possible since the first XFELs with sufficiently high repetition rates have emerged. To further support our findings, we provide experimental evidence of H migration in ethanol-OD from ion-ion coincidence measurements performed with synchrotron radiation.
Collapse
Affiliation(s)
- T. Kuraoka
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - S. Goto
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - M. Kanno
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - S. Díaz-Tendero
- Departamento
de Química, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - J. Reino-González
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, Madrid 28049, Spain
| | - F. Trinter
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - A. Pier
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - L. Sommerlad
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - N. Melzer
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - O. D. McGinnis
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - J. Kruse
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - T. Wenzel
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - T. Jahnke
- Max-Planck-Institut
für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
- European
XFEL, Holzkoppel
4, Schenefeld 22869, Germany
| | - H. Xue
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - N. Kishimoto
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - K. Yoshikawa
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Y. Tamura
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - F. Ota
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Hatada
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Ueda
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - F. Martín
- Departamento
de Química, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
34
|
Biró L, Csehi A. Attosecond Probing of Nuclear Vibrations in the D 2+ and HeH + Molecular Ions. J Phys Chem A 2024; 128:858-867. [PMID: 38277484 DOI: 10.1021/acs.jpca.3c07031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
We study the ultrafast photodissociation of small diatomic molecules using attosecond laser pulses of moderate intensity in the (extreme) ultraviolet regime. The simultaneous application of subfemtosecond laser pulses with different photon energies─resonant in the region of the molecular motion─allows one to monitor the vibrational dynamics of simple diatomics, like the D2+ and HeH+ molecular ions. In our real-time wave packet simulations, the nuclear dynamics is initiated either by sudden ionization (D2+) or by explicit pump pulses (HeH+) via distortion of the potential energy of the molecule. The application of time-delayed attosecond pulses leads to the breakup of the molecules, and the information on the underlying bound-state dynamics is imprinted in the kinetic energy release (KER) spectra of the outgoing fragments. We show that the KER-delay spectrograms generated in our ultrafast pump-probe schemes are able to reconstruct the most important features of the molecular motion within a given electronic state, such as the time period or amplitude of oscillations, interference patterns, or the revival and splitting of the nuclear wave packet. The impact of probe pulse duration, which is key to the applicability of the presented mapping scheme, is investigated in detail.
Collapse
Affiliation(s)
- László Biró
- Department of Theoretical Physics, Faculty of Science and Technology, University of Debrecen, H-4002 Debrecen, P.O. Box 400, Hungary
| | - András Csehi
- Department of Theoretical Physics, Faculty of Science and Technology, University of Debrecen, H-4002 Debrecen, P.O. Box 400, Hungary
| |
Collapse
|
35
|
Villaseco Arribas E, Maitra NT, Agostini F. Nonadiabatic dynamics with classical trajectories: The problem of an initial coherent superposition of electronic states. J Chem Phys 2024; 160:054102. [PMID: 38310471 DOI: 10.1063/5.0186984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 02/05/2024] Open
Abstract
Advances in coherent light sources and development of pump-probe techniques in recent decades have opened the way to study electronic motion in its natural time scale. When an ultrashort laser pulse interacts with a molecular target, a coherent superposition of electronic states is created and the triggered electron dynamics is coupled to the nuclear motion. A natural and computationally efficient choice to simulate this correlated dynamics is a trajectory-based method where the quantum-mechanical electronic evolution is coupled to a classical-like nuclear dynamics. These methods must approximate the initial correlated electron-nuclear state by associating an initial electronic wavefunction to each classical trajectory in the ensemble. Different possibilities exist that reproduce the initial populations of the exact molecular wavefunction when represented in a basis. We show that different choices yield different dynamics and explore the effect of this choice in Ehrenfest, surface hopping, and exact-factorization-based coupled-trajectory schemes in a one-dimensional two-electronic-state model system that can be solved numerically exactly. This work aims to clarify the problems that standard trajectory-based techniques might have when a coherent superposition of electronic states is created to initialize the dynamics, to discuss what properties and observables are affected by different choices of electronic initial conditions and to point out the importance of quantum-momentum-induced electronic transitions in coupled-trajectory schemes.
