1
|
Wang J, Lai YJS, Wang TH, Zeng C, Westerhoff P, Mu Y. Water quality constraints H 2O 2 production in a dual-fiber photocatalytic reactor. WATER RESEARCH 2024; 260:121880. [PMID: 38870861 DOI: 10.1016/j.watres.2024.121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
In-situ hydrogen peroxide (H2O2) finds applications in disinfection and oxidation processes. Photoproduction of H2O2 from water and oxygen, avoids reliance upon organic chemicals, and potentially enables smaller-sized or lower-cost reactors than electrochemical methods. In ultrapure water, we previously demonstrated a novel dual-fiber system coupling a light emitting diode (LED) with a metal-organic framework (MOF) catalyst-coated optical fiber (POF-MIL-101(Fe)) and O2-based hollow-membrane fibers and achieved a remarkable H2O2 yield, 308 ± 1.4 mM h-1 catalyst-g-1. To enable H2O2 production anywhere we sought to understand the impacts of common water quality parameters. The production of H2O2 was not affected by added sodium, potassium, hydroxide, sulfate or nitrate ions. There was consistent performance over a wide pH range (4-10), maintaining a high production rate of 232 ± 3.5 mM h-1 catalyst-g-1 even at pH 10, a condition typically unfavorable for H2O2 photoproduction. Chloride ions produced hypochlorous acid, consuming in-situ produced H2O2. Phosphate adsorption on the iron-based MOF catalysts blocked H2O2 production. Inorganic carbon species inhibited H2O2 production due to in-situ formic acid. Encouraging results were obtained using atmospheric water (i.e., condensate), with rates reaching 288 ± 6.1 mM h-1 catalyst-g-1, comparable to ultrapure water. This underscores atmospheric water as a variable alternative, available in nearly all building air conditioning systems or could overcome geographical constraints, particularly in regions where obtaining pure water resources is challenging, offering a cost-effective solution. The dual-fiber reactor using atmospheric water enables high-efficiency H2O2 production anytime and anywhere.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yen-Jung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe 85287-5001, United States
| | - Tzu-Heng Wang
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-3005, United States
| | - Chao Zeng
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-3005, United States; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Paul Westerhoff
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-3005, United States.
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Gayoso N, Moylan E, Noha W, Wang J, Mulchandani A. Techno-Economic Analysis of Atmospheric Water Harvesting Across Climates. ACS ES&T ENGINEERING 2024; 4:1769-1780. [PMID: 39021401 PMCID: PMC11250088 DOI: 10.1021/acsestengg.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
Drinking water scarcity is a global challenge as groundwater and surface water availability diminishes. The atmosphere is an alternative freshwater reservoir that has universal availability and could be harvested as drinking water. In order to effectively perform atmospheric water harvesting (AWH), we need to (1) understand how different climate regions (e.g., arid, temperate, and tropical) drive the amount of water that can be harvested and (2) determine the cost to purchase, operate, and power AWH. This research pairs thermodynamics with techno-economic analysis to calculate the water productivity and cost breakdown of a representative condensation-based AWH unit with water treatment. We calculate the monthly and annual levelized cost of water from AWH as a function of climate and power source (grid electricity vs renewable energy from solar photovoltaics (PV)). In our modeled unit, AWH can provide 1744-2710 L/month in a tropical climate, 394-1983 L/month in a temperate climate, and 37-1470 L/month in an arid climate. The levelized cost of water of AWH powered by the electrical grid is $0.06/L in a tropical climate, $0.09/L in a temperate climate, and $0.17/L in an arid climate. If off-grid solar PV was purchased at the time of purchasing the AWH unit to power the AWH, the costs increase to $0.40/L in an arid climate, $0.17/L in a temperate climate, and $0.10/L in a tropical climate. However, if using existing solar PV there are potential cost reductions of 4.25-5-fold between purchasing and using existing solar PV, and 2-3-fold between using the electrical grid and existing solar PV, with the highest cost reductions occurring in the tropical climate. Using existing solar PV, the levelized cost of AWH is $0.09/L in an arid climate, $0.04/L in a temperate climate, and $0.02/L in a tropical climate.
