1
|
Liu S, Lin H, Peng T, Yang Z, Wan P, Li J, Yang L, Dai X, Tu S, Long X, Lei A, Wang T, Yi H. Electrochemical Amino-Oxygenation Cyclization via Alkene Radical Cation/Bisnucleophile Engagement to Saturated N/O-Heterocycles. Angew Chem Int Ed Engl 2025; 64:e202501424. [PMID: 40032614 DOI: 10.1002/anie.202501424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
Regioselective functionalization of alkenes to create nitrogen- and oxygen-containing heterocycles remains a significant challenge in organic synthesis. Because of their unique electronic and biological properties, these heterocycles are crucial in pharmaceuticals and materials. Herein, we present an electrochemical amino-oxygenation of alkenes using alkene radical cations and bisnucleophiles, enabling the synthesis of saturated N/O-heterocycles in an undivided cell. This method employs readily available amides and alkenes, eliminating the need for additional oxidants or redox catalysts. The in situ generation of alkene radical cations results in high yields with excellent regio- and chemoselectivity. Our approach offers a direct route to six-, seven-, and eight-membered N/O-heterocycles from simple starting materials, broadening access to complex molecules essential for medicinal chemistry and materials science.
Collapse
Affiliation(s)
- Shengzhang Liu
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials, and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
- Key Laboratory of Effective Material Basis of TCM (2024SSY07102), Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Hai Lin
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials, and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
| | - Tianjiao Peng
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Zhaoliang Yang
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials, and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
| | - Pingnan Wan
- Key Laboratory of Effective Material Basis of TCM (2024SSY07102), Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Jiarong Li
- Key Laboratory of Effective Material Basis of TCM (2024SSY07102), Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Lingyun Yang
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials, and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
| | - Xinglei Dai
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials, and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
| | - Sichao Tu
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials, and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
| | - Xiao Long
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials, and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials, and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials, and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
2
|
Xu Y, Wu H, Zhu C, Tu M, Zhang L. A General Strategy for C(sp 3)─H Bond Etherification via Quinoline Derivative-Mediated Electrolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416803. [PMID: 40285672 DOI: 10.1002/advs.202416803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/11/2025] [Indexed: 04/29/2025]
Abstract
Electrooxidative coupling of C(sp3)─H bonds with nucleophiles offers an attractive method for constructing C─C and C─X bonds without sacrificial oxidants. However, the direct electrochemical approach requires the nucleophilic reagent to have a higher potential than the C(sp3)─H coupling partners, which restricts the substrate scope. In this study, a quinoline derivative is introduced as an electrochemical mediator, enabling efficient C─H bond etherification with reduced reliance on the electronic properties of substrates. The catalytic system demonstrates broad substrate compatibility, extending to C(sp3)─H coupling partners featuring a diverse range of C─H bonds, including tertiary benzylic C─H bonds and unactivated C(sp3)─H bonds. Mechanistic investigations confirm the role of the electrocatalyst in the hydrogen atom transfer (HAT) process. This method provides a versatile and efficient strategy for the late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Yousen Xu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Hao Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - ChenXi Zhu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Minjun Tu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Lei Zhang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
3
|
Dohi T, Elboray EE, Kikushima K, Morimoto K, Kita Y. Iodoarene Activation: Take a Leap Forward toward Green and Sustainable Transformations. Chem Rev 2025; 125:3440-3550. [PMID: 40053418 PMCID: PMC11951092 DOI: 10.1021/acs.chemrev.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Constructing chemical bonds under green sustainable conditions has drawn attention from environmental and economic perspectives. The dissociation of (hetero)aryl-halide bonds is a crucial step of most arylations affording (hetero)arene derivatives. Herein, we summarize the (hetero)aryl halides activation enabling the direct (hetero)arylation of trapping reagents and construction of highly functionalized (hetero)arenes under benign conditions. The strategies for the activation of aryl iodides are classified into (a) hypervalent iodoarene activation followed by functionalization under thermal/photochemical conditions, (b) aryl-I bond dissociation in the presence of bases with/without organic catalysts and promoters, (c) photoinduced aryl-I bond dissociation in the presence/absence of organophotocatalysts, (d) electrochemical activation of aryl iodides by direct/indirect electrolysis mediated by organocatalysts and mediators acting as electron shuttles, and (e) electrophotochemical activation of aryl iodides mediated by redox-active organocatalysts. These activation modes result in aryl iodides exhibiting diverse reactivity as formal aryl cations/radicals/anions and aryne precursors. The coupling of these reactive intermediates with trapping reagents leads to the facile and selective formation of C-C and C-heteroatom bonds. These ecofriendly, inexpensive, and functional group-tolerant activation strategies offer green alternatives to transition metal-based catalysis.
Collapse
Affiliation(s)
- Toshifumi Dohi
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Elghareeb E. Elboray
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Department
of Chemistry, Faculty of Science, South
Valley University, Qena 83523, Egypt
| | - Kotaro Kikushima
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Koji Morimoto
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
4
|
Endo H, Sun YC, Sasaki N, Nokami T. Recent advancements in synthesis of cyclic oligosaccharides. Chem Commun (Camb) 2025; 61:4483-4494. [PMID: 40007235 DOI: 10.1039/d4cc04877f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The development of synthetic methods for chemical glycosylation enables the synthesis of various oligosaccharides, including nonnatural cyclic oligosaccharides. Electrochemical glycosylation is an enabling technology not only for automated solution-phase synthesis of linear oligosaccharides but also for the chemical synthesis of cyclic oligosaccharides. In this review, recent syntheses of nonnatural cyclic oligosaccharides are also introduced, and glycosylation methodologies are focused on.
Collapse
Affiliation(s)
- Hirofumi Endo
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, Tottori 680-8552, Japan.
| | - Yu-Cong Sun
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, Tottori 680-8552, Japan.
| | - Norihiko Sasaki
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, Tottori 680-8552, Japan.
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, Tottori 680-8552, Japan.
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamacho minami, Tottori city, Tottori 680-8552, Japan
| |
Collapse
|
5
|
Zhang M, Liu T, Chen XQ, Jin H, Lv JJ, Wang S, Yu X, Yang C, Wang ZJ. Recent advances in electrochemical 1,2-difunctionalization of alkenes: mechanisms and perspectives. Org Biomol Chem 2025; 23:2323-2357. [PMID: 39932496 DOI: 10.1039/d4ob01673d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In recent years, significant achievements have been made in the field of electroorganic chemistry regarding the difunctionalization of alkenes. Researchers have developed innovative strategies utilizing the unique reactivity of electrochemical processes to synthesize complex molecules with high regioselectivity and stereoselectivity. This technology is widely applied in the total synthesis of natural products and in the pharmaceutical industry. This article reviews the research progress in the electrochemical difunctionalization of alkenes through three different radical-mediated pathways over the past five years. It includes discussions on 1,2-stereoselective and non-diastereoselective difunctionalization reactions, rearrangements, intramolecular migrations, and cyclization processes. The summary emphasizes innovative electrode designs, reaction mechanisms, and the integration with other emerging technologies, highlighting the potential of this method in modern organic chemistry. Additionally, it aims to address current challenges and propose possible solutions, providing a promising direction for electrochemically mediated difunctionalization reactions of alkenes.
Collapse
Affiliation(s)
- Mingming Zhang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Ting Liu
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xue-Qiu Chen
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Huile Jin
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Jing-Jing Lv
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Shun Wang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xiaochun Yu
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Chuntian Yang
- Wenzhou Institute of Industry & Science, Wenzhou, 325035, P. R. China
| | - Zheng-Jun Wang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Lesko I, Sengmany S, Beltran R, Le Gall E, Léonel E. Transition Metal-Free Direct Electrochemical Carboxylation of Organic Halides Using a Sacrificial Magnesium Anode: Straightforward Synthesis of Carboxylic Acids. ChemistryOpen 2025:e202400426. [PMID: 39876650 DOI: 10.1002/open.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
The direct electrochemical carboxylation of aryl, benzyl and alkyl halides by CO2 is described using a magnesium anode and a nickel foam cathode in an undivided cell. The process employs a sacrificial anode and does not require the additional use of a transition metal catalyst or demanding conditions, as the reactions are carried out under galvanostatic mode, at -10 °C and with commercial DMF. Under these operationally simple conditions, an important range of carboxylic acids are affordable. Mechanistic investigation account for the in situ generation of a carbanionic species that is not a simple organomagnesium halide.