Collapse
Affiliation(s)
- Evaristo Villaseco Arribas
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| |
Collapse
|
36
|
Gelfand N, Komarova K, Remacle F, Levine RD. Nonadiabatic quantum dynamics explores non-monotonic photodissociation branching of N 2 into the N( 4S) + N( 2D) and N( 4S) + N( 2P) product channels. Phys Chem Chem Phys 2024; 26:3274-3284. [PMID: 38197167 DOI: 10.1039/d3cp04854c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Vacuum ultraviolet (VUV) photodissociation of N2 molecules is a source of reactive N atoms in the interstellar medium. In the energy range of VUV optical excitation of N2, the N-N triple bond cleavage leads to three types of atoms: ground-state N(4S) and excited-state N(2P) and N(2D). The latter is the highest reactive and it is believed to be the primary participant in reactions with hydrocarbons in Titan's atmosphere. Experimental studies have observed a non-monotonic energy dependence and non-statistical character of the photodissociation of N2. This implies different dissociation pathways and final atomic products for different wavelength regions in the sunlight spectrum. We here apply ab initio quantum chemical and nonadiabatic quantum dynamical techniques to follow the path of an electronic state from the excitation of a particular singlet 1Σ+u and 1Πu vibronic level of N2 to its dissociation into different atomic products. We simulate dynamics for two isotopomers of the nitrogen molecule, 14N2 and 14N15N for which experimental data on the branching are available. Our computations capture the non-monotonic energy dependence of the photodissociation branching ratios in the energy range 108 000-116 000 cm-1. Tracing the quantum dynamics in a bunch of electronic states enables us to identify the key components that determine the efficacy of singlet to triplet population transfer and therefore predissociation lifetimes and branching ratios for different energy regions.
Collapse
Affiliation(s)
- Natalia Gelfand
- The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ksenia Komarova
- The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Francoise Remacle
- The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Theoretical Physical Chemistry, UR MolSys B6c, University of Liège, B4000 Liège, Belgium
| | - R D Levine
- The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
37
|
Hamer KA, Folorunso AS, Lopata K, Schafer KJ, Gaarde MB, Mauger F. Tracking Charge Migration with Frequency-Matched Strobo-Spectroscopy. J Phys Chem A 2024; 128:20-27. [PMID: 38165105 PMCID: PMC10788909 DOI: 10.1021/acs.jpca.3c04234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
We present frequency-matched strobo-spectroscopy (FMSS) of charge migration (CM) in bromobutadiyne, simulated with time-dependent density functional theory. CM + FMSS is a pump-probe scheme that uses a frequency-matched high harmonic generation (HHG)-driving laser as an independent probe step, following the creation of a localized hole on the bromine atom that induces CM dynamics. We show that the delay-dependent harmonic yield tracks the phase of the CM dynamics through its sensitivity to the amount of electron density on the bromine end of the molecule. FMSS takes advantage of the intrinsic attosecond time resolution of the HHG process in which different harmonics are emitted at different times and thus probe different locations of the electron hole. Finally, we show that the CM-induced modulation of the HHG signal is dominated by the recombination step of the HHG process, with a negligible contribution from the ionization step.
Collapse
Affiliation(s)
- Kyle A. Hamer
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Aderonke S. Folorunso
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kenneth Lopata
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Center
for Computation and Technology, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| | - Kenneth J. Schafer
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Mette B. Gaarde
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - François Mauger
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
38
|
Pranjal P, González-Vázquez J, Bello RY, Martín F. Resonant Photoionization of CO 2 up to the Fourth Ionization Threshold. J Phys Chem A 2024; 128:182-190. [PMID: 38118433 PMCID: PMC10788902 DOI: 10.1021/acs.jpca.3c06947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
We present a comprehensive theoretical study of valence-shell photoionization of the CO2 molecule by using the XCHEM methodology. This method makes use of a fully correlated molecular electronic continuum at a level comparable to that provided by state-of-the-art quantum chemistry packages in bound-state calculations. The calculated total and angularly resolved photoionization cross sections are presented and discussed, with particular emphasis on the series of autoionizing resonances that appear between the first and the fourth ionization thresholds. Ten series of Rydberg autoionizing states are identified, including some not previously reported in the literature, and their energy positions and widths are provided. This is relevant in the context of ongoing experimental and theoretical efforts aimed at observing in real-time (attosecond time scale) the autoionization dynamics in molecules.