Collapse
Affiliation(s)
- Natalie Gayoso
- Department
of Civil, Construction and Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- The
Center for Water and the Environment, University
of New Mexico, Albuquerque, New Mexico 87131, United States
- CDM
Smith, Albuquerque, New Mexico 87110, United States
| | - Emily Moylan
- Department
of Civil, Construction and Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- The
Center for Water and the Environment, University
of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Wenny Noha
- PepsiCo, Valhalla, New York 10595, United States
| | - Jingjing Wang
- Department
of Economics, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Anjali Mulchandani
- Department
of Civil, Construction and Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- The
Center for Water and the Environment, University
of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
3
|
Li J, Xing G, Qiao M, Liu Z, Sun H, Jiao R, Li L, Zhang J, Li A. Guar Gum-Based Macroporous Hygroscopic Polymer for Efficient Atmospheric Water Harvesting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38015071 DOI: 10.1021/acs.langmuir.3c03229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Solar-driven atmospheric water harvesting technology has the advantage of not being limited by geography and has great potential in solving the freshwater crisis. Here, we first propose a purely natural and degradable superhydrophilic composite macroporous hygroscopic material by applying guar gum (GG) to atmospheric water harvesting. The material consists of GG-cellulose nanofibers (CNFs) as a porous substrate material, limiting the hygroscopic factor lithium chloride (LiCl) in its three-dimensional (3D) network structure, and carbon nanotubes (CNTs) play a photothermal conversion role. The composite material has a high light absorption rate of more than 95%, and the macroporous structure (20-60 μm) allows for rapid adsorption/desorption kinetics. At 35 °C and 90% relative humidity (RH), the moisture absorption capacity is as high as 1.94 g/g. Under 100 mW/cm2 irradiation, the absorbed water is almost completely desorbed within 3 h, and the water harvesting performance is stable in 10 cycles. Moreover, liquid water was successfully collected in an actual outdoor experiment. This work demonstrates the great potential of biomass materials in the field of atmospheric water collection and provides more opportunities for various energy and sustainable applications in the future.
Collapse
Affiliation(s)
- Jiyan Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China
| | - Guoyu Xing
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China
| | - Min Qiao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China
| | - Zihao Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China
| | - Rui Jiao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China
| | - Lingxiao Li
- Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P. R. China
| | - Junping Zhang
- Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P. R. China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China
| |
Collapse
|
4
|
Ahrestani Z, Sadeghzadeh S, Motejadded Emrooz HB. An overview of atmospheric water harvesting methods, the inevitable path of the future in water supply. RSC Adv 2023; 13:10273-10307. [PMID: 37034449 PMCID: PMC10073925 DOI: 10.1039/d2ra07733g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/12/2023] [Indexed: 04/11/2023] Open
Abstract
Although science has made great strides in recent years, access to fresh water remains a major challenge for humanity due to water shortage for two-thirds of the world's population. Limited access to fresh water becomes more difficult due to the lack of natural resources of water. Many of these resources are also contaminated by human activities. Many attempts have been made to harvest water from the atmosphere, and condensation systems have received much attention. One of the challenges in generation systems is the high consumption energy of the cooling feed, despite the generation of large amounts of water from the atmosphere. As other airborne contaminants condense with water vapor, the water after harvesting needs to be treated, which adds to construction and maintenance costs. Also, the need for high relative humidity in condensation systems has led scientists to find ways of atmospheric water harvesting at low relative humidity and use renewable energy sources. Sorption systems can absorb atmospheric water without the need for an energy supply and spontaneously. Desiccants such as silica gel and zeolite, due to their high affinity for water, can absorb water vapor in the air through physical or physicochemical bonding, but all of these have slow adsorption kinetics. Therefore, it takes a long time for the water harvesting cycle or they are not able to absorb water at low relative humidity, and others need a lot of energy for the water desorption phase. Metal-Organic Frameworks (MOF) are porous materials that, due to their special structure, are considered the most promising material for atmospheric water harvesting at low relative humidity. MOF-303 has been identified as the most efficient material to date and can harvest 0.7 liters of water per kilogram of MOF-303 at 10% RH and 27 °C. MOFs can harvest atmospheric water even in desert areas using only solar energy, and the water produced is drinkable and does not need to be treated. In this review, systems and methods of atmospheric water harvesting will be studied and compared and then the mechanism of adsorption and desorption in sorption systems will be discussed in detail.
