1
|
Zhang W, Xing Y, Su W, Wang J, Jia H, Cui Y, Chen J, Zhang H. Degradation of o-dichlorobenzene by DBD-NTP co-modified titanium gel catalyst. J Environ Sci (China) 2024; 143:71-84. [PMID: 38644025 DOI: 10.1016/j.jes.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 04/23/2024]
Abstract
In order to study the degradation process of dioxins in industrial flue gas, the decomposition of o-dichlorobenzene (o-DCB) in a DBD plasma catalytic reactor was investigated. The results showed that an NTP-catalyzed system, especially using the CuMnTiOx catalyst, had better o-DCB degradation performance compared to plasma alone. The combination of the CuMnTiOx catalyst with NTP can achieve a degradation efficiency of up to 97.2% for o-DCB; the selectivity of CO and CO2 and the carbon balance were 40%, 45%, and 85%, respectively. The dielectric constant and electrical property results indicated that the surface discharge capacity of the catalysts played a major role in the degradation of o-DCB, and a higher dielectric constant could suppress the plasma expansion and enhance the duration of the plasma discharge per discharge cycle. According to the O1s XPS and O2-TPD results, the conversion of CO to CO2 follows the M-v-K mechanism; thus, the active species on the catalyst surface play an important role. Moreover, the CuMnTiOx and NTP mixed system exhibited excellent stability, which is probably because Cu doping improved the lifetime of the catalyst. This work can provide an experimental and theoretical basis for research in the degradation of o-DCB by plasma catalyst systems.
Collapse
Affiliation(s)
- Wenbo Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Su
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Guangdong Province Engineering Laboratory for Air Pollution Control, Guangzhou 510530, China.
| | - Jiaqing Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoqi Jia
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Yongkang Cui
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Zhang
- Sinosteel Maanshan Mine Research Institute Co. Ltd., Anhui 243071, China
| |
Collapse
|
2
|
Wang C, Liu X, Zhai J, Zhong C, Zeng H, Feng L, Yang Y, Li X, Ma M, Luan T, Deng J. Effect of oxidative stress induced by 2,3,7,8- tetrachlorodibenzo-p-dioxin on DNA damage. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134485. [PMID: 38701725 DOI: 10.1016/j.jhazmat.2024.134485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic persistent organic pollutant (POP) that can induce DNA damage within cells. Although oxidative stress is one of the primary mechanisms causing DNA damage, its role in the process of TCDD-induced DNA damage remains unclear. In this study, the TCDD-induced production of reactive oxygen species (ROS) and the occurrence of DNA damage at the AP site were monitored simultaneously. Further investigation revealed that TCDD impaired the activities of superoxide dismutase (SOD) and catalase (CAT), compromising the cellular antioxidant defense system. Consequently, this led to an increase in the production of O2.- and NO, thus inducing DNA damage at the AP site under oxidative stress. Our findings were further substantiated by the upregulation of key genes in the base excision repair (BER) pathway and the absence of DNA AP site damage after inhibiting O2.- and NO. In addition, transcriptome sequencing revealed that TCDD induces DNA damage by upregulating genes associated with oxidative stress in the mitogen-activated protein kinase (MAPK), cyclic adenosine monophosphate (cAMP), and breast cancer pathways. This study provides important insights into the toxicity mechanisms of TCDD.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoxin Liu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junqiu Zhai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chunfei Zhong
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Haishen Zeng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Longkuan Feng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yunyun Yang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Xinyan Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Jiewei Deng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Zhang H, Xie K, Luo Q, Tang J, Zhang YN. Prediction of Base-Catalyzed Hydrolysis Kinetics of Polychlorinated Dibenzo- p-Dioxins by Density Functional Theory Calculations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5483-5490. [PMID: 38484382 DOI: 10.1021/acs.est.3c08985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs), comprising 75 congeners, have gained considerable attention from the general public and the scientific community owing to their high toxic potential. The base-catalyzed hydrolysis of PCDDs is crucial for the assessment of their environmental persistence. Nonetheless, owing to the substantial number of congeners and low hydrolysis rates of PCDDs, conducting hydrolysis experiments proves to be exceedingly time-consuming and financially burdensome. Herein, density functional theory and transition state theory were employed to predict the base-catalyzed hydrolysis of PCDDs in aquatic environments. Findings reveal that PCDDs undergo base-catalyzed hydrolysis in aquatic environments with two competing pathways: prevailing dioxin ring-opening and reduced reactivity in the hydrolytic dechlorination pathway. The resultant minor products include hydroxylated PCDDs, which exhibit thermodynamic stability surpassing that of the principal product, chlorinated hydroxydiphenyl ethers. The half-lives (ranging from 17.10 to 1.33 × 1010 h at pH = 8) associated with the base-catalyzed hydrolysis of PCDDs dissolved in water were shorter compared to those within the water-sediment environmental system. This observation implies that hydroxide ions can protect aquatic environments from PCDD contamination. Notably, this study represents the first attempt to predict the base-catalyzed hydrolysis of PCDDs by using quantum chemical methods.