Collapse
Affiliation(s)
- Prateek Pranjal
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia),
Cantoblanco, 28049 Madrid, Spain
| | - Jesús González-Vázquez
- Departamento
de Química, Módulo 13, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Roger Y. Bello
- Departamento
de Química Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia),
Cantoblanco, 28049 Madrid, Spain
- Departamento
de Química, Módulo 13, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
39
|
Belles E, Rabilloud F, Kuleff AI, Despré V. Size Effect in Correlation-Driven Charge Migration in Correlation Bands of Alkyne Chains. J Phys Chem A 2024; 128:163-169. [PMID: 38150589 DOI: 10.1021/acs.jpca.3c06776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Correlation-driven charge migration initiated by inner-valence ionization leading to the population of the correlation bands of alkyne chains containing between 4 and 12 carbon atoms is explored through ab initio simulations. Scaling laws are observed, both for the time scale of the charge migration and for the slope of the density of states of the correlation bands. These can be used for predicting the relaxation time scale in much larger systems from the same molecular family and for finding promising candidates for the development of an attochemistry scheme taking advantages of the specificity of the dynamics in the correlation bands of molecules.
Collapse
Affiliation(s)
- Enguerran Belles
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Villeurbanne F-69622, France
| | - Franck Rabilloud
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Villeurbanne F-69622, France
| | - Alexander I Kuleff
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| | - Victor Despré
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Villeurbanne F-69622, France
| |
Collapse
|
40
|
Ofstad BS, Wibowo-Teale M, Kristiansen HE, Aurbakken E, Kitsaras MP, Schøyen ØS, Hauge E, Irons TJP, Kvaal S, Stopkowicz S, Wibowo-Teale AM, Pedersen TB. Magnetic optical rotation from real-time simulations in finite magnetic fields. J Chem Phys 2023; 159:204109. [PMID: 38018753 DOI: 10.1063/5.0171927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
We present a numerical approach to magnetic optical rotation based on real-time time-dependent electronic-structure theory. Not relying on perturbation expansions in the magnetic field strength, the formulation allows us to test the range of validity of the linear relation between the rotation angle per unit path length and the magnetic field strength that was established empirically by Verdet 160 years ago. Results obtained from time-dependent coupled-cluster and time-dependent current density-functional theory are presented for the closed-shell molecules H2, HF, and CO in magnetic fields up to 55 kT at standard temperature and pressure conditions. We find that Verdet's linearity remains valid up to roughly 10-20 kT, above which significant deviations from linearity are observed. Among the three current density-functional approximations tested in this work, the current-dependent Tao-Perdew-Staroverov-Scuseria hybrid functional performs the best in comparison with time-dependent coupled-cluster singles and doubles results for the magnetic optical rotation.
Collapse
Affiliation(s)
- Benedicte Sverdrup Ofstad
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | - Meilani Wibowo-Teale
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Håkon Emil Kristiansen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | - Einar Aurbakken
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | - Marios Petros Kitsaras
- Physical and Theoretical Chemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany
| | | | - Eirill Hauge
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, 0164 Oslo, Norway
| | - Tom J P Irons
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | - Stella Stopkowicz
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
- Physical and Theoretical Chemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany
| | - Andrew M Wibowo-Teale
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Thomas Bondo Pedersen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Bäuml L, Rott F, Schnappinger T, de Vivie-Riedle R. Following the Nonadiabatic Ultrafast Dynamics of Uracil via Simulated X-ray Absorption Spectra. J Phys Chem A 2023; 127:9787-9796. [PMID: 37955656 DOI: 10.1021/acs.jpca.3c06509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The nucleobase uracil exhibits high photostability due to ultrafast relaxation processes mediated by conical intersections (CoIns), where the interplay between nuclear and electron dynamics becomes crucial. In our previous study, we observed seemingly long-lived traces of electronic coherence for the relaxation process through the S2/S1 CoIn by applying our ansatz for coupled nuclear and electron dynamics in molecules (NEMol). In this work, we theoretically investigate how time-dependent transient X-ray absorption spectroscopy can be used to observe this ultrafast dynamics. Therefore, we calculated X-ray absorption spectra (XAS) for the oxygen K-edge, using a multireference protocol in combination with NEMol dynamics. Thus, we have access to both the transient XAS based on the nuclear wavepacket dynamics and the modulation of the signals caused by the electronic coherence induced by the excitation process and the presence of a CoIn seam. In both cases, we were able to qualitatively predict its influence on the resulting XAS.