Collapse
Affiliation(s)
- Zahra Ahrestani
- MSc of Chemistry and Materials Technologie, Institute of Materials Chemistry, Faculty of Chemistry, University of Vienna Vienna Austria
- MSc of NanoTechnology, School of Advanced Technologies, Iran University of Science and Technology Tehran Iran
| | - Sadegh Sadeghzadeh
- School of Advanced Technologies, Iran University of Science and Technology Tehran Iran
| | | |
Collapse
|
5
|
Mulchandani A, Edberg J, Herckes P, Westerhoff P. Seasonal atmospheric water harvesting yield and water quality using electric-powered desiccant and compressor dehumidifiers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153966. [PMID: 35183644 DOI: 10.1016/j.scitotenv.2022.153966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric water harvesting (AWH) is an emerging technology for decentralized water supply and is proving to be viable for use in emergencies, military deployment, and sustainable industries. The atmosphere is a freshwater reservoir that contains 12,900 km3 of water, 6-fold more than the volume of global rivers. Dehumidification water harvesting technologies can be powered by solar, wind, or electric sources. Compressor/refrigerant-based dehumidifiers operate via dew point condensation and provide a cold surface upon which water vapor can condense. Conversely, desiccant-based technologies saturate water vapor using a sorbent that is then heated, and the supersaturated water vapor condenses on a surface when interacting with cooler ambient process air. This work compares productivity, energy consumption, efficiency, cost and quality of water produced of two water-harvesting mechanisms. Electric-powered compressor and desiccant dehumidifiers were operated outdoors for more than one year in the arid southwestern USA, where temperatures ranged from 3.1 to 43.7 °C and relative humidity (RH) ranged from 6 to 85%. The compressor system harvested >2-fold more water than the desiccant system when average RH during the run cycle was >30%, average temperature was >20 °C, and average dew point temperature was >5 °C. Desiccant systems performed more favorably when average RH during the run cycle was <30%, average temperature was <20 °C, and average dew point temperature was <5 °C. Water collected by compressor-based technologies had conductivity up to 180 μS/cm, turbidity up to 190 NTU, and aluminum, iron and manganese near or above the US EPA secondary drinking water standard. Dissolved organic carbon (DOC) averaged <2 mg C/L but ranged up to 12 mg C/L. Water collected by desiccant-based technologies had significantly lower conductivity, metals, and turbidity, and DOC was always <6 mg/L. Aldehydes such as formaldehyde and acetaldehyde and carboxylic acids such as formic acid and acetic acid were primary contributors to DOC. The differences in harvested water quality were attributed to differences in the condensation method between compressor and desiccant AWH technologies. Multiple strategies could be employed to prevent these volatile organic compounds (VOCs) from contributing to DOC in harvested water, such as pretreating air to remove VOCs or post-treating DOC in harvested liquid water.