Collapse
Affiliation(s)
- Iryna Lesko
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | - Stéphane Sengmany
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | | | - Erwan Le Gall
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | - Eric Léonel
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| |
Collapse
|
7
|
Matsui K, Uyanik M, Ishihara K. Electrochemical oxidative dearomatization of electron-deficient phenols using Br +/Br - catalysis. Chem Commun (Camb) 2025; 61:2075-2078. [PMID: 39790034 DOI: 10.1039/d4cc06472k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
An electrochemical method for the oxidative dearomatization of electron-deficient phenols by employing tetrabutylammonium bromide as a mediator under aqueous biphasic conditions is reported. This approach represents a safer alternative to the use of stoichiometric chemical oxidants and enables oxidative dearomative spirolactonization and spiroetherification reactions. Compared to previous approaches based on direct electrolysis, this strategy expands the substrate scope to electron-deficient phenols. Cyclic-voltammetry analysis suggests that the bromide ions might be oxidized to Br2 or Br3- ions that are in equilibrium with the catalytically active hypobromite under aqueous conditions.
Collapse
Affiliation(s)
- Kai Matsui
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan.
| | - Muhammet Uyanik
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan.
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan.
| |
Collapse
|
8
|
Shaheeda S, Sharma S, Mandal N, Shyamal P, Datta A, Paul A, Bisai A. Regioselective Electrochemical Construction of C sp2-C sp2 Linkage at C5-C5' Position of 2-Oxindoles via an Intermolecular Anodic Dehydrogenative Coupling. Chemistry 2024; 30:e202403420. [PMID: 39308393 DOI: 10.1002/chem.202403420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 11/13/2024]
Abstract
Applying electricity as a reagent in synthetic organic chemistry has attracted particular attention from synthetic chemists worldwide as an environmentally benign and cost-effective technique. Herein, we report the construction of the Csp2-Csp2 linkage at the C5-C5' position of 2-oxindole utilizing electricity as the traceless oxidant in an anodic dehydrogenative homo-coupling process. A variety of 3,3-disubstituted-2-oxindoles were subjected to dimerization, achieving yields of up to 70 % through controlled potential electrolysis at an applied potential of 1.5 V versus Ag/Ag+ nonaqueous reference electrode. This electro-synthetic approach facilitates the specific assembly of C5-C5' (para-para coupled) dimer of 3,3-disubstituted-2-oxindole without the necessity of any external oxidants or additives and DFT (Density Functional Theory) calculations provided confirmation of this pronounced regioselectivity. Furthermore, validation through control experiments and voltammetric analyses substantiated the manifestation of radical-radical coupling (or biradical pathway) for the dimerization process.
Collapse
Affiliation(s)
- Saina Shaheeda
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Nilangshu Mandal
- School of Chemical Sciences, Indian Assocation for the cultivation of Sciences Kolkata, Jadhavpur, West Bengal, 700032, India
| | - Pranay Shyamal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 462066, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Assocation for the cultivation of Sciences Kolkata, Jadhavpur, West Bengal, 700032, India
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 462066, India
| |
Collapse
|
9
|
Qi C, Goti G, Sartorel A, Dell'Amico L, Mazzarella D. Electrochemical Ferrier Rearrangement of Glycals. Org Lett 2024; 26:9328-9333. [PMID: 39432820 DOI: 10.1021/acs.orglett.4c03511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The Ferrier rearrangement (FR) is a well-documented reaction that relies on strong acids or oxidants to convert glycals into unsaturated glycosyl derivatives. In this work, we introduce an electrochemical variant of the FR, offering a broad substrate compatibility. Various nucleophiles and glycal derivatives afford 2,3-unsaturated glycosyl derivatives in high yields with excellent diastereoselectivities. This sustainable method promises to expand the electrochemistry applications in sugar chemistry.
Collapse
Affiliation(s)
- Chun Qi
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131 Padova, Italy
| | - Giulio Goti
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131 Padova, Italy
| | - Andrea Sartorel
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131 Padova, Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131 Padova, Italy
| | - Daniele Mazzarella
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
10
|
Hawkins BC, Chalker JM, Coote ML, Bissember AC. Electrochemically Generated Carbocations in Organic Synthesis. Angew Chem Int Ed Engl 2024; 63:e202407207. [PMID: 39075778 DOI: 10.1002/anie.202407207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
This Minireview examines a selection of case studies that showcase distinctive and enabling electrochemical approaches that have allowed for the generation and reaction of carbocation intermediates under mild conditions. Particular emphasis is placed on the progress that has been made in this area of organic synthesis and polymer chemistry over the past decade.
Collapse
Affiliation(s)
- Bill C Hawkins
- Department of Chemistry, University of Otago, 9054, Dunedin, Otago, New Zealand
| | - Justin M Chalker
- Institute for Nanoscale Science and Technology, Flinders University, 5042, Adelaide, South Australia, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, 5042, Adelaide, South Australia, Australia
| | - Alex C Bissember
- School of Natural Sciences-Chemistry, University of Tasmania, 7001, Hobart, Tasmania, Australia
| |
Collapse
|
11
|
Cheng YY, Xu J, Lin Z, Li Y, Ackermann L. Photoelectrocatalytic [4+2] Annulation for S-Heterocycle Assembly Enabled by Proton-Coupled Electron Transfer (PCET). Chemistry 2024; 30:e202402333. [PMID: 39096120 DOI: 10.1002/chem.202402333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/04/2024]
Abstract
Cross-dehydrogenative couplings (CDC) present an efficient strategy for the assembly of biorelevant heterocycles, but are thus far largely limited to toxic transition metals and rather harsh reaction conditions. In sharp contrast, we, herein report on a mild photoelectrocatalyzed CDC-[4+2] annulation enabling the synthesis of functionalized isothiochromenes enabled by a proton-coupled electron transfer (PCET) strategy. The transformative photoelectrocatalysis obviated toxic transition-metal, high reaction temperatures, and stoichiometric chemical redox reagents. This approach was characterized by exceedingly mild conditions, ample substrate scope, and a commercially available catalyst. Gram-scale reactions and a telescoped synthesis route reflected the unique potential in the green synthesis of important S-heterocycles.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Jiawei Xu
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Zhipeng Lin
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Yanjun Li
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| |
Collapse
|
12
|
Su S, Guo Y, Parnitzke B, Poerio T, Derosa J. A Voltage-Controlled Strategy for Modular Shono-Type Amination. J Am Chem Soc 2024; 146:28663-28668. [PMID: 39401528 DOI: 10.1021/jacs.4c12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Shono-type oxidation to generate functionalized heterocycles is a powerful method for late-stage diversification of relevant pharmacophores; however, development beyond oxygen-based nucleophiles remains underdeveloped. The limited scope can often be ascribed to constant current electrolysis resulting in potential drifts that oxidize a desired nucleophilic partner. Herein, we report a voltage-controlled strategy to selectively oxidize a broad scope of substrates, enabling modular C-N bond formation from protected amine nucleophiles. We implement an electroanalytically guided workflow using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) to identify oxidation potentials across a range of heterocyclic substrates. Controlled potential electrolysis (CPE) selectively generates α-functionalized C-N products in moderate to good yields using carbamate-, sulfonamide-, and benzamide-derived nucleophiles. The importance of voltage control is further exemplified through a systematic study comparing our developed CPE method to constant current electrolysis (CCE) protocols. Voltage-guided CCE and traditionally optimized CCE reveal the importance of maintaining voltage control for high yields and selectivity over a broad scope; a case study with a morpholine-derived substrate illustrates the negative impact of potential drifting under CCE. Sulfonamide drugs, which have significant oxidation potential overlap with model substrates, are rendered competent nucleophiles under CPE. Lastly, sequential voltage-controlled C-N and C-O functionalization of a model substrate generates difunctionalized pyrrolidines further broadening the utility of this reaction.