Collapse
Affiliation(s)
- Lena Bäuml
- Department of Chemistry, LMU Munich, Munich 81377, Germany
| | - Florian Rott
- Department of Chemistry, LMU Munich, Munich 81377, Germany
| | | | | |
Collapse
|
42
|
Hauge E, Kristiansen HE, Konecny L, Kadek M, Repisky M, Pedersen TB. Cost-Efficient High-Resolution Linear Absorption Spectra through Extrapolating the Dipole Moment from Real-Time Time-Dependent Electronic-Structure Theory. J Chem Theory Comput 2023; 19:7764-7775. [PMID: 37874968 PMCID: PMC10653104 DOI: 10.1021/acs.jctc.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
We present a novel function fitting method for approximating the propagation of the time-dependent electric dipole moment from real-time electronic structure calculations. Real-time calculations of the electronic absorption spectrum require discrete Fourier transforms of the electric dipole moment. The spectral resolution is determined by the total propagation time, i.e., the trajectory length of the dipole moment, causing a high computational cost. Our developed method uses function fitting on shorter trajectories of the dipole moment, achieving arbitrary spectral resolution through extrapolation. Numerical testing shows that the fitting method can reproduce high-resolution spectra by using short dipole trajectories. The method converges with as little as 100 a.u. dipole trajectories for some systems, though the difficulty converging increases with the spectral density. We also introduce an error estimate of the fit, reliably assessing its convergence and hence the quality of the approximated spectrum.
Collapse
Affiliation(s)
- Eirill Hauge
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
- Department
of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Kristian Augusts Gate 23, 0164 Oslo, Norway
| | - Håkon Emil Kristiansen
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Lukas Konecny
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
- Center
for Free Electron Laser, Max Planck Institute
for the Structure and Dynamics of Matter Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Marius Kadek
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
- Department
of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Michal Repisky
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, SK-84215 Bratislava, Slovakia
| | - Thomas Bondo Pedersen
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
43
|
Pandey G, Ghosh S, Tiwari AK. Strong Laser Field-Driven Coupled Electron-Nuclear Dynamics: Quantum vs Classical Description. J Phys Chem A 2023; 127:9206-9219. [PMID: 37890168 DOI: 10.1021/acs.jpca.3c05047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
We have performed a coupled electron-nuclear dynamics study of H2+ molecular ions under the influence of an intense few-cycle 4.5 fs laser pulse with an intensity of 4 × 1014 W/cm2 and a central wavelength of 750 nm. Both quantum and classical dynamical methods are employed in the exact similar initial conditions with the aim of head-to-head comparison of two methodologies. A competition between ionization and dissociation channel is explained under the framework of quantum and classical dynamics. The origin of the electron localization phenomena is elucidated by observing the molecular and electronic wave packet evolution pattern. By probing with different carrier envelope phase (CEP) values of the ultrashort pulse, the possibility of electron localization on either of the two nuclei is investigated. The effects of initial vibrational states on final dissociation and ionization probabilities for several CEP values are studied in detail. Finally, asymmetries in the dissociation probabilities are calculated and mutually compared for both quantum and classical dynamical methodologies, whereas Franck-Condon averaging over the initial vibrational states is carried out in order to mimic the existing experimental conditions.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Sandip Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Ashwani K Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| |
Collapse
|
44
|
Yang YN, Chen SQ, Zhang ZH, Jiang H, Chen M, Li Y, He F. Harmonic Suppression Induced by Three-Electron Dynamics of Li in Strong Laser Fields. PHYSICAL REVIEW LETTERS 2023; 131:183201. [PMID: 37977615 DOI: 10.1103/physrevlett.131.183201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/20/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023]
Abstract
We build a model to elucidate the high harmonic generation in combined EUV and midinfrared laser fields by embodying the spin-resolved three-electron dynamics. The EUV pulse ionizes an inner-shell electron, and the midinfrared laser drives the photoelectron and steers the electron-ion rescattering. Depending on the spin of the photoelectron, the residual ion including two bound electrons can be either in a single spin configuration or in a coherent superposition of different spin configurations. In the latter case, the two electrons in the ion swap their orbits, leading to a deep valley in the harmonic spectrum. The model results agree with the time-dependent Schrödinger equation simulations including three active electrons. The intriguing picture explored in this work is fundamentally distinguished from all reported scenarios relied on spin-orbit coupling, but originates from the exchanges asymmetry of two-electron wave functions.
