1
|
Xu C, Ma C, Zhang Y, Zhang W, Zhang J, Li G, Xiong M, Wei Y, Yang K, Yuan B. Selective Membrane Remodeling and Fluidity Reduction by the Cationic Helical Peptide L 10-MMBen. J Phys Chem Lett 2025; 16:3788-3798. [PMID: 40194791 DOI: 10.1021/acs.jpclett.5c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Antimicrobial peptide (AMP)-based treatments have exhibited significant therapeutic potential with anti-inflammatory, anticancer, and immunomodulatory activities. While most AMPs exert effects by permeabilizing bacterial cell membranes through poration and hydrolysis, recent findings have revealed a distinct membrane interaction mechanism employed by L10-MMBen, a cationic amphiphilic helical peptide with potent antimicrobial efficacy and moderate cytotoxicity. Herein, we elucidate the ability of L10-MMBen to remodel bacterial cell membranes into double-layered structures rather than inducing permeabilization. Quantitative real-time giant unilamellar vesicle assays, atomic force microscopy characterizations, and simulations demonstrate that L10-MMBen selectively adsorbs onto phosphatidylglycerol-containing membranes with shallow insertion at approximately 0.6 nm; once reaching a threshold local concentration (peptide-to-lipid ratio of 1:20), it extracts lipids from the bilayer and facilitates the formation of double-layered peptide-membrane composite structures. Single-molecule tracking analysis indicates that peptide-induced molecular reorganization significantly reduces membrane fluidity, impeding lipid lateral diffusion from 2.8 μm2/s to an immobile state. These findings may contribute to the design of innovative membrane-active agents for biomedical applications.
Collapse
Affiliation(s)
- Cheng Xu
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Chiyun Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yuhao Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, Guangdong, China
| | - Wanting Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Junsheng Zhang
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Guanmou Li
- Dongguan People's Hospital, Dongguan 523018, Guangdong, China
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, Guangdong, China
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| |
Collapse
|
2
|
Gao C, Feng Y, Liu S, Chen B, Ding M, Du D, Zhang W, Wilson DA, Tu Y, Peng F. Light-Driven Artificial Cell Micromotors for Degenerative Knee Osteoarthritis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416349. [PMID: 40025988 DOI: 10.1002/adma.202416349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/02/2025] [Indexed: 03/04/2025]
Abstract
Combining artificial cellular compartmentalization and intelligent motion benefits of micro/nanomotors, light is used as energy input to construct an artificial cell-based micromotor capable of photosynthetic anabolism and intelligent directional movement. This system is assembled from phospholipids functionalized with F-ATP synthase and molybdenum disulfide (MoS2) nanoparticles (Vesical@MoS2-ATPase). The underlying mechanism involves the generation of protons (H+) through photo-hydrolysis of MoS2 nanoparticles within vesicles, which generates a local electroosmotic flow inside the vesicles and drives the negatively charged MoS2 toward light. The established proton gradient across the phospholipid membrane, in turn, drives the ATP synthase to catalyze ATP production. Both in vitro and in vivo models demonstrate that the micromotor can elevate local intracellular ATP levels upon light and improve the metabolism of denatured chondrocytes. This cell mimicry, with capabilities of migration and biosynthesis, emerges as a promising platform for the next generation of functional bio-interface.
Collapse
Affiliation(s)
- Chao Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ye Feng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Suyi Liu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bin Chen
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Miaomiao Ding
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dailing Du
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wenjing Zhang
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ 6525, The Netherlands
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
3
|
Liu M, Liu Z, Qiao X, Chen C, Guo H, Gu H, Li J, Sun T. An Endogenous Proton-Powered Adaptive Nanomotor for Treating Muscle Atrophy. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1351. [PMID: 40141635 PMCID: PMC11943966 DOI: 10.3390/ma18061351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025]
Abstract
Nanomotors driven by endogenous enzymes are favored in biology and pharmacy due to their spontaneous driving and efficient biocatalytic activity, and have potential applications in the treatment of clinical diseases that are highly dependent on targeted effects. For diseases such as muscle atrophy, using energy molecules such as ATP to improve cellular metabolism is a relatively efficient treatment method. However, traditional adenosine triphosphate (ATP) therapies for muscle atrophy face limitations due to instability under physiological conditions and poor targeting efficiency. To address these challenges, we developed an endogenous proton-gradient-driven ATP transport motor (ATM), a nanomotor integrating chloroplast-derived FoF1-ATPase with a biocompatible flask-shaped organic shell (FOS). The ATM is synthesized by vacuum-injecting phospholipid-embedded FoF1-ATPase nanothylakoids into ribose-based FOS, enabling autonomous propulsion in acidic microenvironments through proton-driven negative chemotaxis (directional movement away from regions of higher proton concentration). This nanomotor converts proton gradients into ATP synthesis, directly replenishing cellular energy deficits in atrophic tissues. In vitro studies demonstrated high biocompatibility (>90% cell viability at 150 μg/mL) and pH-responsive motility, achieving speeds up to 4.32 μm/s under physiological gradients (ΔpH = 3). In vivo experiments using dexamethasone-induced muscle atrophy mice revealed that ATM treatment accelerated weight recovery and restored normal muscle morphology, with treated mice exhibiting cell sizes comparable to healthy controls (30-40 μm vs. 15-25 μm in untreated). These results highlight the ATM's potential as a precision therapeutic platform for metabolic disorders, leveraging the natural enzyme functionality and synthetic material design to enhance efficacy while minimizing systemic toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Gu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (M.L.); (Z.L.); (H.G.)
| | - Junbo Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (M.L.); (Z.L.); (H.G.)
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (M.L.); (Z.L.); (H.G.)
| |
Collapse
|
4
|
Toyouchi S, Oomachi S, Hasegawa R, Hayashi K, Takagi Y, Tamura M, Tokonami S, Iida T. Single Nucleotide Polymorphism Highlighted via Heterogeneous Light-Induced Dissipative Structure. ACS Sens 2025; 10:751-760. [PMID: 39848611 PMCID: PMC11877512 DOI: 10.1021/acssensors.4c02119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 01/25/2025]
Abstract
The unique characteristics of biological structures depend on the behavior of DNA sequences confined in a microscale cell under environmental fluctuations and dissipation. Here, we report a prominent difference in fluorescence from dye-modified single-stranded DNA in a light-induced assembly of DNA-functionalized heterogeneous probe particles in a microwell of several microliters in volume. Strong optical forces from the Mie scattering of microparticles accelerated hybridization, and the photothermal effect from the localized surface plasmons in gold nanoparticles enhanced specificity to reduce the fluorescence intensity of dye-modified DNA to a few %, even in a one-base mismatched sequence, enabling us to clearly highlight the single nucleotide polymorphisms in DNA. Fluorescence intensity was positively correlated with complementary DNA concentrations ranging in several tens fg/μL after only 5 min of laser irradiation. Remarkably, a total amount of DNA in an optically assembled structure of heterogeneous probe particles was estimated between 2.36 ymol (2.36 × 10-24 mol) and 2.36 amol (2.36 × 10-18 mol) in the observed concentration range. These findings can promote an innovative production method of nanocomposite structures via biological molecules and biological sensing with simple strategies avoiding genetic amplification in a PCR-free manner.
Collapse
Affiliation(s)
- Shuichi Toyouchi
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
- Department
of Physics, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
| | - Seiya Oomachi
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
- Department
of Physics, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
- Department
of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
| | - Ryoma Hasegawa
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
- Department
of Physics, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
- Department
of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
| | - Kota Hayashi
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
- Department
of Physics, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
- Department
of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
| | - Yumiko Takagi
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
- Department
of Physics, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
| | - Mamoru Tamura
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Shiho Tokonami
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
- Department
of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
| | - Takuya Iida
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
- Department
of Physics, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
5
|
Pu J, Ma J, Zhai H, Wu S, Wang Y, Putnis CV, Wang L, Zhang W. Atomic force microscopy imaging of plant cell walls. PLANT PHYSIOLOGY 2025; 197:kiae655. [PMID: 39928583 DOI: 10.1093/plphys/kiae655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 02/12/2025]
Abstract
Plant cell walls are highly dynamic, complex structures composed of multiple biopolymers that form a scaffold surrounding the plant cell. A nanoscale understanding of their architecture, mechanical properties, and formation/degradation dynamics is crucial for revealing structure-function relationships, mechanisms of shape formation, and cell development. Although imaging techniques have been extensively used in recent decades to reveal the structural organization and chemical compositions of cell walls, observing the detailed native architecture and identifying the physicochemical properties of plant cell walls remains challenging. Atomic force microscopy (AFM) is a powerful tool for simultaneously characterizing the morphology, nanomechanical properties, single-molecule interactions, and surface potentials of living biological systems. However, studies employing AFM to investigate plant cell walls have been relatively scarce. In this review, we discuss the latest advancements in AFM for in situ imaging of the multidimensional structure of the cell wall, measuring the mechanical properties of plant tissues or single cells, specific single-molecule recognition of cell wall-related enzymes-polysaccharides, and detecting the Kelvin potential of plant cell walls. We emphasize the fundamental challenges of AFM in characterizing plant cell walls and review potential applications for state-of-the-art AFM-based infrared/Raman spectroscopy toward answering open questions in plant biology.