Collapse
Affiliation(s)
- Haiqin Zhang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang 110000, China
| | - Kun Xie
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Qing Luo
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang 110000, China
| | - Jiaxi Tang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
4
|
Li Q, Yang H, Hao N, Du M, Zhao Y, Li Y, Li X. Biodegradability analysis of Dioxins through in silico methods: Model construction and mechanism analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118898. [PMID: 37657295 DOI: 10.1016/j.jenvman.2023.118898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
The biodegradation treatment of dioxins has long been of interest due to its good ecological and economic effects. In this study, the biodegradability of polychlorinated dibenzo-p-dioxins (PCDDs) were investigated by constructing machine learning and multiple linear regression models. The maximum chlorine atomic charge (qHirshfeldCl+), which characterizes the biodegradation ability of PCDDs, was used as the response value. The random forest model was used to rank the importance on the 1471 descriptors of PCDDs, and the BCUTp-1 h, QXZ, JGI4, ATSC8c, VE3_Dt, topoShape, and maxwHBa were screened as the important descriptors by Pearson's correlation coefficient method. A quantitative structure-activity relationship (QSAR) model was constructed to predict the biodegradability of PCDDs. In addition, the extreme gradient boosting (XGBoost) and random forest model were also constructed and proved the good predictability of QSAR model. The biodegradability of polychlorinated dibenzofurans (PCDFs) can also be predicted by the constructed three models from a certain level after adjusting some model parameters, which further proved the versatility of the models. Besides, the sensitivity analysis of the QSAR model and a 3D-QSAR model was developed to investigate the biodegradability mechanisms of PCDDs. Results showed that the descriptors BCUTp-1 h, JGI4, and maxwHBa were the key descriptors in the biodegradability effect by the sensitivity analysis of the QSAR model. Coupled with the results of PCDDs biodegradability 3D-QSAR model, BCUTp-1 h, JGI4, and maxwHBa were confirmed as the main descriptors that affect the biodegradability of dioxins. This study provides a novel theoretical perspective for the research of the biodegradation of both PCDDs and PCDFs dioxins.
Collapse
Affiliation(s)
- Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| | - Meijn Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yuanyuan Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Xixi Li
- Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
5
|
Dillon KP, Krumins V, Deshpande A, Kerkhof LJ, Mainelis G, Fennell DE. Characterization and DNA Stable-Isotope Probing of Methanotrophic Bioaerosols. Microbiol Spectr 2022; 10:e0342122. [PMID: 36409096 PMCID: PMC9769660 DOI: 10.1128/spectrum.03421-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022] Open
Abstract
The growth and activity of bacteria have been extensively studied in nearly every environment on Earth, but there have been limited studies focusing on the air. Suspended bacteria (outside of water droplets) may stay in the atmosphere for time frames that could allow for growth on volatile compounds, including the potent greenhouse gas methane. We investigated the ability of aerosolized methanotrophic bacteria to grow on methane in the airborne state in rotating gas-phase bioreactors. The physical half-life of the aerial bacterium-sized particles was 3 days. To assess the potential for airborne growth, gas-phase bioreactors containing the aerosolized cultures were amended with 1,500 ppmv 13CH4 or 12CH4. Three of seven experiments demonstrated 13C incorporation into DNA, indicating growth in air. Bacteria associated with the genera Methylocystis and Methylocaldum were detected in 13C-DNA fractions, thus indicating that they were synthesizing new DNA, suggesting growth in air. We conclude that methanotrophs outside of water droplets in the air can potentially grow under certain conditions. Based on our data, humidity seems to be a major limitation to bacterial growth in air. Furthermore, low biomass levels can pose problems for detecting 13C-DNA synthesis in our experimental system. IMPORTANCE Currently, the cellular activities of bacteria in the airborne state outside of water droplets have not been heavily studied. Evidence suggests that these airborne bacteria produce ribosomes and metabolize gaseous compounds. Despite having a potentially important impact on atmospheric chemistry, the ability of bacteria in the air to metabolize substrates such as methane is not well understood. Demonstrating that bacteria in the air can metabolize and grow on substrates will expand knowledge about the potential activities and functions of the atmospheric microbiome. This study provides evidence for DNA synthesis and, ultimately, growth of airborne methanotrophs.
Collapse
Affiliation(s)
- Kevin P. Dillon
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Valdis Krumins
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Aishwarya Deshpande
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Lee J. Kerkhof
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Donna E. Fennell
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|