Collapse
Affiliation(s)
- Siyuan Su
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Yahui Guo
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Bryan Parnitzke
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Tegan Poerio
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Joseph Derosa
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
13
|
Naulin E, Brion A, Biatuma D, Roulland E, Genta-Jouve G, Neuville L, Masson G. Stereoselective synthesis of fissoldhimine alkaloid analogues via sequential electrooxidation and heterodimerization of ureas. Chem Commun (Camb) 2024; 60:11560-11563. [PMID: 39314193 DOI: 10.1039/d4cc02616k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This study develops a biogenetic synthesis strategy using electrooxidation and heterodimerization of N-substituted pyrrolidine-1-carboxamides to create diverse analogues of the fissoldhimine alkaloid core. Under acidic conditions, 2-alkoxypyrrolidine-1-carboxamides from Shono oxidation formed endo-heterodimers with high yields and diastereoselectivity. Enantioselective heterodimerization using chiral phosphoric acid catalysis produced exo-heterodimers with high enantioselectivity.
Collapse
Affiliation(s)
- Emma Naulin
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
| | - Aurélien Brion
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
| | - Didine Biatuma
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
| | - Emmanuel Roulland
- UMR 8038, CitCom, CNRS-Université Paris Cité, Faculté de Pharmacie 4, avenue de l'Observatoire, 75006 Paris, France
| | - Grégory Genta-Jouve
- UAR3456 CNRS LEEISA, Centre de Recherche de Montabo, IRD, 275 Route de Montabo, CEDEX BP 70620, 97334 Cayenne, France
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 78440 Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 78440 Porcheville, France
| |
Collapse
|
14
|
Krumbiegel C, Ly HK, Weidinger IM. Solvent-dependent reaction mechanisms in the electrooxidative coupling of phenols: insights by operando Raman spectroelectrochemistry. Chem Commun (Camb) 2024; 60:10346-10349. [PMID: 39221644 DOI: 10.1039/d4cc02721c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The electrochemical oxidative phenol coupling reaction is a sustainable method for accessing biphenolic compounds. Using the dimerization of sesamol as a model reaction, insights into the reaction mechanism were gained via operando Raman spectroscopy. By varying the solvent and electrodes, different reaction mechanisms were identified and correlated with the respective product yields.
Collapse
Affiliation(s)
- Christian Krumbiegel
- Institute for Electrochemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
| | - Hoang Khoa Ly
- Institute for Electrochemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
| | - Inez M Weidinger
- Institute for Electrochemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
| |
Collapse
|
15
|
Panda N, Palit K, Mohapatra S. "Cation Pool" generated from DMSO and 1,2-dihaloethanes and their application in organic synthesis. Org Biomol Chem 2024; 22:7103-7110. [PMID: 39175440 DOI: 10.1039/d4ob00740a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Conventionally, carbenium and onium ions are prepared in the presence of nucleophiles due to their instability and transient nature. The nucleophiles that are unstable or inert to the reaction media cannot be used for reaction with the cationic species to access the desired compounds. To overcome these limitations, developing methods for generating organic cations irreversibly in the absence of nucleophiles is essential. The "cation pool" method developed by Yoshida and co-workers stands out as a reliable strategy to generate and accumulate the reactive cations in solution in the absence of nucleophiles. The cation pool method involves the electrolysis of the substrate in the absence of nucleophiles, usually at low temperature. Moreover, the generation of halogen and chalcogen cations through electrolysis needs extra care because of their low stability. This review covers our effort in generating and accumulating halogen cations as "cation pools", most importantly by simply heating a mixture of dimethyl sulfoxide (DMSO) and 1,2-dihaloethane (DXE, X = Cl, Br, I), and their use in the halogenation reactions. Furthermore, condition-dependent Pummerer-type fragmentations of DMSO-stabilized halogen cations to methyl(methylene)sulfonium ions and chlorodimethylsulfonium ions for synthetic applications are described.
Collapse
Affiliation(s)
- Niranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha-769008, India.
| | - Kuntal Palit
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha-769008, India.
| | - Soumya Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha-769008, India.
| |
Collapse
|
16
|
Jat PK, Badsara SS. Rapid Access to Triarylmethanes (TRAMs) Enabled by Direct Electrolysis of Indolizines with Carbonyls. J Org Chem 2024; 89:12263-12276. [PMID: 39147725 DOI: 10.1021/acs.joc.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A fast, scalable, transition metal-free, electrochemical sp2 geminal functionalization of carbonyls enabled by anodic oxidation of non-prefunctionalized chromone-fused indolizines to access the triarylmethanes (TRAMs) is disclosed for the first time. This momentary electrochemical approach features the use of readily available carbonyls, implantation of the C(sp3) center (well-known for dramatically improving biological active potency), a broad substrate scope, and excellent yields of TRAMs with fluorescence properties.
Collapse
Affiliation(s)
- Pooja Kumari Jat
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India
| |
Collapse
|
17
|
Yamaguchi M, Shimao H, Hamasaki K, Nishiwaki K, Kashimura S, Matsumoto K. gem-Difluorination of carbon-carbon triple bonds using Brønsted acid/Bu 4NBF 4 or electrogenerated acid. Beilstein J Org Chem 2024; 20:2261-2269. [PMID: 39286791 PMCID: PMC11403803 DOI: 10.3762/bjoc.20.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 09/19/2024] Open
Abstract
gem-Difluorination of carbon-carbon triple bonds was conducted using Brønsted acids, such as Tf2NH and TfOH, combined with Bu4NBF4 as the fluorine source. The electrochemical oxidation of a Bu4NBF4/CH2Cl2 solution containing alkyne substrates could also give the corresponding gem-difluorinated compounds (in-cell method). The ex-cell electrolysis method was also applicable for gem-difluorination of alkynes.
Collapse
Affiliation(s)
- Mizuki Yamaguchi
- Department of Chemistry, School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Hiroki Shimao
- Department of Chemistry, School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kengo Hamasaki
- Department of Chemistry, School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Keiji Nishiwaki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Shigenori Kashimura
- Department of Chemistry, School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kouichi Matsumoto
- Department of Chemistry, School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
18
|
Armbruster C, Sellin M, Seiler M, Würz T, Oesten F, Schmucker M, Sterbak T, Fischer J, Radtke V, Hunger J, Krossing I. Pushing redox potentials to highly positive values using inert fluorobenzenes and weakly coordinating anions. Nat Commun 2024; 15:6721. [PMID: 39112470 PMCID: PMC11306567 DOI: 10.1038/s41467-024-50669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
While the development of weakly coordinating anions (WCAs) received much attention, the progress on weakly coordinating and inert solvents almost stagnated. Here we study the effect of strategic F-substitution on the solvent properties of fluorobenzenes C6FxH6-x (xFB, x = 1-5). Asymmetric fluorination leads to dielectric constants as high as 22.1 for 3FB that exceeds acetone (20.7). Combined with the WCAs [Al(ORF)4]- or [(FRO)3Al-F-Al(ORF)3]- (RF = C(CF3)3), the xFB solvents push the potentials of Ag+ and NO+ ions to +1.50/+1.52 V vs. Fc+/Fc. The xFB/WCA-system has electrochemical xFB stability windows that exceed 5 V for all xFBs with positive upper limits between +1.82 V (1FB) and +2.67 V (5FB) vs. Fc+/Fc. High-level ab initio calculations with inclusion of solvation energies show that these high potentials result from weak interactions of the ions with solvent and counterion. To access the available positive xFB potential range with stable reagents, the innocent deelectronator salts [anthraceneF]+∙[WCA]- and [phenanthreneF]+∙[WCA]- with potentials of +1.47 and +1.89 V vs. Fc+/Fc are introduced.