Collapse
Affiliation(s)
- Anjali Mulchandani
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; NSF Nanosystems Engineering Research Center on Nanotechnology Enabled Water Treatment, USA.
| | - Justin Edberg
- NSF Nanosystems Engineering Research Center on Nanotechnology Enabled Water Treatment, USA; School of Energy, Matter and Transport Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Pierre Herckes
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; NSF Nanosystems Engineering Research Center on Nanotechnology Enabled Water Treatment, USA
| |
Collapse
|
6
|
Lord J, Thomas A, Treat N, Forkin M, Bain R, Dulac P, Behroozi CH, Mamutov T, Fongheiser J, Kobilansky N, Washburn S, Truesdell C, Lee C, Schmaelzle PH. Global potential for harvesting drinking water from air using solar energy. Nature 2021; 598:611-617. [PMID: 34707305 PMCID: PMC8550973 DOI: 10.1038/s41586-021-03900-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022]
Abstract
Access to safely managed drinking water (SMDW) remains a global challenge, and affects 2.2 billion people1,2. Solar-driven atmospheric water harvesting (AWH) devices with continuous cycling may accelerate progress by enabling decentralized extraction of water from air3-6, but low specific yields (SY) and low daytime relative humidity (RH) have raised questions about their performance (in litres of water output per day)7-11. However, to our knowledge, no analysis has mapped the global potential of AWH12 despite favourable conditions in tropical regions, where two-thirds of people without SMDW live2. Here we show that AWH could provide SMDW for a billion people. Our assessment-using Google Earth Engine13-introduces a hypothetical 1-metre-square device with a SY profile of 0.2 to 2.5 litres per kilowatt-hour (0.1 to 1.25 litres per kilowatt-hour for a 2-metre-square device) at 30% to 90% RH, respectively. Such a device could meet a target average daily drinking water requirement of 5 litres per day per person14. We plot the impact potential of existing devices and new sorbent classes, which suggests that these targets could be met with continued technological development, and well within thermodynamic limits. Indeed, these performance targets have been achieved experimentally in demonstrations of sorbent materials15-17. Our tools can inform design trade-offs for atmospheric water harvesting devices that maximize global impact, alongside ongoing efforts to meet Sustainable Development Goals (SDGs) with existing technologies.
Collapse
Affiliation(s)
- Jackson Lord
- X, The Moonshot Factory, Mountain View, CA, USA.
| | | | - Neil Treat
- X, The Moonshot Factory, Mountain View, CA, USA
| | | | - Robert Bain
- WHO/UNICEF Joint Monitoring Programme, Division of Data, Analytics, Planning and Monitoring, UNICEF, New York, NY, USA
| | | | | | | | | | | | | | | | - Clare Lee
- X, The Moonshot Factory, Mountain View, CA, USA
| | | |
Collapse
|
7
|
Yang K, Pan T, Lei Q, Dong X, Cheng Q, Han Y. A Roadmap to Sorption-Based Atmospheric Water Harvesting: From Molecular Sorption Mechanism to Sorbent Design and System Optimization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6542-6560. [PMID: 33914502 DOI: 10.1021/acs.est.1c00257] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sorption-based atmospheric water harvesting (SAWH), which uses sorbents to capture water vapor from the air and low-grade energy to produce fresh liquid water, has been recognized as a promising strategy for decentralized water supply in arid areas. This review aims to summarize the latest progress in this field and provide perspectives for the further development of SAWH, focusing on the design of sorbent materials and the optimization of the entire system. We first introduce the water sorption mechanisms on different sorbent materials. Next, we discuss the properties and performances of various sorbents developed for SAWH by categorizing them into specific groups: nanoporous solids, hygroscopic polymers, salt-based composites, and liquid sorbents; for each type of sorbent materials, we have analyzed its advantages and limitations, as well as design strategies. In addition, we discuss the influences of the mass and heat transport of the SAWH system on its overall performance in actual operations, and introduce different types of water harvesters developed for SAWH. In the last section, we outline the challenges in this field from fundamental research and practical application aspects, and describe roadmaps for the future development of this technology.
Collapse
Affiliation(s)
- Kaijie Yang
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tingting Pan
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Qiong Lei
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xinglong Dong
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Qingpeng Cheng
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|