1
|
Liu Y, Dong J, Cheng X, Cen X, Dang Y, Xu K, Zheng M. Dual role of organic matter in Feammox-driven nitrogen and phosphate removal. WATER RESEARCH X 2025; 27:100312. [PMID: 40007970 PMCID: PMC11851287 DOI: 10.1016/j.wroa.2025.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/26/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025]
Abstract
Feammox is a novel microbial process that enables simultaneous nitrogen and phosphorus removal in wastewater treatment. This study investigated the role of organic matter in Feammox-driven nutrient removal during long-term bioreactor operation by gradually increasing the influent chemical oxygen demand (COD) concentration from 0 to 50, and then to 100 mg/L. The results revealed that the ammonium removal efficiency was reduced from 60.5 % to 20.7 % with COD concentration increasing from 0 to 100 mg/L. In contrast, organic matter enhanced nitrate removal through heterotrophic denitrification, which outcompeted nitrate-dependent Fe(II) oxidation. Phosphorus removal was increased up to approximately 90 % via Fe(II)-mediated precipitation, forming vivianite crystals, evidenced by X-ray diffraction analysis. Continuous addition of Fe(III) alleviated the inhibitory effect of organic matter on ammonia oxidation by serving as an alternative electron acceptor, reducing competition. Therefore, optimizing organic matter levels and ensuring sufficient Fe(III) availability are crucial for achieving efficient nutrient removal in Feammox systems, particularly for treating wastewater with a low carbon/nitrogen ratio.
Collapse
Affiliation(s)
- Yi Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jiachen Dong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaohui Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaotong Cen
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Kangning Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
2
|
Maddin M, Terribili L, Rateau R, Szucs AM, Rodriguez-Blanco JD. Nanophase REE phosphate crystallization induced by vivianite oxidation: mechanistic insights and mineralogical implications. RSC Adv 2025; 15:11257-11270. [PMID: 40206358 PMCID: PMC11979900 DOI: 10.1039/d4ra08110b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
Our study investigates the interaction between multi-component rare earth element (REE; La, Ce, Pr, Nd, Dy)-bearing aqueous solutions and vivianite (Fe3 2+(PO4)2·8H2O) grains under hydrothermal conditions (50-165 °C). The results revealed the solution-mediated, progressive oxidation and dissolution of vivianite. This resulted in the formation of iron phosphates, metavivianite [Fe2+Fe2 3+(PO4)2(OH)2·6H2O], and giniite [Fe2+Fe4 3+(PO4)4 (OH)2·2H2O], iron oxide hematite [Fe2O3], and rare earth phosphates, rhabdophane [REE(PO4)·H2O] and monazite [(LREE)PO4]. The extent of the reactions was found to be dependent on temperature, pH, and the concentration and ionic radii of the rare earths in solution. The rate of vivianite oxidation and dissolution increased with increased temperature, with 50% of vivianite transformed after 32 days at 50 °C, and 100% transformed after 28 days and 4 hours at 90 and 165 °C respectively. The pH of the solutions at all three temperatures maintained the stability of rhabdophane, and only at the highest temperature of 165 °C it began to transform to monazite. Understanding the stability of iron phosphates, their transformation products, and their capacity to incorporate REEs is crucial for resource recovery, especially in the extraction of REEs from waste materials.