Collapse
Affiliation(s)
- Christian Armbruster
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Malte Sellin
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Matthis Seiler
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Tanja Würz
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Friederike Oesten
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Maximilian Schmucker
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Tabea Sterbak
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Julia Fischer
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Valentin Radtke
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Johannes Hunger
- Molecular Spectroscopy Department, Max-Planck-Institut for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany.
| |
Collapse
|
19
|
Wu J, Purushothaman R, Kallert F, Homölle SL, Ackermann L. Electrochemical Glycosylation via Halogen-Atom-Transfer for C-Glycoside Assembly. ACS Catal 2024; 14:11532-11544. [PMID: 39114086 PMCID: PMC11301629 DOI: 10.1021/acscatal.4c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Glycosyl donor activation emerged as an enabling technology for anomeric functionalization, but aimed primarily at O-glycosylation. In contrast, we herein disclose mechanistically distinct electrochemical glycosyl bromide donor activations via halogen-atom transfer and anomeric C-glycosylation. The anomeric radical addition to alkenes led to C-alkyl glycoside synthesis under precious metal-free reaction conditions from readily available glycosyl bromides. The robustness of our e-XAT strategy was further mirrored by C-aryl and C-acyl glycosides assembly through nickela-electrocatalysis. Our approach provides an orthogonal strategy for glycosyl donor activation with expedient scope, hence representing a general method for direct C-glycosides assembly.
Collapse
Affiliation(s)
| | | | - Felix Kallert
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Simon L. Homölle
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| |
Collapse
|
20
|
Kamata K, Kuriyama M, Tahara H, Nishikawa A, Yamamoto K, Demizu Y, Onomura O. One-pot C(sp 3)-H difluoroalkylation of tetrahydroisoquinolines and isochromans via electrochemical oxidation and organozinc alkylation. Chem Commun (Camb) 2024; 60:6395-6398. [PMID: 38832582 DOI: 10.1039/d4cc02033b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The C(sp3)-H difluoroalkylation for the introduction of carbonylated CF2 groups into tetrahydroisoquinolines (THIQs) and isochromans has been achieved by using electrochemical oxidation and organozinc alkylation. This one-pot process proceeded smoothly under transition-metal catalyst- and chemical oxidant-free conditions, and the desired products were obtained in good to high yields with a broad scope, except for N-Boc-THIQ. In addition, the gram-scale experiment successfully demonstrated the promising scalability. This is the first example of an electrochemical method for C(sp3)-H difluoroalkylation of amines and ethers.
Collapse
Affiliation(s)
- Kazuya Kamata
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Hironobu Tahara
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Akira Nishikawa
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
21
|
Alzaidi O, Wirth T. Continuous Flow Electroselenocyclization of Allylamides and Unsaturated Oximes to Selenofunctionalized Oxazolines and Isoxazolines. ACS ORGANIC & INORGANIC AU 2024; 4:350-355. [PMID: 38855333 PMCID: PMC11157512 DOI: 10.1021/acsorginorgau.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 06/11/2024]
Abstract
The synthesis of selenofunctionalized oxazolines and isoxazolines from N-allyl benzamides and unsaturated oximes with diselenides was studied by utilizing a continuous flow electrochemical approach. At mild reaction conditions and short reaction times of 10 min product yields of up to 90% were achieved including a scale-up reaction. A broad substrate scope was studied and the reaction was shown to have a wide functional group tolerance.
Collapse
Affiliation(s)
- Ohud Alzaidi
- School
of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, U.K.
- Department
of Chemistry, College of Science –
Al Khurma, Taif University, P.O. Box
11099, Taif 21944, Saudi Arabia
| | - Thomas Wirth
- School
of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, U.K.
| |
Collapse
|
22
|
Sun K, Sun T, Jiang Y, Shi J, Sun W, Zheng Y, Wang Z, Li Z, Lv X, Zhang X, Luo F, Liu S. Iron-catalyzed benzylic C-H thiolation via photoinduced ligand-to-metal charge-transfer. Chem Commun (Camb) 2024; 60:5755-5758. [PMID: 38747147 DOI: 10.1039/d4cc01574f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Here, we describe an iron-catalyzed benzylic C-H thiolation of alkylarenes via photoinduced ligand-to-metal charge-transfer. The protocol features operational simplicity, mild reaction conditions, and the use of FeCl3 as catalyst and thiols/disulfides as sulfur sources, which enables the transformation of diverse benzylic C-H bonds into C-S bonds with a high efficiency.
Collapse
Affiliation(s)
- Kaiting Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Tianyi Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Yuxin Jiang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Jiayue Shi
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Wenlu Sun
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Youyou Zheng
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Zhixuan Wang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Ziyu Li
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Xiaoqing Lv
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Fan Luo
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Shihui Liu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| |
Collapse
|
23
|
Zhang H, Ye Z, Tang J, Wu Y, Zhang X, Ma W, Zhan Z, Zhang F. Electrochemical Reductive Cross-Coupling of Alkyl or Alkenyl Halides with gem-Difluoroalkenes. J Org Chem 2024. [PMID: 38743653 DOI: 10.1021/acs.joc.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Herein, we describe an electroreductive cross-electrophile coupling protocol for the construction of valuable monofluoroalkenes from easily accessible alkyl or alkenyl halides with gem-difluoroalkenes. The reaction can be conducted under sustainable and mild conditions delivering valuable and functionalized monofluoroalkenes with excellent Z-selectivity. The protocol's most notable advantage is the in situ release of nickel catalyst from the inexpensive electrodes without the addition of extra hazardous metal catalyst and superstoichiometric reductant.
Collapse
Affiliation(s)
- Hong Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Zenghui Ye
- School of Pharmacy, Hangzhou Medical College, 311399, Hangzhou, P. R. China
| | - Jiyuan Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Yanqi Wu
- School of Pharmacy, Hangzhou Medical College, 311399, Hangzhou, P. R. China
| | - Xi Zhang
- School of Pharmacy, Hangzhou Medical College, 311399, Hangzhou, P. R. China
| | - Weiyuan Ma
- School of Pharmacy, Hangzhou Medical College, 311399, Hangzhou, P. R. China
| | - Zhajun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Fengzhi Zhang
- School of Pharmacy, Hangzhou Medical College, 311399, Hangzhou, P. R. China
| |
Collapse
|
24
|
Wang KA, Wang ZL, Zhu HB. Anodic Oxidation of Methanol to Formaldehyde Synergizing with a Br -/Br 2 Redox-Mediated Chemical Route to Produce Methyl Formate. CHEMSUSCHEM 2024; 17:e202301691. [PMID: 38192246 DOI: 10.1002/cssc.202301691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Methyl formate (MF) is one of the most important chemical commodities, which has a wide range of applications. Due to environmental friendliness, mild reaction conditions, and easy operations, electrosynthesis of MF has garnered increasing attention in recent years. In this work, we reported an electrosynthesis route toward MF in a halide-containing methanol solution. The thorough mechanistic investigations point out that electrosynthesis of MF is accomplished by instant reaction between aldehyde from anodic methanol oxidation, and methoxy bromide (CH3OBr) that is in-situ generated by reaction of Br2 from anodic oxidation of Br- with methoxide (CH3O-) from cathodic reduction of methanol. This method features high atomic economy only producing valuable MF and hydrogen gas, and shows distinct advantages compared to the reported MF electrosynthesis methods. Even at 200 mA/cm2, the faradaic efficiency (FE) of MF remains consistently around 60 % at the anode while a 100 % FE hydrogen gas is produced at the cathode.