Collapse
Affiliation(s)
- Junbao Pu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jie Ma
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Hang Zhai
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
| | - Shanshan Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Youmei Wang
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan 030031, China
| | - Christine V Putnis
- Institut für Mineralogie, University of Münster, Münster 48149, Germany
- School of Molecular and Life Sciences, Curtin University, Perth 6845, Australia
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Galovic S, Čukić M, Chevizovich D. Inertial Memory Effects in Molecular Transport Across Nanoporous Membranes. MEMBRANES 2025; 15:11. [PMID: 39852252 PMCID: PMC11766801 DOI: 10.3390/membranes15010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025]
Abstract
Nanoporous membranes are heterogeneous structures, with heterogeneity manifesting at the microscale. In examining particle transport through such media, it has been observed that this transport deviates from classical diffusion, as described by Fick's second law. Moreover, the classical model is physically unsustainable, as it is non-causal and predicts an infinite speed of concentration perturbation propagation through a substantial medium. In this work, we have derived two causal models as extensions of Fick's second law, where causality is linked to the effects of inertial memory in the nanoporous membrane. The results of the derived models have been compared with each other and with those obtained from the classical model. It has been demonstrated that both causal models, one with exponentially fading inertial memory and the other with power-law fading memory, predict that the concentration perturbation propagates as a damped wave, leading to an increased time required for the cumulative amount of molecules passing through the membrane to reach a steady state compared to the classical model. The power-law fading memory model predicts a longer time required to achieve a stationary state. These findings have significant implications for understanding cell physiology, developing drug delivery systems, and designing nanoporous membranes for various applications.
Collapse
Affiliation(s)
- Slobodanka Galovic
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Milena Čukić
- Empa, Swiss Federal Institute for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland;
| | - Dalibor Chevizovich
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| |
Collapse
|
7
|
Wang L, Chen Y, Guo J, Weng X, Yan W, Song J, Ye T, Qu J. Phasor-FSTM: a new paradigm for multicolor super-resolution imaging of living cells based on fluorescence modulation and lifetime multiplexing. LIGHT, SCIENCE & APPLICATIONS 2025; 14:32. [PMID: 39746920 PMCID: PMC11697263 DOI: 10.1038/s41377-024-01711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Multicolor microscopy and super-resolution optical microscopy are two widely used techniques that greatly enhance the ability to distinguish and resolve structures in cellular imaging. These methods have individually transformed cellular imaging by allowing detailed visualization of cellular and subcellular structures, as well as organelle interactions. However, integrating multicolor and super-resolution microscopy into a single method remains challenging due to issues like spectral overlap, crosstalk, photobleaching, phototoxicity, and technical complexity. These challenges arise from the conflicting requirements of using different fluorophores for multicolor labeling and fluorophores with specific properties for super-resolution imaging. We propose a novel multicolor super-resolution imaging method called phasor-based fluorescence spatiotemporal modulation (Phasor-FSTM). This method uses time-resolved detection to acquire spatiotemporal data from encoded photons, employs phasor analysis to simultaneously separate multiple components, and applies fluorescence modulation to create super-resolution images. Phasor-FSTM enables the identification of multiple structural components with greater spatial accuracy on an enhanced laser scanning confocal microscope using a single-wavelength laser. To demonstrate the capabilities of Phasor-FSTM, we performed two-color to four-color super-resolution imaging at a resolution of ~λ/5 and observed the interactions of organelles in live cells during continuous imaging for a duration of over 20 min. Our method stands out for its simplicity and adaptability, seamlessly fitting into existing laser scanning microscopes without requiring multiple laser lines for excitation, which also provides a new avenue for other super-resolution imaging technologies based on different principles to build multi-color imaging systems with the requirement of a lower budget.
Collapse
Affiliation(s)
- Luwei Wang
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Yue Chen
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
- The Photonics Center of Shenzhen University, Shenzhen University, Shenzhen, 518060, China
| | - Jiaqing Guo
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoyu Weng
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Wei Yan
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Jun Song
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.
| | - Tong Ye
- Department of Bioengineering, CU-MUSC Bioengineering Program, Clemson University, Charleston, South Carolina, 29634, USA.
| | - Junle Qu
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
8
|
Wei Q, Wang W, Tang Y, Metzler R, Chechkin A. Fractional Langevin equation far from equilibrium: Riemann-Liouville fractional Brownian motion, spurious nonergodicity, and aging. Phys Rev E 2025; 111:014128. [PMID: 39972787 DOI: 10.1103/physreve.111.014128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/11/2024] [Indexed: 02/21/2025]
Abstract
We consider the fractional Langevin equation far from equilibrium (FLEFE) to describe stochastic dynamics which do not obey the fluctuation-dissipation theorem, unlike the conventional fractional Langevin equation (FLE). The solution of this equation is Riemann-Liouville fractional Brownian motion (RL-FBM), also known in the literature as FBM II. Spurious nonergodicity, stationarity, and aging properties of the solution are explored for all admissible values α>1/2 of the order α of the time-fractional Caputo derivative in the FLEFE. The increments of the process are asymptotically stationary. However when 1/2<α<3/2, the time-averaged mean-squared displacement (TAMSD) does not converge to the mean-squared displacement (MSD). Instead, it converges to the mean-squared increment (MSI) or structure function, leading to the phenomenon of spurious nonergodicity. When α≥3/2, the increments of FLEFE motion are nonergodic, however the higher order increments are asymptotically ergodic. We also discuss the aging effect in the FLEFE by investigating the influence of an aging time t_{a} on the MSD, TAMSD and autocovariance function of the increments. We find that under strong aging conditions the process becomes ergodic, and the increments become stationary in the domain 1/2<α<3/2.
Collapse
Affiliation(s)
- Qing Wei
- Chinese Academy of Sciences, Academy of Mathematics and Systems Science, LSEC, ICMSEC, Beijing 100190, China
| | - Wei Wang
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
| | - Yifa Tang
- Chinese Academy of Sciences, Academy of Mathematics and Systems Science, LSEC, ICMSEC, Beijing 100190, China
- University of Chinese Academy of Sciences, School of Mathematical Sciences, Beijing 100049, China
| | - Ralf Metzler
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Aleksei Chechkin
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
- Wrocław University of Science and Technology, Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wyspianskiego 27, 50-370 Wrocław, Poland
- Max Planck Institute of Microstructure Physics, German-Ukrainian Core of Excellence, Weinberg 2, 06120 Halle, Germany
| |
Collapse
|
9
|
Wang Z, Wang X, He Y, Wu H, Mao R, Wang H, Qiu L. Exploring Framework Nucleic Acids: A Perspective on Their Cellular Applications. JACS AU 2024; 4:4110-4128. [PMID: 39610738 PMCID: PMC11600171 DOI: 10.1021/jacsau.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/30/2024]
Abstract
Cells are fundamental units of life. The coordination of cellular functions and behaviors relies on a cascade of molecular networks. Technologies that enable exploration and manipulation of specific molecular events in living cells with high spatiotemporal precision would be critical for pathological study, disease diagnosis, and treatment. Framework nucleic acids (FNAs) represent a novel class of nucleic acid materials characterized by their monodisperse and rigid nanostructure. Leveraging their exceptional programmability, convenient modification property, and predictable atomic-level architecture, FNAs have attracted significant attention in diverse cellular applications such as cell recognition, imaging, manipulation, and therapeutic interventions. In this perspective, we will discuss the utilization of FNAs in living cell systems while critically assessing the opportunities and challenges presented in this burgeoning field.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Xin Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yao He
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wu
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Rui Mao
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Haiyuan Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
10
|
Postnikov EB, Sokolov IM. Generalized Langevin subdiffusion in channels: The bath always wins. Phys Rev E 2024; 110:034104. [PMID: 39425319 DOI: 10.1103/physreve.110.034104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/12/2024] [Indexed: 10/21/2024]
Abstract
We consider subdiffusive motion, modeled by the generalized Langevin equation in an equilibrium setting, of tracer particles in channels of indefinite length in the x direction: the channels of varying width and the channels with sinusoidally meandering midline. The subdiffusion in the x direction is not affected by constraints put by the channel. This is especially astonishing for meandering channels whose centerline might be quite long. The same behavior is seen in a holonomic model of a bead on a sinusoidal and meandering wire, where some analytic insights are possible.
Collapse
|
11
|
Jin XK, Jin KQ, Yang XK, Wen MY, Liu YL, Huang WH. Real-time monitoring of intracellular biochemical response in locally stretched single cell by a nanosensor. Anal Bioanal Chem 2024; 416:4779-4787. [PMID: 38802680 DOI: 10.1007/s00216-024-05348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Mechanotransduction is the essential process that cells convert mechanical force into biochemical responses, and electrochemical sensor stands out from existing techniques by providing quantitative and real-time information about the biochemical signals during cellular mechanotransduction. However, the intracellular biochemical response evoked by mechanical force has been poorly monitored. In this paper, we report a method to apply local stretch on single cell and simultaneously monitor the ensuing intracellular biochemical signals. Specifically, a ferromagnetic micropipette was fabricated to locally stretch a single cell labeled with Fe3O4 nanoparticles under the external magnetic field, and the SiC@Pt nanowire electrode (SiC@Pt NWE) was inserted into the cell to monitor the intracellular hydrogen peroxide (H2O2) production induced by the local stretch. As a proof of concept, this work quantitatively investigated the elevated amount of H2O2 levels in single endothelial cell under different stretching amplitudes. This work puts forward a new research modality to manipulate and monitor the mechanotransduction at the single-cell level.