Collapse
Affiliation(s)
- M Maddin
- Department of Geology, School of Natural Sciences, Trinity College Dublin Dublin 2 Ireland
| | - L Terribili
- Department of Geology, School of Natural Sciences, Trinity College Dublin Dublin 2 Ireland
| | - R Rateau
- Department of Geology, School of Natural Sciences, Trinity College Dublin Dublin 2 Ireland
| | - A M Szucs
- Department of Geology, School of Natural Sciences, Trinity College Dublin Dublin 2 Ireland
| | - J D Rodriguez-Blanco
- iCRAG, Department of Geology, School of Natural Sciences, Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
3
|
Zhao L, Liu L, Liu X, Shu A, Zou W, Wang Z, Zhou Y, Huang C, Zhai Y, He H. Efficient phosphorus recovery from waste activated sludge: Pretreatment with natural deep eutectic solvent and recovery as vivianite. WATER RESEARCH 2024; 263:122161. [PMID: 39084092 DOI: 10.1016/j.watres.2024.122161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Recycling phosphorus from waste activated sludge (WAS) is an effective method to address the nonrenewable nature of phosphorus and mitigate environmental pollution. To overcome the challenge of low phosphorus recovery from WAS due to insufficient disintegration, a method using a citric acid-based natural deep eutectic solvent (CA-NADES) assisted with low-temperature pretreatment was proposed to efficiently release and recover phosphorus. The results of 31P nuclear magnetic resonance (NMR) confirmed that low-temperature pretreatment promoted the conversion of organic phosphorus (OP) to inorganic phosphorus (IP) and enhanced the effect of CA-NADES. Changes in the three-dimensional excitation-emission matrix (3D-EEM) and flow cytometry (FCM) indicated that the method of CA-NADES with low-temperature thermal simultaneously release IP and OP by disintegrating sludge flocs, dissolving extracellular polymeric substances (EPS) structure, and cracking cells. When 5 % (v/v) of CA-NADES was added and thermally treated at 60 °C for 30 min, 43 % of total phosphorus (TP) was released from the sludge. The concentrations of proteins and polysaccharides reached 826 and 331 mg/L, respectively, which were 6.30 and 14.43 times higher than those of raw sludge. The dewatering and settling of the sludge were also improved. Metals were either enriched in the solid phase or released into the liquid phase in small quantities (most efficiencies of less than 10 %) for subsequent clean recovery. The released phosphorus was successfully recovered as vivianite with a rate of 90 %. This study develops an efficient, green, and sustainable method for phosphorus recovery from sludge using NADES and provides new insights into the high-value conversion of sludge.
Collapse
Affiliation(s)
- Luna Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Liming Liu
- Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto 612-8236, Japan
| | - Xiaoping Liu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Aoqiang Shu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wei Zou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhexian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Cheng Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Hongkui He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; Anhui Risewell Technology Limited Company, Bozhou 236800, China.
| |
Collapse
|
4
|
Zheng R, Cheng X, Gao X, Zhang C, Cheng X, David Waite T. Iron-retrofitted anaerobic baffled reactor system for rural wastewater treatment: Stable performance of nutrients removal with phosphorus recovery and minimal sludge production. BIORESOURCE TECHNOLOGY 2024; 408:131179. [PMID: 39084532 DOI: 10.1016/j.biortech.2024.131179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
An iron-retrofitted anaerobic baffled reactor (ABR) system was developed for the effective treatment of rural wastewater with reduced maintenance demand and aeration costs. Average removal efficiencies of chemical oxygen demand, total nitrogen and total phosphorus of 99.4%, 62.7% and 92.6% were achieved respectively, when the ABR system was operating at steady state. With effective bioreduction of FeIII in the anaerobic chambers, phosphorus was immobilized in the sludge as vivianite, the sole phosphorus-carrying mineral. The FeIII in the recirculated sludge induced Feammox in the ABR reactor, contributing 14.8% to total nitrogen removal. Biophase separation and enrichment of microorganisms associated with iron and nitrogen transformations were observed in the system after Fe dosing, which enhanced the removal of pollutants. The coupling of Feammox and vivianite crystallization to remove nitrogen and phosphorus in an iron-retrofitted ABR would appear to be a promising technology for rural wastewater treatment.