Collapse
Affiliation(s)
- Ke-An Wang
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China, Southeast University, Jiangning District, Nanjing, Jiangsu Province, China
| | - Zhen-Long Wang
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China, Southeast University, Jiangning District, Nanjing, Jiangsu Province, China
| | - Hai-Bin Zhu
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China, Southeast University, Jiangning District, Nanjing, Jiangsu Province, China
| |
Collapse
|
25
|
Ucheniya K, Jat PK, Chouhan A, Yadav L, Badsara SS. Electrochemical selective divergent C-H chalcogenocyanation of N-heterocyclic scaffolds. Org Biomol Chem 2024; 22:3220-3224. [PMID: 38577798 DOI: 10.1039/d4ob00448e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
An electrochemical direct selective C-H chalcogenocyanation approach for indolizine derivatives under mild conditions has been described. Cyclic enone-fused, chromone-fused and 2-substituted indolizines possessing EDGs (electron donating groups) and EWGs (electron withdrawing groups) were successfully reacted with NH4SCN and KSeCN under electrochemical conditions to provide a wide array of mono and bis-chalcogenocyanate-indolizines in 75-94% yields. In addition, 1-substituted imidazo[1,5-a]quinolines were also successfully chalcogenocyanated under the optimized reaction conditions providing a platform for the synthesis of pharmaceutically privileged molecules. By switching the reaction conditions, the developed protocol offers selective synthesis of C-3 thiocyanate and 1,3 bis-thiocyanate indolizines in good to excellent yields under catalyst-free conditions. On the basis of control experiments and cyclic voltammetry data, a plausible reaction pathway is also presented.
Collapse
Affiliation(s)
- Kusum Ucheniya
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| | - Pooja Kumari Jat
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| | - Amreen Chouhan
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| | - Lalit Yadav
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| |
Collapse
|
26
|
Liang Y, Feng J, Li H, Wang X, Zhang Y, Fan W, Zhang S, Li MB. A Hydrogen Evolution Catalyst [Co 2O 2] Metallacycle Enables Regioselective Allene C(sp 2)-H Functionalization. Angew Chem Int Ed Engl 2024; 63:e202400938. [PMID: 38329239 DOI: 10.1002/anie.202400938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/09/2024]
Abstract
Selective functionalization of allenic C(sp2)-H is an ideal approach to upgrading simple allenes to synthetically useful allenes, albeit suffering from challenges associated with inert reactivity and inferior selectivity. Inspired by energy chemistry, a catalytic hydrogen evolution reaction (HER) strategy was leveraged to selectively activate weakly acidic allene C(sp2)-H bonds in a reductive mode. An array of [Co2O2] metallacycle complexes were readily devised starting from amino acids, and they were demonstrated as robust HER catalysts, which would selectively break allenic C(sp2)-H bonds to release hydrogen. With the newly developed HER catalyst, regioselective electrochemical functionalization of allenic C(sp2)-H with alcoholic α C(sp3)-H was unprecedentedly achieved. This strategy features excellent regioselectivity, unconventional chemoselectivity, good functional-group tolerance (62 examples), and mild conditions. Mechanism experiments revealed a reactive hydroxy-coordinated cobalt(II) species in the reaction. Density functional theory (DFT) calculations were also conducted to rationalize the regioselectivity observed in the reaction.
Collapse
Affiliation(s)
- Yating Liang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Jiayi Feng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Huilong Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Xiaoli Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Ying Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Weigang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Sheng Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| |
Collapse
|
27
|
Tomczyk I, Kalek M. Electrochemical Dearomatizing Methoxylation of Phenols and Naphthols: Synthetic and Computational Studies. Chemistry 2024; 30:e202303916. [PMID: 38315289 DOI: 10.1002/chem.202303916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
The electrochemical oxidative dearomatizing methoxylation of phenols and naphthols was developed. It provides an alternative route for the preparation of methoxycyclohexadienones, important and versatile synthetic intermediates, that eliminates the need for stoichiometric high-energy chemical oxidants and generates hydrogen as a sole by-product. The reaction proceeds in a simple constant current mode, in an undivided cell, and it employs standardized instrumentation. A collection of methoxycyclohexadienones derived from various 2,4,6-tri-substituted phenols and 1-substituted-2-naphthols was obtained in moderate to excellent yields. These include a complex derivative of estrone, as well as methoxylated dearomatized 1,1'-bi-2-naphthols (BINOLs). The mechanism of the reaction was subject to profound investigations using density functional theory calculations. In particular, the reactivity of two key intermediates, phenoxyl radical and phenoxenium ion, was carefully examined. The obtained results shed light on the pathway leading to the desired product and rationalize experimentally observed selectivities regarding a side benzylic methoxylation and the preference for the functionalization at the para over the ortho position. They also uncover the structure-selectivity relationship, inversely correlating the steric bulk of the substrate with its propensity to undergo the side-reaction. Moreover, the loss of stereochemical information from enantiopure BINOL substrates during the reaction is rationalized by the computations.
Collapse
Affiliation(s)
- Ireneusz Tomczyk
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Marcin Kalek
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| |
Collapse
|
28
|
Liu K, Lei M, Li X, Zhang X, Zhang Y, Fan W, Li MB, Zhang S. Paired electrocatalysis unlocks cross-dehydrogenative coupling of C(sp 3)-H bonds using a pentacoordinated cobalt-salen catalyst. Nat Commun 2024; 15:2897. [PMID: 38575564 PMCID: PMC10995126 DOI: 10.1038/s41467-024-47220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Cross-dehydrogenative coupling of C(sp3)-H bonds is an ideal approach for C(sp3)-C(sp3) bond construction. However, conventional approaches mainly rely on a single activation mode by either stoichiometric oxidants or electrochemical oxidation, which would lead to inferior selectivity in the reaction between similar C(sp3)-H bonds. Herein we describe our development of a paired electrocatalysis strategy to access an unconventional selectivity in the cross-dehydrogenative coupling of alcoholic α C(sp3)-H with allylic (or benzylic) C-H bonds, which combines hydrogen evolution reaction catalysis with hydride transfer catalysis. To maximize the synergistic effect of the catalyst combinations, a HER catalyst pentacoordinated Co-salen is disclosed. The catalyst displays a large redox-potential gap (1.98 V) and suitable redox potential. With the optimized catalyst combination, an electrochemical cross-dehydrogenative coupling protocol features unconventional chemoselectivity (C-C vs. C-O coupling), excellent functional group tolerance (84 examples), valuable byproduct (hydrogen), and high regio- and site-selectivity. A plausible reaction mechanism is also proposed to rationalize the experimental observations.
Collapse
Affiliation(s)
- Ke Liu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China
| | - Mengna Lei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China
| | - Xin Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China
| | - Xuemei Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China
| | - Ying Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China
| | - Weigang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China.
| | - Sheng Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
29
|
Brachi M, El Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher DG, Minteer SD. Advanced Electroanalysis for Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:141-187. [PMID: 38585515 PMCID: PMC10995937 DOI: 10.1021/acsorginorgau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.
Collapse
Affiliation(s)
- Monica Brachi
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Wassim El Housseini
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Rohit Jadhav
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Dylan G. Boucher
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
30
|
Fujita H, Shimada D, Kudo J, Kosha K, Kakuyama S, Terasaki H, Kunishima M. Carbocationoids, a concept for controlling highly reactive cationic species. Commun Chem 2024; 7:55. [PMID: 38480821 PMCID: PMC10937719 DOI: 10.1038/s42004-024-01139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Carbocations, which are positively charged highly electrophilic intermediates, are efficacious for the direct alkylation of low-reactive nucleophiles. The utilization of carbocations in SN1 reactions relies on the activation of their precursors in the presence of a nucleophile. However, undesirable interactions between the nucleophile and the leaving group activator limit the scope of acceptable nucleophiles. Here we report a strategy to conduct SN1 reactions involving unstable carbocations in an alternative stepwise procedure, which was demonstrated by the benzylation of various neutral nucleophiles. In the first step, carbocations were accumulated in a nucleophile-free solution in the form of carbocationoids utilizing the coordinative stabilization of triazinediones. Subsequently, the addition of these solutions in the second step enabled room-temperature alkylation without the need for acidic additives. This methodology overcomes the inherent challenges of carbocations in SN1 reactions.