Collapse
Affiliation(s)
- Xue-Ke Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Qi Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiao-Ke Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ming-Yong Wen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
12
|
Pacheco-Pozo A, Balcerek M, Wyłomanska A, Burnecki K, Sokolov IM, Krapf D. Langevin Equation in Heterogeneous Landscapes: How to Choose the Interpretation. PHYSICAL REVIEW LETTERS 2024; 133:067102. [PMID: 39178429 DOI: 10.1103/physrevlett.133.067102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/25/2024]
Abstract
The Langevin equation is a common tool to model diffusion at a single-particle level. In nonhomogeneous environments, such as aqueous two-phase systems or biological condensates with different diffusion coefficients in different phases, the solution to a Langevin equation is not unique unless the interpretation of stochastic integrals involved is selected. We analyze the diffusion of particles in such systems and evaluate the mean, the mean square displacement, and the distribution of particles, as well as the variance of the time-averaged mean-square displacements. Our analytical results provide a method to choose the interpretation parameter from single-particle tracking experiments.
Collapse
|
13
|
Lenzi EK, Rosseto MP, Gryczak DW, Evangelista LR, da Silva LR, Lenzi MK, Zola RS. Generalized Kinetic Equations with Fractional Time-Derivative and Nonlinear Diffusion: H-Theorem and Entropy. ENTROPY (BASEL, SWITZERLAND) 2024; 26:673. [PMID: 39202143 PMCID: PMC11354171 DOI: 10.3390/e26080673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024]
Abstract
We investigate the H-theorem for a class of generalized kinetic equations with fractional time-derivative, hyperbolic term, and nonlinear diffusion. When the H-theorem is satisfied, we demonstrate that different entropic forms may emerge due to the equation's nonlinearity. We obtain the entropy production related to these entropies and show that its form remains invariant. Furthermore, we investigate some behaviors for these equations from both numerical and analytical perspectives, showing a large class of behaviors connected with anomalous diffusion and their effects on entropy.
Collapse
Affiliation(s)
- Ervin K. Lenzi
- Departamento de Física, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil;
- National Institute of Science and Technology for Complex Systems, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil;
| | - Michely P. Rosseto
- Departamento de Física, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil;
| | | | - Luiz R. Evangelista
- Departamento de Física, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil;
- Istituto dei Sistemi Complessi (ISC–CNR), Via dei Taurini, 19, 00185 Rome, Italy
- Department of Molecular Science and Nanosystems, Ca’Foscari University of Venice, Via Torino, 155, 30172 Mestre, Italy
| | - Luciano R. da Silva
- National Institute of Science and Technology for Complex Systems, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil;
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Marcelo K. Lenzi
- Departamento de Engenharia Química, Universidade Federal do Paraná, Curitiba 80060-000, PR, Brazil;
| | - Rafael S. Zola
- Department of Physics, Universidade Tecnológica Federal do Paraná, Apucarana 86812-460, PR, Brazil;
| |
Collapse
|
14
|
Liang Y, Wang W, Metzler R. Aging and confinement in subordinated fractional Brownian motion. Phys Rev E 2024; 109:064144. [PMID: 39020934 DOI: 10.1103/physreve.109.064144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
We study the effects of aging properties of subordinated fractional Brownian motion (FBM) with drift and in harmonic confinement, when the measurement of the stochastic process starts a time t_{a}>0 after its original initiation at t=0. Specifically, we consider the aged versions of the ensemble mean-squared displacement (MSD) and the time-averaged MSD (TAMSD), along with the aging factor. Our results are favorably compared with simulations results. The aging subordinated FBM exhibits a disparity between MSD and TAMSD and is thus weakly nonergodic, while strong aging is shown to effect a convergence of the MSD and TAMSD. The information on the aging factor with respect to the lag time exhibits an identical form to the aging behavior of subdiffusive continuous-time random walks (CTRW). The statistical properties of the MSD and TAMSD for the confined subordinated FBM are also derived. At long times, the MSD in the harmonic potential has a stationary value, that depends on the Hurst index of the parental (nonequilibrium) FBM. The TAMSD of confined subordinated FBM does not relax to a stationary value but increases sublinearly with lag time, analogously to confined CTRW. Specifically, short aging times t_{a} in confined subordinated FBM do not affect the aged MSD, while for long aging times the aged MSD has a power-law increase and is identical to the aged TAMSD.
Collapse
|
15
|
Zhang S, Song L, Zheng R, Zhang F, Wang Q, Mao X, Fan JX, Liu B, Zhao YD, Chen W. Quantification of MicroRNA in a Single Living Cell via Ionic Current Rectification-Based Nanopore for Triple Negative Breast Cancer Diagnosis. Anal Chem 2024; 96:7411-7420. [PMID: 38652893 DOI: 10.1021/acs.analchem.3c05027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Accurate analysis of microRNAs (miRNAs) at the single-cell level is extremely important for deeply understanding their multiple and intricate biological functions. Despite some advancements in analyzing single-cell miRNAs, challenges such as intracellular interferences and insufficient detection limits still remain. In this work, an ultrasensitive nanopore sensor for quantitative single-cell miRNA-155 detection is constructed based on ionic current rectification (ICR) coupled with enzyme-free catalytic hairpin assembly (CHA). Benefiting from the enzyme-free CHA amplification strategy, the detection limit of the nanopore sensor for miRNA-155 reaches 10 fM and the nanopore sensor is more adaptable to complex intracellular environments. With the nanopore sensor, the concentration of miRNA-155 in living single cells is quantified to realize the early diagnosis of triple-negative breast cancer (TNBC). Furthermore, the nanopore sensor can be applied in screening anticancer drugs by tracking the expression level of miRNA-155. This work provides an adaptive and universal method for quantitatively analyzing intracellular miRNAs, which will greatly improve our understanding of cell heterogeneity and provide a more reliable scientific basis for exploring major diseases at the single-cell level.
Collapse
Affiliation(s)
- Shujie Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Laibo Song
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Ruina Zheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Qimeng Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Xiaosui Mao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| |
Collapse
|
16
|
Li Y, Liu J, Wu Y, He Q. Rotary F oF 1-ATP Synthase-Driven Flasklike Pentosan Colloidal Motors with ATP Synthesis and Storage. J Am Chem Soc 2024. [PMID: 38598314 DOI: 10.1021/jacs.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We report the hierarchical assembly of a chloroplast-derived rotary FoF1-ATPase motor-propelled flasklike pentosan colloidal motor (FPCM) with the ability of the synthesis, storage, and triggered release of biological energy currency ATP. These streamlined and submicrometer-sized hollow flasklike pentosan colloidal motors are prepared by combining a soft-template-based hydrothermal polymerization with a vacuum infusion of chloroplast-derived proteoliposomes containing rotary FoF1-ATPase motors. The generation of proton motive force across the proteoliposomes by injecting an acidic buffer solution promotes the rotation of FoF1-ATPase motors to drive the self-propelled motion of FPCMs, accompanying the inner ATP synthesis and storage. These rotary FoF1-ATPase motor-powered FPCMs exhibit a chemotactic behavior by migrating from their neck opening to their round bottom along a proton gradient of the external environment (negative chemotaxis). Such rotary biomolecular motor-driven flasklike pentosan colloidal motors with ATP synthesis and on-demand release make them promising candidates for engineering novel intelligent nanocarriers to actively regulate cellular metabolism.
Collapse
Affiliation(s)
- Yue Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Jun Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325000, China
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
17
|
Luo X, Bao JD, Fan WY. Multiple diffusive behaviors of the random walk in inhomogeneous environments. Phys Rev E 2024; 109:014130. [PMID: 38366502 DOI: 10.1103/physreve.109.014130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
Anomalous diffusive behaviors are observed in highly inhomogeneous but relatively stable environments such as intracellular media and are increasingly attracting attention. In this paper we develop a coupled continuous-time random walk model in which the waiting time is power-law coupled with the local environmental diffusion coefficient. We provide two forms of the waiting time density, namely, a heavy-tailed density and an exponential density. For different waiting time densities, anomalous diffusions with the diffusion exponent between 0 and 2 and Brownian yet non-Gaussian diffusion can be realized within the present model. The diffusive behaviors are analyzed and discussed by deriving the mean-squared displacement and probability density function. In addition we derive the effective jump length density corresponding to the decoupled form to help distinguish the diffusion types. Our model unifies two kinds of anomalous diffusive behavior with different characteristics in the same inhomogeneous environment into a theoretical framework. The model interprets the random motion of particles in a complex inhomogeneous environment and reproduces the experimental results of different biological and physical systems.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jing-Dong Bao
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wen-Yue Fan
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
18
|
Goswami K, Metzler R. Trapped tracer in a non-equilibrium bath: dynamics and energetics. SOFT MATTER 2023; 19:8802-8819. [PMID: 37946588 DOI: 10.1039/d3sm01177a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
We study the dynamics of a tracer that is elastically coupled to active particles being kept at two different temperatures, as a prototype of tracer dynamics in a non-equilibrium bath. Employing analytical techniques, we find the exact solution of the probability density function for the effective motion of the tracer. The analytical results are supported by numerical simulations. By combining the experimentally accessible quantities such as the response function and the power spectrum, we measure the non-equilibrium fluctuations in terms of the effective temperature. In addition, we compute the energy dissipation rate to find the precise effects of activity. Our study is relevant in understanding athermal fluctuations arising in cytoskeletal networks or inside a chromosome.