Collapse
Affiliation(s)
- Yu-Ning Yang
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative innovation center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Su-Qi Chen
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative innovation center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Han Zhang
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative innovation center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Jiang
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative innovation center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Chen
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative innovation center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Li
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative innovation center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative innovation center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| |
Collapse
|
45
|
Hanasaki K, Takatsuka K. Spin current in the early stage of radical reactions and its mechanisms. J Chem Phys 2023; 159:144111. [PMID: 37830453 DOI: 10.1063/5.0169281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
We study the electronic spin flux (atomic-scale flow of the spin density in molecules) by a perturbation analysis and ab initio nonadiabatic calculations. We derive a general perturbative expression of the charge and spin fluxes and identify the driving perturbation of the fluxes to be the time derivative of the electron-nucleus interaction term in the Hamiltonian. We then expand the expression in molecular orbitals so as to identify relevant components of the fluxes. Our perturbation theory describes the electronic fluxes in the early stage of reactions in an intuitively clear manner. The perturbation theory is then applied to an analysis of the spin flux obtained in ab initio calculations of the radical reaction of O2 and CH3· starting from three distinct spin configurations; (a) CH3· and triplet O2 with total spin of the system set Stot=1/2 (b) CH3· and singlet O2, Stot=1/2, and (c) CH3· and triplet O2, Stot=3/2. Further analysis of the time-dependent behaviors of the spin flux in these numerical simulations reveals (i) the spin flux induces rearrangement of the local spin structure, such as reduction of the spin polarization arising from the triplet O2 and (ii) the spin flux flows from O2 to CH3· in the reaction starting from spin configuration (a) and from CH3· to O2 in that starting from configuration (b), whereas no major intermolecular spin flux was observed in that starting from configuration (c). Our study thus establishes the mechanism of the spin flux that rearranges the local spin structures associated with chemical bonds.
Collapse
Affiliation(s)
- Kota Hanasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
46
|
Morassut C, Coccia E, Luppi E. Quantitative performance analysis and comparison of optimal-continuum Gaussian basis sets for high-harmonic generation spectra. J Chem Phys 2023; 159:124108. [PMID: 38127378 DOI: 10.1063/5.0153825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/24/2023] [Indexed: 12/23/2023] Open
Abstract
Quantum-chemistry methods in the time domain with Gaussian basis sets are increasingly used to compute high-harmonic generation (HHG) spectra of atomic and molecular systems. The quality of these approaches is limited by the accuracy of Gaussian basis sets to describe continuum energy states. In the literature, optimal-continuum Gaussian basis sets have been proposed: Kaufmann et al. [J. Phys. B: At., Mol. Opt. Phys. 22, 2223 (1989)], Woźniak et al. [J. Chem. Phys. 154, 094111 (2021)], Nestmann and Peyerimhoff [J. Phys. B: At., Mol. Opt. Phys. 23, L773 (1990)], Faure et al. [Comput. Phys. Commun. 144, 224 (2002)], and Krause et al. [J. Chem. Phys. 140, 174113 (2014)]. In this work, we have compared the performances of these basis sets to simulate HHG spectra of H atom at different laser intensities. We have also investigated different strategies to balance basis sets with these continuum functions, together with the role of angular momentum. To quantify the performance of the different basis sets, we introduce local and global HHG descriptors. Comparisons with the grid and exact calculations are also provided.
Collapse
Affiliation(s)
- C Morassut
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - E Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - E Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
| |
Collapse
|
47
|
Romig T, Kochetov V, Bokarev SI. Spin-flip dynamics in core-excited states in the basis of irreducible spherical tensor operators. J Chem Phys 2023; 159:114108. [PMID: 37721323 DOI: 10.1063/5.0161700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Recent experimental advances in ultrafast science have put different processes occurring on the electronic timescale below a few femtoseconds in focus. In the present theoretical work, we demonstrate how the transformation and propagation of the density matrix in the basis of irreducible spherical tensors can be conveniently used to study sub-few fs spin-flip dynamics in core-excited transition metal compounds. With the help of the Wigner-Eckart theorem, such a transformation separates the essential dynamical information from the geometric factors governed by the angular momentum algebra. We show that an additional reduction can be performed by the physically motivated truncation of the spherical tensor basis. In particular, depending on the degree of coherence, the ultrafast dynamics can be considered semi-quantitative in the notably reduced spherical basis when only the total populations of the basis states of the given spin are of interest. Such truncation should be especially beneficial when the number of high-spin basis states is vast, as it reduces computational costs.