Collapse
Affiliation(s)
- Hikaru Fujita
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Daichi Shimada
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Jotaro Kudo
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuyuki Kosha
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Satoshi Kakuyama
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hiromitsu Terasaki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
31
|
Chen Y, Zhang S, Li Y, Li T, Ma Q, Yuan Y, Jia X. CBr 4 as a Mild Oxidant-Enabled Oxidation of a sp 3 C-H Bond: A Facile Synthesis of the Persistent Iminium Salts of Tetrahydroisoquinolines. Chemistry 2024; 30:e202303952. [PMID: 38193608 DOI: 10.1002/chem.202303952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Using CBr4 as a mild oxidant, the direct C-H bond oxidation of N-aryltetrahydroisoquinolines was achieved, giving a series of the corresponding iminium salts in high yields under metal- and photo-free reaction conditions. This reaction is superior in high yields and good functional group tolerance, and the late-stage derivatization showed that these iminium salts can readily be applied to the synthesis of the functionalized THIQs.
Collapse
Affiliation(s)
- Yuqin Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, China, 225002
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, China, 225002
| | - Yuemei Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, China, 225002
| | - Tong Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, China, 225002
| | - Qiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, China, 225002
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, China, 225002
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, China, 225002
| |
Collapse
|
32
|
Wang M, Gao Y, Zhao XJ, Gao L, He Y. Electrochemical multicomponent [2+2+1] cascade cyclization of enaminones and primary amines towards the synthesis of 4-acylimidazoles. Chem Commun (Camb) 2024; 60:2677-2680. [PMID: 38352990 DOI: 10.1039/d3cc06196e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
An electrochemical multicomponent [2+2+1] cascade cyclization of enaminones and primary amines towards the synthesis of 4-acylimidazoles has been developed. In an undivided cell, enaminones and primary amines can smoothly participate in this reaction to provide a series of 1,2-disubstituted 4-acylimidazoles at room temperature. The reaction avoids the use of both transition-metal catalysts and oxidation reagents, which makes it more sustainable and renewable.
Collapse
Affiliation(s)
- Mingxu Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming, 650500, China.
| | - Ying Gao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming, 650500, China.
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming, 650500, China.
| | - Lu Gao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming, 650500, China.
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming, 650500, China.
| |
Collapse
|
33
|
Zong ZM, Zhang L, Li GP, Wang W, Zhao XJ, He Y. Electrochemical-Induced C-N Bond Formation: A New Method to Synthesis ( Z)-Quinazolinone Oximes Using Primary Amines and Quinazolin-4(3 H)-one. Org Lett 2024; 26:1271-1276. [PMID: 38323795 DOI: 10.1021/acs.orglett.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A novel and highly selective electrochemical method for the synthesis of diverse quinazolinone oximes via direct electrooxidation of primary amines/C(sp2)-H functionalization of oximes has been developed. The reaction is conducted in an undivided cell under constant current conditions and is oxidant-free, open-air, and eco-friendly. Notably, the protocol shows good functional group tolerance, providing versatile quinazolinone oximes in good yields. Moreover, the mechanism is investigated through control experiments and cyclic voltammogram (CV) experiments.
Collapse
Affiliation(s)
- Zhi-Min Zong
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Lizhu Zhang
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Gan-Peng Li
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Wei Wang
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
34
|
Alvarez EM, Stewart G, Ullah M, Lalisse R, Gutierrez O, Malapit CA. Site-Selective Electrochemical Arene C-H Amination. J Am Chem Soc 2024; 146:3591-3597. [PMID: 38295054 PMCID: PMC11071122 DOI: 10.1021/jacs.3c11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Here we present the discovery and development of a highly selective aromatic C-H amination reaction. This electrochemical strategy involves a cathodic reduction process that generates highly electrophilic dicationic N-centered radicals that can efficiently engage in aromatic C-H functionalization and channel the regioselectivity of the aromatic substitution. The nitrogen-radical cation-pi interaction with arenes used throughout nature leads to a charge transfer mechanism, with subsequent aromatic C-N bond formation. This electrochemical process generates aryl DABCOnium salts in excellent yields and regioselectivities (single regioisomer in most cases). The scope of the reaction on arene is broad where various functionalities such as aryl halides (bromides, chlorides, fluorides), carbonyls (ketones, esters, imides), sulfonamides, and heteroarenes (pyridines, bipyridines, and terpyridines) are well tolerated. Moreover, we disclose the synthetic utility of the aryl DABCOnium salt adducts leading to the direct access of diverse aryl piperazines and the chemoselective cleavage of the exocyclic aryl C(sp2)-N bond over electrophilic C(sp3)-N+ bonds via photoredox catalysis to afford synthetically useful aryl radicals that can engage in aryl C-C and C-P bond formation.
Collapse
Affiliation(s)
- Eva Maria Alvarez
- Department of Chemistry, Northwestern University, Technological Institute, Evanston, Illinois 60208, United States
| | - Griffin Stewart
- Department of Chemistry, Northwestern University, Technological Institute, Evanston, Illinois 60208, United States
| | - Mohammed Ullah
- Department of Chemistry, Northwestern University, Technological Institute, Evanston, Illinois 60208, United States
| | - Remy Lalisse
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Christian A Malapit
- Department of Chemistry, Northwestern University, Technological Institute, Evanston, Illinois 60208, United States
- Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
35
|
Wang T, He F, Jiang W, Liu J. Electrohydrogenation of Nitriles with Amines by Cobalt Catalysis. Angew Chem Int Ed Engl 2024; 63:e202316140. [PMID: 38124405 DOI: 10.1002/anie.202316140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Catalytic hydrogenation of nitriles represents an efficient and sustainable one-step synthesis of valuable bulk and fine chemicals. We report herein a molecular cobalt electrocatalyst for selective hydrogenative coupling of nitriles with amines using protons as the hydrogen source. The key to success for this reductive reaction is the use of an electrocatalytic approach for efficient cobalt-hydride generation through a sequence of cathodic reduction and protonation. As only electrons (e- ) and protons (H+ ) as the redox equivalent and hydrogen source, this general electrohydrogenation protocol is showcased by highly selective and straightforward synthesis of various functionalized and structurally diverse amines, as well as deuterium isotope labeling applications. Mechanistic studies reveal that the electrogenerated cobalt-hydride transfer to nitrile process is the rate-determining step.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Fangfang He
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Wei Jiang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, 511300, Guangzhou, Guangdong Province, China
| |
Collapse
|
36
|
Zhang H, Ye Z, Wu Y, Zhang X, Ma W, Zhan ZJ, Zhang F. Electrochemical Reductive Cross-Coupling of Vinyl Bromides for the Synthesis of 1,3-Dienes. Org Lett 2024; 26:994-999. [PMID: 38289335 DOI: 10.1021/acs.orglett.3c03940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An electroreductive cross-electrophile coupling protocol was developed for the construction of valuable 1,3-dienes from vinyl bromides. Furthermore, this scalable method can also be used to forge complex [4 + 2] cycloadducts in a one-pot manner. One of the most important advantages of this green and sustainable protocol is the in situ release of nickel catalyst from the inexpensive electrodes without the addition of extra harmful metal catalysts and reductant.