Collapse
Affiliation(s)
- Koushik Goswami
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea.
| |
Collapse
|
19
|
Kumar A, Daschakraborty S. Anomalous lateral diffusion of lipids during the fluid/gel phase transition of a lipid membrane. Phys Chem Chem Phys 2023; 25:31431-31443. [PMID: 37962400 DOI: 10.1039/d3cp04081j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A lipid membrane undergoes a phase transition from fluid to gel phase upon changing external thermodynamic conditions, such as decreasing temperature and increasing pressure. Extremophilic organisms face the challenge of preventing this deleterious phase transition. The main focus of their adaptive strategy is to facilitate effective temperature sensing through sensor proteins, relying on the drastic changes in packing density and membrane fluidity during the phase transition. Although the changes in packing density parameters due to the fluid/gel phase transition are studied in detail, the impact on membrane fluidity is less explored in the literature. Understanding the lateral diffusive dynamics of lipids in response to temperature, particularly during the fluid/gel phase transition, is albeit crucial. Here we have simulated the phase transition of a single component lipid membrane composed of dipalmitoylphosphatidylcholine (DPPC) lipids using a coarse-grained (CG) model and studied the changes of the structural and dynamical properties. It is observed that near the phase transition point, both fluid and gel phase domains coexist together. The dynamics remains highly non-Gaussian for a long time even when the mean square displacement reaches the Fickian regime at a much earlier time. This Fickian yet non-Gaussian diffusion (FnGD) is a characteristic of a highly heterogeneous system, previously observed for the lateral diffusion of lipids in raft mimetic membranes having liquid-ordered and liquid-disordered phases co-existing together. We have analyzed the molecular trajectories and calculated the jump-diffusion of the lipids, stemming from sudden jump translations, using a translational jump-diffusion (TJD) approach. An overwhelming contribution of the jump-diffusion of the lipids is observed suggesting anomalous diffusion of lipids during fluid/gel phase transition of the membrane. These results are important in unravelling the intricate nature of lipid diffusion during the phase transition of the membrane and open up a new possibility of investigating the most significant change of membrane properties during phase transition, which can be effectively sensed by proteins.
Collapse
Affiliation(s)
- Abhay Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | | |
Collapse
|
20
|
Grebenkov DS. Diffusion-Controlled Reactions: An Overview. Molecules 2023; 28:7570. [PMID: 38005291 PMCID: PMC10674959 DOI: 10.3390/molecules28227570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
We review the milestones in the century-long development of the theory of diffusion-controlled reactions. Starting from the seminal work by von Smoluchowski, who recognized the importance of diffusion in chemical reactions, we discuss perfect and imperfect surface reactions, their microscopic origins, and the underlying mathematical framework. Single-molecule reaction schemes, anomalous bulk diffusions, reversible binding/unbinding kinetics, and many other extensions are presented. An alternative encounter-based approach to diffusion-controlled reactions is introduced, with emphasis on its advantages and potential applications. Some open problems and future perspectives are outlined.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée, CNRS-Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
21
|
Shirkavand A, Akhavan Tavakoli M, Ebrahimpour Z. A Brief Review of Low-Level Light Therapy in Depression Disorder. J Lasers Med Sci 2023; 14:e55. [PMID: 38028864 PMCID: PMC10658118 DOI: 10.34172/jlms.2023.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023]
Abstract
Introduction: Low-level laser therapy (LLLT), also called Photobiomodulation, has gained widespread acceptance as a mainstream modality, particularly in the form of photobiostimulation (PBM). Here in our review, we aim to present the application of LLLT to help with depression, explore potential action mechanisms and pathways, discuss existing limitations, and address the challenges associated with its clinical implementation. Methods: In biological systems, the visible light with a wavelength range of 400-700 nm activates photoreceptors involved in vision and circadian rhythm regulation. The near-infrared (NIR) light with a wavelength range of 800-1100 nm exhibits superior tissue penetration capabilities compared to the visible light, which enables the non-invasive application of LLLT to various tissues. Results: By enhancing adenosine triphosphate (ATP) production using the respiratory chain, LLLT is able to enhance blood flow, reduce inflammation, support repair and healing, and enhance stem cell growth and proliferation. Preclinical studies using animal models have shown promising neuroprotective effects of the LLLT method on central nervous system (CNS) diseases, suggesting potential improvements in brain function for patients suffering from Alzheimer's disease. In addition, it helps Parkinson's patients with their movement problems and ameliorates mental disorders in individuals with depression. Conclusion: patients' quality of life can be significantly enhanced. A comprehensive understanding of the protective effects and underlying mechanisms of LLLT will facilitate its therapeutic application in the future.
Collapse
Affiliation(s)
- Afshan Shirkavand
- Department of Photodynamic Therapy, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | | | - Zeinab Ebrahimpour
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
22
|
Nakamura H, Rho E, Lee CT, Itoh K, Deng D, Watanabe S, Razavi S, Matsubayashi HT, Zhu C, Jung E, Rangamani P, Watanabe S, Inoue T. ActuAtor, a Listeria-inspired molecular tool for physical manipulation of intracellular organizations through de novo actin polymerization. Cell Rep 2023; 42:113089. [PMID: 37734382 PMCID: PMC10872831 DOI: 10.1016/j.celrep.2023.113089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Form and function are often interdependent throughout biology. Inside cells, mitochondria have particularly attracted attention since both their morphology and functionality are altered under pathophysiological conditions. However, directly assessing their causal relationship has been beyond reach due to the limitations of manipulating mitochondrial morphology in a physiologically relevant manner. By engineering a bacterial actin regulator, ActA, we developed tools termed "ActuAtor" that inducibly trigger actin polymerization at arbitrary subcellular locations. The ActuAtor-mediated actin polymerization drives striking deformation and/or movement of target organelles, including mitochondria, Golgi apparatus, and nucleus. Notably, ActuAtor operation also disperses non-membrane-bound entities such as stress granules. We then implemented ActuAtor in functional assays, uncovering the physically fragmented mitochondria being slightly more susceptible to degradation, while none of the organelle functions tested are morphology dependent. The modular and genetically encoded features of ActuAtor should enable its application in studies of the form-function interplay in various intracellular contexts.
Collapse
Affiliation(s)
- Hideki Nakamura
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kyoto University Hakubi Center for Advanced Research, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; Kyoto University Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Katsura Int'tech Center, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8530, Japan.
| | - Elmer Rho
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kie Itoh
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daqi Deng
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Satoshi Watanabe
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shiva Razavi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hideaki T Matsubayashi
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cuncheng Zhu
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Eleanor Jung
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Shigeki Watanabe
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Janczura J, Magdziarz M, Metzler R. Parameter estimation of the fractional Ornstein-Uhlenbeck process based on quadratic variation. CHAOS (WOODBURY, N.Y.) 2023; 33:103125. [PMID: 37832518 DOI: 10.1063/5.0158843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Modern experiments routinely produce extensive data of the diffusive dynamics of tracer particles in a large range of systems. Often, the measured diffusion turns out to deviate from the laws of Brownian motion, i.e., it is anomalous. Considerable effort has been put in conceiving methods to extract the exact parameters underlying the diffusive dynamics. Mostly, this has been done for unconfined motion of the tracer particle. Here, we consider the case when the particle is confined by an external harmonic potential, e.g., in an optical trap. The anomalous particle dynamics is described by the fractional Ornstein-Uhlenbeck process, for which we establish new estimators for the parameters. Specifically, by calculating the empirical quadratic variation of a single trajectory, we are able to recover the subordination process governing the particle motion and use it as a basis for the parameter estimation. The statistical properties of the estimators are evaluated from simulations.
Collapse
Affiliation(s)
- Joanna Janczura
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marcin Magdziarz
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ralf Metzler
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| |
Collapse
|
24
|
Ye Z, Hu C, Wang J, Liu H, Li L, Yuan J, Ha JW, Li Z, Xiao L. Burst of hopping trafficking correlated reversible dynamic interactions between lipid droplets and mitochondria under starvation. EXPLORATION (BEIJING, CHINA) 2023; 3:20230002. [PMID: 37933279 PMCID: PMC10582609 DOI: 10.1002/exp.20230002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/27/2023] [Indexed: 11/08/2023]
Abstract
Dynamic membrane contacts between lipid droplets (LDs) and mitochondria play key roles in lipid metabolism and energy homeostasis. Understanding the dynamics of LDs under energy stimulation is thereby crucial to disclosing the metabolic mechanism. Here, the reversible interactions between LDs and mitochondria are tracked in real-time using a robust LDs-specific fluorescent probe (LDs-Tags). Through tracking the dynamics of LDs at the single-particle level, spatiotemporal heterogeneity is revealed. LDs in starved cells communicate and integrate their activities (i.e., lipid exchange) through a membrane contact site-mediated mechanism. Thus the diffusion is intermittently alternated between active and confined states. Statistical analysis shows that the translocation of LDs in response to starvation stress is non-Gaussian, and obeys nonergodic-like behavior. These results provide deep understanding of the anomalous diffusion of LDs in living cells, and also afford guidance for rationally designing efficient transporter.