Collapse
Affiliation(s)
- Thies Romig
- Institut für Physik, Universität Rostock, A.-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Vladislav Kochetov
- Institut für Physik, Universität Rostock, A.-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Sergey I Bokarev
- Institut für Physik, Universität Rostock, A.-Einstein-Str. 23-24, 18059 Rostock, Germany
- Chemistry Department, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
48
|
Luppi E, Coccia E. Role of Inner Molecular Orbitals in High-Harmonic Generation Spectra of Aligned Uracil. J Phys Chem A 2023; 127:7335-7343. [PMID: 37640677 DOI: 10.1021/acs.jpca.3c03990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In this work, we decompose the high-harmonic generation (HHG) signal of aligned gas-phase uracil into single molecular-orbital (MO) contributions. We compute HHG spectra for a pulse linearly polarized perpendicular to the molecular plane, with an intensity of 0.6 and 0.85 × 1014 W/cm2 and a wavelength of 800 nm. We use the real-time time-dependent Configuration Interaction with singles method, coupled to a Gaussian-based representation of the time-dependent wavefunction. The strong-field dynamics is affected by the energy of the ionization/recombination channels and by the coupling between the orbital symmetry and laser polarization. In the configuration studied here, we expect that π-type MOs favorably couple with the incoming pulse and play a substantial role in generating the HHG spectrum. Indeed, we show that HOMO, HOMO - 1, and HOMO - 4, which all are π-like, determine the intensity of harmonic peaks at different energies, while HOMO - 2 and HOMO - 3 provide a smaller contribution. It is worth mentioning that HOMO - 4 produces a stronger signal than that from HOMO - 1, even though the corresponding ionization energy, in an one-electron picture, is around 2.5 eV larger and more than 4 eV larger than the HOMO one.
Collapse
Affiliation(s)
- Eleonora Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
| | - Emanuele Coccia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| |
Collapse
|
49
|
Calegari F, Martin F. Open questions in attochemistry. Commun Chem 2023; 6:184. [PMID: 37666969 PMCID: PMC10477171 DOI: 10.1038/s42004-023-00989-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Affiliation(s)
- Francesca Calegari
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
- Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| | - Fernando Martin
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Cantoblanco, 28049, Madrid, Spain.
- Departamento de Química, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
50
|
Ertel D, Busto D, Makos I, Schmoll M, Benda J, Ahmadi H, Moioli M, Frassetto F, Poletto L, Schröter CD, Pfeifer T, Moshammer R, Mašín Z, Patchkovskii S, Sansone G. Influence of nuclear dynamics on molecular attosecond photoelectron interferometry. SCIENCE ADVANCES 2023; 9:eadh7747. [PMID: 37647394 PMCID: PMC10468127 DOI: 10.1126/sciadv.adh7747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/19/2023] [Indexed: 09/01/2023]
Abstract
In extreme ultraviolet spectroscopy, the photoionization process occurring in a molecule due to the absorption of a single photon can trigger an ultrafast nuclear motion in the cation. Taking advantage of attosecond photoelectron interferometry, where the absorption of the extreme ultraviolet photon is accompanied by the exchange of an additional infrared quantum of light, one can investigate the influence of nuclear dynamics by monitoring the characteristics of the photoelectron spectra generated by the two-color field. Here, we show that attosecond photoelectron interferometry is sensitive to the nuclear response by measuring the two-color photoionization spectra in a mixture of methane (CH4) and deuteromethane (CD4). The effect of the different nuclear evolution in the two isotopologues manifests itself in the modification of the amplitude and contrast of the oscillations of the photoelectron peaks. Our work indicates that nuclear dynamics can affect the coherence properties of the electronic wave packet emitted by photoionization on a time scale as short as a few femtoseconds.
Collapse
Affiliation(s)
- Dominik Ertel
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - David Busto
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
- Department of Physics, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Ioannis Makos
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Marvin Schmoll
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Jakub Benda
- Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovǐkách 2, 180 00, Prague 8, Czech Republic
| | - Hamed Ahmadi
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Matteo Moioli
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Fabio Frassetto
- Istituto di Fotonica e Nanotecnologie, CNR, 35131 Padova, Italy
| | - Luca Poletto
- Istituto di Fotonica e Nanotecnologie, CNR, 35131 Padova, Italy
| | | | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | | | - Zdeněk Mašín
- Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovǐkách 2, 180 00, Prague 8, Czech Republic
| | | | - Giuseppe Sansone
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| |
Collapse
|