Collapse
Affiliation(s)
- Hong Zhang
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Zenghui Ye
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Yanqi Wu
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Xi Zhang
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Weiyuan Ma
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Fengzhi Zhang
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| |
Collapse
|
37
|
Li P, Tian Y, Tian L, Wang Y. Selective electrochemical acceptorless dehydrogenation reactions of tetrahydroisoquinoline derivatives. Org Biomol Chem 2024; 22:725-730. [PMID: 38169000 DOI: 10.1039/d3ob01930f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Selective dehydrogenation reactions of tetrahydroisoquinoline derivatives through electrochemical oxidation are disclosed. In the presence of nitric acid, the selective partial dehydrogenation of tetrahydroisoquinolines to form 3,4-dihydroisoquinolines was achieved via anodic oxidation. The results of CV (Cyclic Voltammograms) experiments and DFT calculations showed the 3,4-dihydroisoquinolines protonated by an external Brønsted acid to be less prone than their unprotonated counterparts to oxidation under electrochemical conditions, thus avoiding their further dehydrogenation. Moreover, a TEMPO-mediated electrochemical oxidation enabled a complete dehydrogenation to yield fully aromatized isoquinolines. Thus, tunable processes involving electrochemical dehydrogenation of tetrahydroisoquinolines could be used to selectively produce various 3,4-dihydroisoquinolines and isoquinoline derivatives.
Collapse
Affiliation(s)
- Pan Li
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yue Tian
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
38
|
Uehara D, Adachi S, Tsubouchi A, Okada Y, Zhdankin VV, Yoshimura A, Saito A. Peptide coupling using recyclable bicyclic benziodazolone. Chem Commun (Camb) 2024; 60:956-959. [PMID: 38131348 DOI: 10.1039/d3cc04431a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We report a greener peptide coupling using bicyclic benziodazolone and triarylphosphine as coupling reagents. Bicyclic benziodazolone also works as a base and can be recovered as the corresponding iodine(I) compound after use, which can be converted to the original iodine(III) reagent by electrolytic oxidation.
Collapse
Affiliation(s)
- Daigo Uehara
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Sota Adachi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Akira Tsubouchi
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, MN, 55812, USA
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Akio Saito
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
39
|
Sun F, Miao M, Li W, Lan XB, Yu JQ, Zhang J, An Z. Electrochemical oxidative dehydrogenative annulation of 1-(2-aminophenyl)pyrroles with cleavage of ethers to synthesize pyrrolo[1,2- a]quinoxaline derivatives. Org Biomol Chem 2024; 22:472-476. [PMID: 38099809 DOI: 10.1039/d3ob01867a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
An array of pyrrolo[1,2-a]quinoxaline derivatives were achieved with moderate to good yields via the electrochemical redox reaction, which includes the functionalization of C(sp3)-H bonds and the construction of C-C and C-N bonds. In this atom economic reaction, THF was used as both a reactant and a solvent, and H2 was the sole by-product.
Collapse
Affiliation(s)
- Fengkai Sun
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Man Miao
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Wenxue Li
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Jian Zhang
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyu An
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
40
|
Huang WS, Xu H, Yang H, Xu LW. Catalytic Synthesis of Silanols by Hydroxylation of Hydrosilanes: From Chemoselectivity to Enantioselectivity. Chemistry 2024; 30:e202302458. [PMID: 37861104 DOI: 10.1002/chem.202302458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/21/2023]
Abstract
As a crucial class of functional molecules in organosilicon chemistry, silanols are found valuable applications in the fields of modern science and will be a potentially powerful framework for biologically active compounds or functional materials. It has witnessed an increasing demand for non-natural organosilanols, as well as the progress in the synthesis of these structural features. From the classic preparative methods to the catalytic selective oxidation of hydrosilanes, electrochemical hydrolysis of hydrosilanes, and then the construction of the most challenging silicon-stereogenic silanols. This review summarized the progress in the catalyzed synthesis of silanols via hydroxylation of hydrosilanes in the last decade, with a particular emphasis on the latest elegant developments in the desymmetrization strategy for the enantioselective synthesis of silicon-stereogenic silanols from dihydrosilanes.
Collapse
Affiliation(s)
- Wei-Sheng Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
41
|
Shukla G, Singh M, Kumar Yadav A, Shankar Singh M. Aromatic C(sp 2 )-H Functionalization by Consecutive Paired Electrolysis: Dibromination of Aryl Amines with Dibromoethane at Room Temperature. Chemistry 2023:e202303179. [PMID: 38078727 DOI: 10.1002/chem.202303179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 12/23/2023]
Abstract
Herein, we disclose a facile and efficient electrochemical method for the dibromination of aryl amines by double functionalization of aromatic C(sp2 )-H (both para and ortho) under metal- and external oxidant-free conditions at room temperature for the first time. The reaction is demonstrated using 1,2-dibromoethane to dibrominate a wide range of N-substituted aryl amines in a simple setup with C(+)/Pt(-) electrodes under mild reaction conditions. This transformation proceeds smoothly with a broad substrate scope affording the valuable and versatile N-substituted 2,4-dibromoanilines in moderate to excellent yields with high regioselectivity. In this paired electrolysis, cathodic reduction of 1,2-DBE followed by anodic oxidation generates bromonium intermediates, which then couple with anilines to furnish the dibrominated products. It represents a distinctive approach to challenging redox-neutral reactions. The versatility of the electrochemical ortho-, para-dibromination was reflected by unique regioselectivities for challenging aryl amines and gram-scale electrosynthesis without the use of a stoichiometric oxidant or an activating agent.
Collapse
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Malkeet Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anup Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
42
|
Abstract
Electrochemistry has emerged as a powerful means to enable redox transformations in modern chemical synthesis. This tutorial review delves into the unique advantages of electrochemistry in the context of asymmetric catalysis. While electrochemistry has historically been used as a green and mild alternative for established enantioselective transformations, in recent years asymmetric electrocatalysis has been increasingly employed in the discovery of novel asymmetric methodologies based on reaction mechanisms unique to electrochemistry. This tutorial review first provides a brief tutorial introduction to electrosynthesis, then explores case studies on homogenous small molecule asymmetric electrocatalysis. Each case study serves to highlight a key advance in the field, starting with the historic electrification of known asymmetric transformations and culminating with modern methods relying on unique electrochemical mechanistic sequences. Finally, we highlight case studies in the emerging reasearch areas at the interface of asymmetric electrocatalysis with biocatalysis and heterogeneous catalysis.
Collapse
Affiliation(s)
- Jonas Rein
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Samson B Zacate
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kaining Mao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
43
|
Yu J, Liu T, Sun W, Zhang Y. Electrochemical Decarboxylative Elimination of Carboxylic Acids to Alkenes. Org Lett 2023; 25:7816-7821. [PMID: 37870311 DOI: 10.1021/acs.orglett.3c02997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
An electrochemical strategy for the decarboxylative elimination of carboxylic acids to alkenes at room temperature has been developed. This mild and oxidant-free method provides a green alternative to traditional thermal decarboxylation reactions. Structurally diverse aliphatic carboxylic acids, including biologically active drugs, underwent smooth conversion to the corresponding alkenes in good to excellent yields.
Collapse
Affiliation(s)
- Jiage Yu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Teng Liu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Wanhao Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100871, P. R. China
| | - Yunfei Zhang
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
44
|
Zhao X, Li M, Sun K, Xu Z, Tian L, Wang Y. Electrochemical deoxygenative homo-couplings of aromatic aldehydes. Chem Commun (Camb) 2023; 59:13062-13065. [PMID: 37849338 DOI: 10.1039/d3cc03346e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
An electrochemical deoxygenative homo-coupling of aromatic aldehydes is achieved to selectively access bibenzyl and stilbene derivatives. The protocol allows the homo-coupling of aldehydes to occur after single-electron-reduction at the cathode. Taking advantage of the oxophilicity of triphenylphosphine, the electrochemical deoxygenation proceeds smoothly to give reductive homo-coupling products.