Collapse
Affiliation(s)
- Zhongju Ye
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Chengyuan Hu
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Junli Wang
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Hua Liu
- College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
| | - Luping Li
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Jie Yuan
- School of Chemistry and Chemical EngineeringSchool of EnvironmentHenan Normal UniversityXinxiangChina
| | - Ji Won Ha
- Department of ChemistryUniversity of UlsanNam‐guRepublic of Korea
| | - Zhaohui Li
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Lehui Xiao
- College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
| |
Collapse
|
25
|
Su É, Villard C, Manneville JB. Mitochondria: At the crossroads between mechanobiology and cell metabolism. Biol Cell 2023; 115:e2300010. [PMID: 37326132 DOI: 10.1111/boc.202300010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Metabolism and mechanics are two key facets of structural and functional processes in cells, such as growth, proliferation, homeostasis and regeneration. Their reciprocal regulation has been increasingly acknowledged in recent years: external physical and mechanical cues entail metabolic changes, which in return regulate cell mechanosensing and mechanotransduction. Since mitochondria are pivotal regulators of metabolism, we review here the reciprocal links between mitochondrial morphodynamics, mechanics and metabolism. Mitochondria are highly dynamic organelles which sense and integrate mechanical, physical and metabolic cues to adapt their morphology, the organization of their network and their metabolic functions. While some of the links between mitochondrial morphodynamics, mechanics and metabolism are already well established, others are still poorly documented and open new fields of research. First, cell metabolism is known to correlate with mitochondrial morphodynamics. For instance, mitochondrial fission, fusion and cristae remodeling allow the cell to fine-tune its energy production through the contribution of mitochondrial oxidative phosphorylation and cytosolic glycolysis. Second, mechanical cues and alterations in mitochondrial mechanical properties reshape and reorganize the mitochondrial network. Mitochondrial membrane tension emerges as a decisive physical property which regulates mitochondrial morphodynamics. However, the converse link hypothesizing a contribution of morphodynamics to mitochondria mechanics and/or mechanosensitivity has not yet been demonstrated. Third, we highlight that mitochondrial mechanics and metabolism are reciprocally regulated, although little is known about the mechanical adaptation of mitochondria in response to metabolic cues. Deciphering the links between mitochondrial morphodynamics, mechanics and metabolism still presents significant technical and conceptual challenges but is crucial both for a better understanding of mechanobiology and for potential novel therapeutic approaches in diseases such as cancer.
Collapse
Affiliation(s)
- Émilie Su
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Catherine Villard
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Jean-Baptiste Manneville
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
| |
Collapse
|
26
|
Wu J, Xu C, Ye Z, Chen H, Wang Y, Yang K, Yuan B. Transition between Different Diffusion Modes of Individual Lipids during the Membrane-Specific Action of As-CATH4 Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301713. [PMID: 37093200 DOI: 10.1002/smll.202301713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The cell membrane permeabilization ability of immune defense antimicrobial peptides (AMPs) is widely applied in biomedicine. Although the mechanisms of peptide-membrane interactions have been widely investigated, analyses at the molecular level are still lacking. Herein, the membrane-specific action of a native AMP, As-CATH4, is investigated using a single-lipid tracking method in combination with live cell and model membrane assays conducted at different scales. The peptide-membrane interaction process is characterized by analyzing single-lipid diffusion behaviors. As-CATH4 exhibits potent antimicrobial activity through bacterial membrane permeabilization, with moderate cytotoxicity against mammalian cells. In-plane diffusion analyses of individual lipids show that the lipid molecules exhibit non-Gaussian and heterogeneous diffusion behaviors in both pristine and peptide-treated membranes, which can be decomposed into two Gaussian subgroups corresponding to normal- and slow-diffusive lipids. Assessment of the temporal evolution of these two diffusion modes of lipids reveal that the peptide action states of As-CATH4 include surface binding, transmembrane defect formation, and dynamic equilibrium. The action mechanisms of As-CATH4 at varying concentrations and against different membranes are distinguished. This work resolves the simultaneous mixed diffusion mechanisms of single lipids in biomimetic cell membranes, especially during dynamic membrane permeabilization by AMPs.
Collapse
Affiliation(s)
- Jinfeng Wu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Cheng Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Haibo Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| |
Collapse
|
27
|
Xi X, Wu Z, Zhang X, Li Y, Zhao Y, Wen W, Wang S. Endogenous Protease-Activatable Nanosensor Based on PNA-Peptide-DNA Engineering for AND-Gated and Dual-Model Detection of MicroRNA in Single Living Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21917-21928. [PMID: 37105764 DOI: 10.1021/acsami.3c02012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The in situ detection of low-content cancer biomarkers by an endogenous activator instead of an exogenous initiator in vitro remains a great challenge, leaving a gap in the development of a tumor-specific nanosensor with an endogenous protease-activatable manner. Herein, we proposed an endogenous protease-activatable nanosensor (PA-NS) guided by peptide nucleic acid-peptide-DNA copolymers to realize AND-gated and dual-model sensing of miRNA-21 (miR-21) by combining electrochemical detection with optical imaging in living tumor cells, without an additional introduction of an exogenous activator or nanomaterials. Moreover, the PA-NS can only be activated by "dual keys" (overexpressed miR-21 and cathepsin B protease in tumor cells) simultaneously, which enables effective improvement of the tumor-to-healthy cells ratio. The fluorescence intensity measured in single tumor cells was ∼3.5-fold higher than that in single healthy cells, and the electrochemical response decreased ∼30% in the presence of target miRNA. Furthermore, studies on regulation of the protease activity and miR-21 fluctuation under external stimulation have contributed to our understanding of the biological processes and drug screenings underlying disease development. This specific endogenous protease-mediated manner for dual-model detection of miRNA guarantees excellent tumor-selective capability, which offers new opportunities to study cell heterogeneity and provides more reliable fundamentals for the diagnosis and treatment of cancer down to the single-cell level.
Collapse
Affiliation(s)
- Xiaoxue Xi
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Coconstruted by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering. Hubei University, Wuhan 430062, P. R. China
| | - Zhen Wu
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Coconstruted by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering. Hubei University, Wuhan 430062, P. R. China
| | - Xiuhua Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Coconstruted by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering. Hubei University, Wuhan 430062, P. R. China
| | - Yuebin Li
- Faculty of Physics and Electronic Sciences, Wuhan 430062, Hubei, P. R. China
| | - Yuandi Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioformatics and Molecular Imaging Key Laboratory, Department of Biomedicine Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Wei Wen
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Coconstruted by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering. Hubei University, Wuhan 430062, P. R. China
| | - Shengfu Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Coconstruted by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering. Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
28
|
Maurice L, Bilenca A. Three-dimensional single particle tracking using 4π self-interference of temporally phase-shifted fluorescence. LIGHT, SCIENCE & APPLICATIONS 2023; 12:58. [PMID: 36864021 PMCID: PMC9981587 DOI: 10.1038/s41377-023-01085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Single particle tracking in three dimensions is an indispensable tool for studying dynamic processes in various disciplines, including material sciences, physics, and biology, but often shows anisotropic three-dimensional spatial localization precision, which restricts the tracking precision, and/or a limited number of particles that can be tracked simultaneously over extended volumes. Here we developed an interferometric, three-dimensional fluorescence single particle tracking method based on conventional widefield excitation and temporal phase-shift interference of the emitted, high-aperture-angle, fluorescence wavefronts in a greatly simplified, free-running, triangle interferometer that enables tracking of multiple particles at the same time with <10-nm spatial localization precision in all three dimensions over extended volumes (~35 × 35 × 2 μm3) at video rate (25 Hz). We applied our method to characterize the microenvironment of living cells and up to ~40 μm deep in soft materials.
Collapse
Affiliation(s)
- Leanne Maurice
- Biomedical Engineering Department, Ben-Gurion University of the Negev, 1 Ben Gurion Blvd, Be'er-Sheva, 84105, Israel
| | - Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev, 1 Ben Gurion Blvd, Be'er-Sheva, 84105, Israel.
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 1 Ben Gurion Blvd, Be'er-Sheva, 84105, Israel.
| |
Collapse
|
29
|
Xu C, Yang K, Yuan B. Non-Gaussian Diffusion of Individual Lipids Unveils the Unique Peptide-Membrane Interaction Dynamics. J Phys Chem Lett 2023; 14:854-862. [PMID: 36656807 DOI: 10.1021/acs.jpclett.2c03467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The dynamics of protein (or peptide)-membrane interactions plays a central role in cellular functions; however, the underlying mechanisms remain unclear. Herein, through analyzing the diffusion of individual lipids in a bilayer membrane during the membrane actions of typical peptides (e.g., pore-forming peptide melittin and cell-penetrating peptide TAT) at varying concentrations, the spatial heterogeneity as well as temporal dynamics of lipid motions were investigated which showed close correlation with the peptide action mechanism. Specifically, the spatial heterogeneity of lipid diffusion was characterized by the non-Gaussianity of lipid trajectories, which was further decomposed into two basic diffusion modes; moreover, the temporal evolution of the Gaussian fitting parameters provided quantitative information on the varying metastable interaction states between peptides and the membrane (e.g., peptide landing, membrane insertion, and equilibrium). Generally, this work gives an insight into the correlation between single-lipid diffusion and function-realization of membrane-active peptides.
Collapse
Affiliation(s)
- Cheng Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou215006, Jiangsu, China
- Songshan Lake Materials Laboratory, Dongguan523808, Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan523808, Guangdong, China
| |
Collapse
|
30
|
Zhang O, Guo Z, He Y, Wu T, Vahey MD, Lew MD. Six-Dimensional Single-Molecule Imaging with Isotropic Resolution using a Multi-View Reflector Microscope. NATURE PHOTONICS 2023; 17:179-186. [PMID: 36968242 PMCID: PMC10035538 DOI: 10.1038/s41566-022-01116-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/20/2022] [Indexed: 05/31/2023]
Abstract
Imaging both the positions and orientations of single fluorophores, termed single-molecule orientation-localisation microscopy, is a powerful tool to study biochemical processes. However, the limited photon budget associated with single-molecule fluorescence makes high-dimensional imaging with isotropic, nanoscale spatial resolution a formidable challenge. Here, we realise a radially and azimuthally polarized multi-view reflector (raMVR) microscope for the imaging of the 3D positions and 3D orientations of single molecules, with precision of 10.9 nm and 2.0° over a 1.5 μm depth range. The raMVR microscope achieves 6D super-resolution imaging of Nile red (NR) molecules transiently bound to lipid-coated spheres, accurately resolving their spherical morphology despite refractive-index mismatch. By observing the rotational dynamics of NR, raMVR images also resolve the infiltration of lipid membranes by amyloid-beta oligomers without covalent labelling. Finally, we demonstrate 6D imaging of cell membranes, where the orientations of specific fluorophores reveal heterogeneity in membrane fluidity. With its nearly isotropic 3D spatial resolution and orientation measurement precision, we expect the raMVR microscope to enable 6D imaging of molecular dynamics within biological and chemical systems with exceptional detail.
Collapse
Affiliation(s)
- Oumeng Zhang
- Department of Electrical and Systems Engineering
| | | | | | - Tingting Wu
- Department of Electrical and Systems Engineering
| | - Michael D. Vahey
- Department of Biomedical Engineering
- Center for Biomolecular Condensates
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering
- Center for Biomolecular Condensates
- Institute of Materials Science and Engineering, Washington University in St. Louis, Missouri 63130, USA
| |
Collapse
|
31
|
Scott S, Weiss M, Selhuber-Unkel C, Barooji YF, Sabri A, Erler JT, Metzler R, Oddershede LB. Extracting, quantifying, and comparing dynamical and biomechanical properties of living matter through single particle tracking. Phys Chem Chem Phys 2023; 25:1513-1537. [PMID: 36546878 DOI: 10.1039/d2cp01384c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods.
Collapse
Affiliation(s)
- Shane Scott
- Institute of Physiology, Kiel University, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering, Heidelberg University, D-69120 Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Younes F Barooji
- Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
| | - Adal Sabri
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Janine T Erler
- BRIC, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, D-14476 Potsdam, Germany.,Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | | |
Collapse
|
32
|
Nakase I, Miyai M, Noguchi K, Tamura M, Yamamoto Y, Nishimura Y, Omura M, Hayashi K, Futaki S, Tokonami S, Iida T. Light-Induced Condensation of Biofunctional Molecules around Targeted Living Cells to Accelerate Cytosolic Delivery. NANO LETTERS 2022; 22:9805-9814. [PMID: 36520534 PMCID: PMC9802214 DOI: 10.1021/acs.nanolett.2c02437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/01/2022] [Indexed: 06/17/2023]
Abstract
The light-induced force and convection can be enhanced by the collective effect of electrons (superradiance and red shift) in high-density metallic nanoparticles, leading to macroscopic assembly of target molecules. We here demonstrate application of the light-induced assembly for drug delivery system with enhancement of cell membrane accumulation and penetration of biofunctional molecules including cell-penetrating peptides (CPPs) with superradiance-mediated photothermal convection. For induction of photothermal assembly around targeted living cells in cell culture medium, infrared continuous-wave laser light was focused onto high-density gold-particle-bound glass bottom dishes exhibiting plasmonic superradiance or thin gold-film-coated glass bottom dishes. In this system, the biofunctional molecules can be concentrated around the targeted living cells and internalized into them only by 100 s laser irradiation. Using this simple approach, we successfully achieved enhanced cytosolic release of the CPPs and apoptosis induction using a pro-apoptotic domain with a very low peptide concentration (nM level) by light-induced condensation.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- NanoSquare
Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka599-8570, Japan
- Graduate
School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, Sakai, Osaka599-8570, Japan
| | - Moe Miyai
- Graduate
School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, Sakai, Osaka599-8570, Japan
| | - Kosuke Noguchi
- NanoSquare
Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka599-8570, Japan
- Graduate
School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, Sakai, Osaka599-8570, Japan
| | - Mamoru Tamura
- Graduate
School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, Sakai, Osaka599-8570, Japan
| | - Yasuyuki Yamamoto
- Graduate
School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, Sakai, Osaka599-8570, Japan
| | - Yushi Nishimura
- Graduate
School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, Sakai, Osaka599-8570, Japan
- Division
of Molecular Materials Science, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka558-8585, Japan
| | - Mika Omura
- Graduate
School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, Sakai, Osaka599-8570, Japan
| | - Kota Hayashi
- Graduate
School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, Sakai, Osaka599-8570, Japan
| | - Shiroh Futaki
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto611-0011, Japan
| | - Shiho Tokonami
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, Sakai, Osaka599-8570, Japan
- Graduate
School of Engineering, Osaka Prefecture
University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
| | - Takuya Iida
- Graduate
School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
- Research
Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, Sakai, Osaka599-8570, Japan
| |
Collapse
|
33
|
Liu YL, Yu SY, Chen JH, Wang CS, Li HY, Jiang D, Ye D, Zhao WW. Organic Molecular Probe Enabled Ionic Current Rectification toward Subcellular Detection of Glutathione with High Selectivity, Sensitivity, and Recyclability. ACS Sens 2022; 7:3272-3277. [PMID: 36354761 DOI: 10.1021/acssensors.2c01897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Single-cell interrogation with the solid-state nanoprobes enables understanding of the linkage between cellular behavior and heterogeneity. Herein, inspired by the charge property of the organic molecular probe (OMP), a generic ionic current rectification (ICR) single-cell methodology is established, exemplified by subcellular detection of glutathione (GSH) with high selectivity, sensitivity, and recyclability. The as-developed nanosensor can transduce the subcellular OMP-GSH interaction via a sensitive ionic response, which stems from the superior specificity of OMP and its essential charge property. In addition, the nanosensor exhibits good reversibility, since the subsequent tandem reaction after the recognition can well recover the sensing surface. Given the diverse structures and tailorable charge properties of OMP, this work underpins a new and general method of OMP-based ICR single-cell analysis.
Collapse
Affiliation(s)
- Yi-Li Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jia-Hao Chen
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Cheng-Shuang Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Heng-Ye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
34
|
Jiang M, Xi X, Wu Z, Zhang X, Wang S, Wen W. In Situ Measurement of ATP in Single Cells by an Amphiphilic Aptamer-Assisted Electrochemical Nano-Biosensor. Anal Chem 2022; 94:14699-14706. [DOI: 10.1021/acs.analchem.2c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Jiang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Coconstructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiaoxue Xi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Coconstructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhen Wu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Coconstructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiuhua Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Coconstructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shengfu Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Coconstructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Wei Wen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Coconstructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
35
|
Shen Y, Weitz DA, Forde NR, Shayegan M. Line optical tweezers as controllable micromachines: techniques and emerging trends. SOFT MATTER 2022; 18:5359-5365. [PMID: 35819100 DOI: 10.1039/d2sm00259k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the past three decades, the technology of optical tweezers has made significant contributions in various scientific areas, including optics, photonics, and nanosciences. Breakthroughs include manipulating particles in both static and dynamic ways, particle sorting, and constructing controllable micromachines. Advances in shaping and controlling the laser beam profile enable control over the position and location of the trap, which has many possible applications. A line optical tweezer (LOT) can be created by rapidly moving a spot optical tweezer using a tool such as a galvanometer mirror or an acousto-optic modulator. By manipulating the intensity profile along the beam line to be asymmetric or non-uniform, the technique can be adapted to various specific applications. Among the many exciting applications of line optical tweezers, in this work, we discuss in detail applications of LOT, including probing colloidal interactions, transporting and sorting of colloidal microspheres, self-propelled motions, trapping anisotropic particles, exploring colloidal interactions at fluid-fluid interfaces, and building optical thermal ratchets. We further discuss prospective applications in each of these areas of soft matter, including polymeric and biological soft materials.
Collapse
Affiliation(s)
- Yinan Shen
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - David A Weitz
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada
| | - Marjan Shayegan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
36
|
Mao Y, Nielsen P, Ali J. Passive and Active Microrheology for Biomedical Systems. Front Bioeng Biotechnol 2022; 10:916354. [PMID: 35866030 PMCID: PMC9294381 DOI: 10.3389/fbioe.2022.916354] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Microrheology encompasses a range of methods to measure the mechanical properties of soft materials. By characterizing the motion of embedded microscopic particles, microrheology extends the probing length scale and frequency range of conventional bulk rheology. Microrheology can be characterized into either passive or active methods based on the driving force exerted on probe particles. Tracer particles are driven by thermal energy in passive methods, applying minimal deformation to the assessed medium. In active techniques, particles are manipulated by an external force, most commonly produced through optical and magnetic fields. Small-scale rheology holds significant advantages over conventional bulk rheology, such as eliminating the need for large sample sizes, the ability to probe fragile materials non-destructively, and a wider probing frequency range. More importantly, some microrheological techniques can obtain spatiotemporal information of local microenvironments and accurately describe the heterogeneity of structurally complex fluids. Recently, there has been significant growth in using these minimally invasive techniques to investigate a wide range of biomedical systems both in vitro and in vivo. Here, we review the latest applications and advancements of microrheology in mammalian cells, tissues, and biofluids and discuss the current challenges and potential future advances on the horizon.