Collapse
Affiliation(s)
- Xiaoqian Zhao
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Meng Li
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Kunhui Sun
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zhimin Xu
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
45
|
Shibuya A, Ishisaka Y, Saito A, Kato M, Manmode S, Komatsu H, Rahman MA, Sasaki N, Itoh T, Nokami T. Electrochemical synthesis of the protected cyclic (1,3;1,6)-β-glucan dodecasaccharide. Faraday Discuss 2023; 247:59-69. [PMID: 37466008 DOI: 10.1039/d3fd00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Automated electrochemical assembly is an electrochemical method to synthesise middle-sized molecules, including linear oligosaccharides, and some linear oligosaccharides can be electrochemically converted into the corresponding cyclic oligosaccharides effectively. In this study, the target cyclic oligosaccharide is a protected cyclic (1,3;1,6)-β-glucan dodecasaccharide, which consists of two types of glucose trisaccharides with β-(1,3)- and β-(1,6)-glycosidic linkages. The formation of the protected cyclic dodecasaccharide was confirmed by the electrochemical one-pot dimerisation-cyclisation of the semi-circular hexasaccharide. The yield of the protected cyclic dodecasaccharide was improved by using a stepwise synthesis via the linear dodecasaccharide.
Collapse
Affiliation(s)
- Akito Shibuya
- Graduate School of Engineering, Tottori University, Japan.
| | - Yui Ishisaka
- Graduate School of Sustainable Science, Tottori University, Japan
| | - Asuka Saito
- Graduate School of Sustainable Science, Tottori University, Japan
| | - Moeko Kato
- Graduate School of Sustainable Science, Tottori University, Japan
| | - Sujit Manmode
- Graduate School of Engineering, Tottori University, Japan.
| | - Hiroto Komatsu
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, Japan
| | | | - Norihiko Sasaki
- Graduate School of Engineering, Tottori University, Japan.
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, Japan
| | - Toshiyuki Itoh
- Graduate School of Engineering, Tottori University, Japan.
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, Japan
| | - Toshiki Nokami
- Graduate School of Engineering, Tottori University, Japan.
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, Japan
| |
Collapse
|
46
|
Jiang W, Wang B, Song C, Liu J. Electrocatalytic Desulfurizative Amination of Thioureas to Guanidines. J Org Chem 2023; 88:14601-14609. [PMID: 37788335 DOI: 10.1021/acs.joc.3c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Guanidine has been known as an important class of N-containing molecules with a wide range of applications. Described here is a selective and efficient electrochemical approach to the synthesis of guanidines from easily accessible thioureas and amines. The key to success for this reaction is the in situ generation of a hypervalent iodine reagent as a catalyst from iodoarene by anodic oxidation. This mild desulfurizative amination presents ample substrate scope and good functional group tolerance without the use of extra stoichiometric chemical oxidants. As only electrons serve as the oxidation reagents, this method offers a more straightforward and sustainable manner toward versatile guanidines, including late-stage functionalization of pharmaceutically relevant molecules.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Bing Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Chunlan Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, China
| |
Collapse
|
47
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
48
|
Fastie C, Li L, Bätcher M, Hilt G. Pre-electrolysis of LiClO 4 in Acetonitrile: Electrochemically Induced Protolytic Carbon-Carbon Bond Formation of Benzylic Ethers and Acetals with Allyl Trimethylsilane and Other Carbon Nucleophiles. J Org Chem 2023; 88:12526-12530. [PMID: 37594465 PMCID: PMC10476155 DOI: 10.1021/acs.joc.3c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 08/19/2023]
Abstract
The pre-electrolysis of LiClO4 in acetonitrile in an undivided cell applying only "catalytic" amounts of current (e.g., 0.05 F) led to the formation of a strong acidic medium for the activation of benzylic ethers and acetals. The activated primary and secondary benzylic ethers and acetals could be converted with a range of carbon nucleophiles, such as allyl trimethylsilane, silyl enol ethers, and enol acetates, for the formation of new carbon-carbon bonds. A chemoselective reaction was observed when electron-deficient benzylic acetals were converted with allyl trimethylsilane to the monoallylated products, whereas an electron-rich benzylic acetal led to the double allylated product under activation of both ether groups.
Collapse
Affiliation(s)
- Cornelius Fastie
- Institut für Chemie,
Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, Oldenburg D-26129, Germany
| | - Luomo Li
- Institut für Chemie,
Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, Oldenburg D-26129, Germany
| | - Moritz Bätcher
- Institut für Chemie,
Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, Oldenburg D-26129, Germany
| | - Gerhard Hilt
- Institut für Chemie,
Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, Oldenburg D-26129, Germany
| |
Collapse
|
49
|
Sciortino F, Rydzek G, Boulmedais F. Electrochemical Assembly Strategies of Polymer and Hybrid Thin Films for (Bio)sensors, Charge Storage, and Triggered Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11149-11165. [PMID: 37542435 DOI: 10.1021/acs.langmuir.3c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
In the context of functional and hierarchical materials, electrode reactions coupled with one or more chemical reactions constitute the most powerful bottom-up process for the electrosynthesis of film components and their electrodeposition, enabling the localized functionalization of conductive surfaces using an electrical stimulus. In analogy with developmental biological processes, our group introduced the concept of morphogen-driven film buildup. In this approach, the gradient of a diffusing reactive molecule or ion (called a morphogen) is controlled by an electrical stimulus to locally induce a chemical process (solubility change, hydrolysis, complexation, and covalent reaction) that induces a film assembly. One of the prominent advantages of this technique is the conformal nature of the deposits toward the electrode. This Feature Article presents the contributions made by our group and other researchers to develop strategies for the assembly of different polymer and nanoparticle/polymer hybrid films by using electrochemically generated reagents and/or catalysts. The main electrochemical-chemical approaches for conformal films are described in the case where (i) the products are noncovalent aggregates that spontaneously precipitate on the electrode (film electrodeposition) or (ii) new chemical compounds are generated, which do not necessarily spontaneously precipitate and enable the formation of covalent or noncovalent films (film electrosynthesis). The applications of those electrogenerated films will be described with a focus on charge storage/transport, (bio)sensing, and stimuli-responsive cargo delivery systems.
Collapse
Affiliation(s)
- Flavien Sciortino
- University of Basel, Department of Chemistry Basel, Basel-Stadt 4001, Switzerland
| | - Gaulthier Rydzek
- ICGM, CNRS, ENSCM, Université de Montpellier, 34000 Montpellier, France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67034 Strasbourg, France
| |
Collapse
|
50
|
Zhang S, Findlater M. Electrochemically Driven Hydrogen Atom Transfer Catalysis: A Tool for C(sp 3)/Si-H Functionalization and Hydrofunctionalization of Alkenes. ACS Catal 2023; 13:8731-8751. [PMID: 37441236 PMCID: PMC10334887 DOI: 10.1021/acscatal.3c01221] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/27/2023] [Indexed: 07/15/2023]
Abstract
Electrochemically driven hydrogen atom transfer (HAT) catalysis provides a complementary approach for the transformation of redox-inactive substrates that would be inaccessible to conventional electron transfer (ET) catalysis. Moreover, electrochemically driven HAT catalysis could promote organic transformations with either hydrogen atom abstraction or donation as the key step. It provides a versatile and effective tool for the direct functionalization of C(sp3)-H/Si-H bonds and the hydrofunctionalization of alkenes. Despite these attractive properties, electrochemically driven HAT catalysis has been largely overlooked due to the lack of understanding of both the catalytic mechanism and how catalyst selection should occur. In this Review, we give an overview of the HAT catalysis applications in the direct C(sp3)-H/Si-H functionalization and hydrofunctionalization of alkenes. The mechanistic pathways, physical properties of the HAT mediators, and state-of-the-art examples are described and discussed.
Collapse
Affiliation(s)
- Sheng Zhang
- Institutes
of Physical Science and Information Technology, Key Laboratory of
Structure and Functional Regulation of Hybrid Materials of Ministry
of Education, Anhui University, Hefei, Anhui 230601, China
| | - Michael Findlater
- Department
of Chemistry and Biochemistry, University
of California Merced, Merced, California 95343, United States
| |
Collapse
|