Collapse
Affiliation(s)
- Yating Mao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Paige Nielsen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| |
Collapse
|
37
|
Mowla A, Li J, Hepburn MS, Maher S, Chin L, Yeoh GC, Choi YS, Kennedy BF. Subcellular mechano-microscopy: high resolution three-dimensional elasticity mapping using optical coherence microscopy. OPTICS LETTERS 2022; 47:3303-3306. [PMID: 35776611 DOI: 10.1364/ol.451681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The importance of cellular-scale mechanical properties is well-established, yet it is challenging to map subcellular elasticity in three dimensions. We present subcellular mechano-microscopy, an optical coherence microscopy (OCM)-based variant of three-dimensional (3-D) compression optical coherence elastography (OCE) that provides an elasticity system resolution of 5 × 5 × 5 µm: a 7-fold improvement in system resolution over previous OCE studies of cells. The improved resolution is achieved through a ∼5-fold improvement in optical resolution, refinement of the strain estimation algorithm, and demonstration that mechanical deformation of subcellular features provides feature resolution far greater than that demonstrated previously on larger features with diameter >250 µm. We use mechano-microscopy to image adipose-derived stem cells encapsulated in gelatin methacryloyl. We compare our results with compression OCE and demonstrate that mechano-microscopy can provide contrast from subcellular features not visible using OCE.
Collapse
|
38
|
Dzementsei A, Barooji YF, Ober EA, Oddershede LB. Foregut organ progenitors and their niche display distinct viscoelastic properties in vivo during early morphogenesis stages. Commun Biol 2022; 5:402. [PMID: 35488088 PMCID: PMC9054744 DOI: 10.1038/s42003-022-03349-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 04/10/2022] [Indexed: 12/12/2022] Open
Abstract
Material properties of living matter play an important role for biological function and development. Yet, quantification of material properties of internal organs in vivo, without causing physiological damage, remains challenging. Here, we present a non-invasive approach based on modified optical tweezers for quantifying sub-cellular material properties deep inside living zebrafish embryos. Material properties of cells within the foregut region are quantified as deep as 150 µm into the biological tissue through measurements of the positions of an inert tracer. This yields an exponent, α, which characterizes the scaling behavior of the positional power spectra and the complex shear moduli. The measurements demonstrate differential mechanical properties: at the time when the developing organs undergo substantial displacements during morphogenesis, gut progenitors are more elastic (α = 0.57 ± 0.07) than the neighboring yolk (α = 0.73 ± 0.08), liver (α = 0.66 ± 0.06) and two mesodermal (α = 0.68 ± 0.06, α = 0.64 ± 0.06) progenitor cell populations. The higher elasticity of gut progenitors correlates with an increased cellular concentration of microtubules. The results infer a role of material properties during morphogenesis and the approach paves the way for quantitative material investigations in vivo of embryos, explants, or organoids. Here, the authors present a method based on optical tweezers to measure mechanical properties of cells inside living zebrafish embryos. The measurement reveals spatiotemporally distinct mechanical properties, linking cell mechanics and morphogenesis.
Collapse
Affiliation(s)
- Aliaksandr Dzementsei
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen N, Denmark
| | - Younes F Barooji
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Elke A Ober
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen N, Denmark.
| | - Lene B Oddershede
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
| |
Collapse
|
39
|
Zhou T, Xu P, Deng W. Lévy Walk Dynamics in an External Constant Force Field in Non-Static Media. JOURNAL OF STATISTICAL PHYSICS 2022; 187:9. [PMID: 35250092 PMCID: PMC8883250 DOI: 10.1007/s10955-022-02904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Based on the recognition of the huge change of the transport properties for diffusion particles in non-static media, we consider a Lévy walk model subjected to an external constant force in non-static media. Since the physical and comoving coordinates of non-static media are related by scale factor, we equivalently transfer the process from physical coordinate into comoving coordinate and derive the master equation governing the probability density function of the position of the particles in comoving coordinate. Utilizing the Hermite orthogonal polynomial expansions, some statistical properties are obtained, including the asymptotic behaviors of the first two moments in both coordinates and kurtosis. For some representative types of non-static media and Lévy walks, the striking and interesting phenomena originating from the interplay between non-static media, external force, and intrinsic stochastic motion are observed. The stationary distribution are also analyzed for some cases through numerical simulations.
Collapse
Affiliation(s)
- Tian Zhou
- Gansu Key Laboratory of Applied Mathematics and Complex Systems, School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Pengbo Xu
- School of Mathematical Sciences, Peking University, Beijing, 100871 People’s Republic of China
| | - Weihua Deng
- Gansu Key Laboratory of Applied Mathematics and Complex Systems, School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| |
Collapse
|
40
|
Shakya G, Yang T, Gao Y, Fajrial AK, Li B, Ruzzene M, Borden MA, Ding X. Acoustically manipulating internal structure of disk-in-sphere endoskeletal droplets. Nat Commun 2022; 13:987. [PMID: 35190549 PMCID: PMC8861019 DOI: 10.1038/s41467-022-28574-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Manipulation of micro/nano particles has been well studied and demonstrated by optical, electromagnetic, and acoustic approaches, or their combinations. Manipulation of internal structure of droplet/particle is rarely explored and remains challenging due to its complicated nature. Here we demonstrated the manipulation of internal structure of disk-in-sphere endoskeletal droplets using acoustic wave. We developed a model to investigate the physical mechanisms behind this interesting phenomenon. Theoretical analysis of the acoustic interactions indicated that these assembly dynamics arise from a balance of the primary and secondary radiation forces. Additionally, the disk orientation was found to change with acoustic driving frequency, which allowed on-demand, reversible adjustment of the disk orientations with respect to the substrate. This dynamic behavior leads to unique reversible arrangements of the endoskeletal droplets and their internal architecture, which may provide an avenue for directed assembly of novel hierarchical colloidal architectures and intracellular organelles or intra-organoid structures. Endoskeletal droplets are a class of complex colloids containing a solid internal phase cast within a liquid emulsion droplet. Here, authors show acoustic manipulation of solid disks inside liquid droplets whose orientation can be externally controlled with the frequency.
Collapse
|
41
|
Mytiliniou M, Wondergem JAJ, Schmidt T, Heinrich D. Impact of neurite alignment on organelle motion. J R Soc Interface 2022; 19:20210617. [PMID: 35135294 PMCID: PMC8825987 DOI: 10.1098/rsif.2021.0617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intracellular transport is pivotal for cell growth and survival. Malfunctions in this process have been associated with devastating neurodegenerative diseases, highlighting the need for a deeper understanding of the mechanisms involved. Here, we use an experimental methodology that leads neurites of differentiated PC12 cells into either one of two configurations: a one-dimensional configuration, where the neurites align along lines, or a two-dimensional configuration, where the neurites adopt a random orientation and shape on a flat substrate. We subsequently monitored the motion of functional organelles, the lysosomes, inside the neurites. Implementing a time-resolved analysis of the mean-squared displacement, we quantitatively characterized distinct motion modes of the lysosomes. Our results indicate that neurite alignment gives rise to faster diffusive and super-diffusive lysosomal motion than the situation in which the neurites are randomly oriented. After inducing lysosome swelling through an osmotic challenge by sucrose, we confirmed the predicted slowdown in diffusive mobility. Surprisingly, we found that the swelling-induced mobility change affected each of the (sub-/super-)diffusive motion modes differently and depended on the alignment configuration of the neurites. Our findings imply that intracellular transport is significantly and robustly dependent on cell morphology, which might in part be controlled by the extracellular matrix.
Collapse
Affiliation(s)
- Maria Mytiliniou
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Joeri A J Wondergem
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Thomas Schmidt
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Doris Heinrich
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands.,Institute for Bioprocessing and Analytical Measurement Techniques, Rosenhof, 37308 Heilbad Heiligenstadt, Germany.,Faculty for Mathematics and Natural Sciences, Technische Universität Ilmenau, 98693 Ilmenau, Germany.,Fraunhofer Institute for Silicate Research ISC, 97082 Würzburg, Germany
| |
Collapse
|
42
|
Sahoo R, Theeyancheri L, Chakrabarti R. Transport of a self-propelled tracer through a hairy cylindrical channel: interplay of stickiness and activity. SOFT MATTER 2022; 18:1310-1318. [PMID: 35060583 DOI: 10.1039/d1sm01693h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Active transport of biomolecules assisted by motor proteins is imperative for the proper functioning of cellular activities. Inspired by the diffusion of active agents in crowded cellular channels, we computationally investigate the transport of an active tracer through a polymer grafted cylindrical channel by varying the activity of the tracer and stickiness of the tracer to the polymers. Our results reveal that the passive tracer exhibits profound subdiffusion with increasing stickiness by exploring deep into the grafted polymeric zone, while purely repulsive one prefers to diffuse through the pore-like space created along the cylindrical axis of the channel. In contrast, the active tracer shows faster dynamics and intermediate superdiffusion even though the tracer preferentially stays close to the dense polymeric region. This observation is further supported by the sharp peaks in the density profile of the probability of radial displacement of the tracer. We discover that the activity plays an important role in deciding the pathway that the tracer takes through the narrow channel. Interestingly, increasing the activity washes out the effect of stickiness. Adding to this, van-Hove functions manifest that the active tracer dynamics deviates from Gaussianity, and the degree of deviation grows with the activity. Our work has direct implications on how effective transportation and delivery of cargo can be achieved through a confined medium where activity, interactions, and crowding are interplaying. Looking ahead, these factors will be crucial for understanding the mechanism of artificial self-powered machines navigating through the cellular channels and performing in vivo challenging tasks.
Collapse
Affiliation(s)
- Rajiblochan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ligesh Theeyancheri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
43
|
Li W, Wang H, Yang S, Isak AN, Song Y, Zhang F, Mao D, Zhu X. Magnetism-Controllable Catalytic Activity of DNAzyme. Anal Chem 2022; 94:2827-2834. [PMID: 35104119 DOI: 10.1021/acs.analchem.1c04506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controllable regulation of enzyme activity is an important prerequisite for the in-depth application of enzymes, especially in today's intelligent era. However, irreversible regulation and cumbersome operation make this goal difficult to achieve. Here, by adopting magnetism and a harmless, noncontact, and time- and space-controllable physical element, we developed a system that could conveniently and reversibly regulate the activity of DNAzyme. In this system, the strands of the DNAzyme could be stretched or folded by applying or removing a magnetic field. Thereby, the conformation-dependent endonuclease activity of the DNAzyme could be facilely switched between an "OFF" and "ON" state. This system provides a reusable platform for the control of enzyme catalytic activity through magnetism, which provides guidance for further application in some related scientific research, especially the regulation of the activity of conformation-dependent polymers (DNAzymes, aptamers, and peptides).
Collapse
Affiliation(s)
- Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Hao Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Shiqi Yang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Albertina N Isak
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yuchen Song
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Fan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Dongsheng Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| |
Collapse
|
44
|
Zhang Z, Ma C, Xu Q, Zhu JJ. Recent progress in electrochemiluminescence microscopy analysis of single cells. Analyst 2022; 147:2884-2894. [DOI: 10.1039/d2an00709f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An overview of recent progress in electrochemiluminescence microscopy analysis of single cells classified according to different ECL routes, namely the oxidative-reduction, low oxidation potential, catalytic and direct oxidation routes.
Collapse
Affiliation(s)
- Zhichen Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Cheng Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
45
|
Doerries TJ, Chechkin AV, Schumer R, Metzler R. Rate equations, spatial moments, and concentration profiles for mobile-immobile models with power-law and mixed waiting time distributions. Phys Rev E 2022; 105:014105. [PMID: 35193292 DOI: 10.1103/physreve.105.014105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
We present a framework for systems in which diffusion-advection transport of a tracer substance in a mobile zone is interrupted by trapping in an immobile zone. Our model unifies different model approaches based on distributed-order diffusion equations, exciton diffusion rate models, and random-walk models for multirate mobile-immobile mass transport. We study various forms for the trapping time dynamics and their effects on the tracer mass in the mobile zone. Moreover, we find the associated breakthrough curves, the tracer density at a fixed point in space as a function of time, and the mobile and immobile concentration profiles and the respective moments of the transport. Specifically, we derive explicit forms for the anomalous transport dynamics and an asymptotic power-law decay of the mobile mass for a Mittag-Leffler trapping time distribution. In our analysis we point out that even for exponential trapping time densities, transient anomalous transport is observed. Our results have direct applications in geophysical contexts, but also in biological, soft matter, and solid state systems.
Collapse
Affiliation(s)
- Timo J Doerries
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Aleksei V Chechkin
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
- Faculty of Pure and Applied Mathematica, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wyspianskiego 27, 50-370 Wrocław, Poland
- Akhiezer Institute for Theoretical Physics, 61108 Kharkov, Ukraine
| | - Rina Schumer
- Desert Research Institute, Reno, Nevada 89512, USA
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
46
|
Barooji YF, Hvid KG, Petitjean II, Brickman JM, Oddershede LB, Bendix PM. Changes in Cell Morphology and Actin Organization in Embryonic Stem Cells Cultured under Different Conditions. Cells 2021; 10:cells10112859. [PMID: 34831083 PMCID: PMC8616278 DOI: 10.3390/cells10112859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
The cellular cytoskeleton provides the cell with a mechanical rigidity that allows mechanical interaction between cells and the extracellular environment. The actin structure plays a key role in mechanical events such as motility or the establishment of cell polarity. From the earliest stages of development, as represented by the ex vivo expansion of naïve embryonic stem cells (ESCs), the critical mechanical role of the actin structure is becoming recognized as a vital cue for correct segregation and lineage control of cells and as a regulatory structure that controls several transcription factors. Naïve ESCs have a characteristic morphology, and the ultrastructure that underlies this condition remains to be further investigated. Here, we investigate the 3D actin cytoskeleton of naïve mouse ESCs using super-resolution optical reconstruction microscopy (STORM). We investigate the morphological, cytoskeletal, and mechanical changes in cells cultured in 2i or Serum/LIF media reflecting, respectively, a homogeneous preimplantation cell state and a state that is closer to embarking on differentiation. STORM imaging showed that the peripheral actin structure undergoes a dramatic change between the two culturing conditions. We also detected micro-rheological differences in the cell periphery between the cells cultured in these two media correlating well with the observed nano-architecture of the ESCs in the two different culture conditions. These results pave the way for linking physical properties and cytoskeletal architecture to cell morphology during early development.
Collapse
Affiliation(s)
- Younes F. Barooji
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.F.B.); (K.G.H.); (I.I.P.)
| | - Kasper G. Hvid
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.F.B.); (K.G.H.); (I.I.P.)
| | - Irene Istúriz Petitjean
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.F.B.); (K.G.H.); (I.I.P.)
| | - Joshua M. Brickman
- The Novo Nordisk Foundation Center for Stem Cell Biology, 2200 Copenhagen, Denmark;
| | - Lene B. Oddershede
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.F.B.); (K.G.H.); (I.I.P.)
- Correspondence: (L.B.O.); (P.M.B.)
| | - Poul M. Bendix
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.F.B.); (K.G.H.); (I.I.P.)
- Correspondence: (L.B.O.); (P.M.B.)
| |
Collapse
|
47
|
|
48
|
Nie J, Tian F, Zheng B, Wang Z, Zheng P. Exploration of Metal-Ligand Coordination Bonds in Proteins by Single-molecule Force Spectroscopy. CHEM LETT 2021. [DOI: 10.1246/cl.210307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingyuan Nie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
49
|
Lu M, Ward E, van Tartwijk FW, Kaminski CF. Advances in the study of organelle interactions and their role in neurodegenerative diseases enabled by super-resolution microscopy. Neurobiol Dis 2021; 159:105475. [PMID: 34390833 DOI: 10.1016/j.nbd.2021.105475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022] Open
Abstract
From the first illustrations of neuronal morphology by Ramón y Cajal to the recent three-dimensional reconstruction of synaptic connections, the development of modern neuroscience has greatly benefited from breakthroughs in imaging technology. This also applies specifically to the study of neurodegenerative diseases. Much of the research into these diseases relies on the direct visualisation of intracellular structures and their dynamics in degenerating neural cells, which cannot be fully resolved by diffraction-limited microscopes. Progress in the field has therefore been closely linked to the development of super-resolution imaging methods. Their application has greatly advanced our understanding of disease mechanisms, ranging from the structural progression of protein aggregates to defects in organelle morphology. Recent super-resolution studies have specifically implicated the disruption of inter-organelle interactions in multiple neurodegenerative diseases. In this article, we describe some of the key super-resolution techniques that have contributed to this field. We then discuss work to visualise changes in the structure and dynamics of organelles and associated dysfunctions. Finally, we consider what future developments in imaging technology may further our knowledge of these processes.
Collapse
Affiliation(s)
- Meng Lu
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Edward Ward
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Francesca W van Tartwijk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Clemens F Kaminski
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK.
| |
Collapse
|
50
|
Xu Z, Zhu H, Wang H. Segmentation of the urothelium in optical coherence tomography images with dynamic contrast. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210012RR. [PMID: 34390233 PMCID: PMC8363479 DOI: 10.1117/1.jbo.26.8.086002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/26/2021] [Indexed: 05/13/2023]
Abstract
SIGNIFICANCE Speckle variation induced by intracellular motion (IM) in the urothelium was observed in optical coherence tomography (OCT) images. IM can be used as a dynamic contrast to segment the urothelium by comparing two sequential OCT images. This method opens the possibility of specifically tracking the distribution of urothelial cancerous cells for identifying the microinvasion of bladder tumors. APPROACH OCT images were acquired ex vivo with fresh porcine bladder tissue. IM was analyzed by tracking speckle variation using autocorrelation function, then quantified with constrained regularization method for inverting data (CONTIN method) to identify the decorrelation time (DT) of the speckle variations. Variance analysis was also conducted to show IM amplitude and distribution in the urothelium. The segmentation of the urothelium was demonstrated with OCT images with a visible urothelial layer and OCT images with an invisible urothelial layer. RESULTS Significant speckle variation induced by IM was observed in the urothelium. However, the distribution of the IM is heterogeneous. The DTs are mostly concentrated between 1 and 30 ms. With the IM as a dynamic contrast, the urothelium can be accurately and exclusively segmented, even the urothelial layer is invisible in normal OCT images. CONCLUSIONS IM can be used as a dynamic contrast to exclusively track urothelial cell distribution. This contrast may provide a new mechanism for OCT to image the invasion depth and pattern of urothelial cancerous cells for accurately substaging of bladder cancer.
Collapse
Affiliation(s)
- Zhuo Xu
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, Ohio, United States
| | - Hui Zhu
- Urology Section Louis Stokes Cleveland Veterans Affairs Medical Center. Cleveland, Ohio, United States
- Cleveland Clinic Foundation, Glickman Urological and Kidney Institute, Department of Urology, Ohio, United States
| | - Hui Wang
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, Ohio, United States
- Address all correspondence to Hui Wang,
| |
Collapse
|