Collapse
Affiliation(s)
- Ruoning Zheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Xiaohui Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Xiaozhong Gao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - T David Waite
- Water Research Center, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Zhang S, Baig SA, Xu X. Efficacy and mechanism of enhanced Sb(V) removal from textile wastewater using ferric flocs in aerobic biological treatment. CHEMOSPHERE 2024; 357:141920. [PMID: 38636914 DOI: 10.1016/j.chemosphere.2024.141920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Antimony contamination from textile industries has been a global environmental concern and the existing treatment technologies could not reduce Sb(V) to meet the discharge standards. To overcome this shortcoming, ferric flocs were introduced to expedite the biological process for enhanced Sb(V) removal in wastewater treatment plant (WWTP). For this purpose, a series of laboratorial-scale sequential batch reactor activated sludge processes (SBRs) were applied for Sb(V) removal with varied reactor conditions and the transformation of Fe and Sb in SBR system was investigated. Results showed a significant improvement in Sb(V) removal and the 20 mg L-1 d-1 iron ions dosage and iron loss rate was found to be only 15.2%. The influent Sb(V) concentration ranging 153-612 μg L-1 was reduced to below 50 μg L-1, and the maximum Sb(V) removal rate of the enhanced system reached about 94.3%. Furthermore, it exhibited high stability of Sb(V) removal in the face of antimonate load, Fe strike and matrix change of wastewater. Sludge total Sb determination and capacity calculation revealed decreasing in Sb adsorption capacity and desorption without fresh Fe dosage. While sludge morphology analysis demonstrated the aging and crystallization of iron hydroxides. These results verify the distinct effects of fresh iron addition and iron aging on Sb(V) removal. High-throughput gene pyrosequencing results showed that the iron addition changed microbial mechanisms and effect Fe oxidized bacterial quantity, indicating Sb(V) immobilization achieved by microbial synergistic iron oxidation. The present study successfully established a simple and efficient method for Sb(V) removal during biological treatment, and the modification of biological process by iron supplement could provide insights for real textile wastewater treatment.
Collapse
Affiliation(s)
- Shuangyu Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shams Ali Baig
- Department of Environmental Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan.
| | - Xinhua Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
6
|
Eshun LE, Coker VS, Shaw S, Lloyd JR. Strategies for optimizing biovivianite production using dissimilatory Fe(III)-reducing bacteria. ENVIRONMENTAL RESEARCH 2024; 242:117667. [PMID: 37980994 DOI: 10.1016/j.envres.2023.117667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Vivianite (Fe3(PO4)2·8H2O), a sink for phosphorus, is a key mineralization product formed during the microbial reduction of phosphate-containing Fe(III) minerals in natural systems, and also in wastewater treatment where Fe(III)-minerals are used to remove phosphate. As biovivianite is a potentially useful Fe and P fertiliser, there is much interest in harnessing microbial biovivianite synthesis for circular economy applications. In this study, we investigated the factors that influence the formation of microbially-synthesized vivianite (biovivianite) under laboratory batch systems including the presence and absence of phosphate and electron shuttle, the buffer system, pH, and the type of Fe(III)-reducing bacteria (comparing Geobacter sulfurreducens and Shewanella putrefaciens). The rate of Fe(II) production, and its interactions with the residual Fe(III) and other oxyanions (e.g., phosphate and carbonate) were the main factors that controlled the rate and extent of biovivianite formation. Higher concentrations of phosphate (e.g., P/Fe = 1) in the presence of an electron shuttle, at an initial pH between 6 and 7, were needed for optimal biovivianite formation. Green rust, a key intermediate in biovivianite production, could be detected as an endpoint alongside vivianite and metavivianite (Fe2+Fe3+2(PO4)2.(OH)2.6H2O), in treatments with G. sulfurreducens and S. putrefaciens. However, XRD indicated that vivianite abundance was higher in experiments containing G. sulfurreducens, where it dominated. This study, therefore, shows that vivianite formation can be controlled to optimize yield during microbial processing of phosphate-loaded Fe(III) materials generated from water treatment processes.
Collapse
Affiliation(s)
- Lordina E Eshun
- University of Manchester, Department of Earth and Environmental Sciences, Geomicrobiology Group, Williamson Building, M13 9QQ, Oxford Road, Manchester, UK.
| | - Victoria S Coker
- University of Manchester, Department of Earth and Environmental Sciences, Geomicrobiology Group, Williamson Building, M13 9QQ, Oxford Road, Manchester, UK.
| | - Samuel Shaw
- University of Manchester, Department of Earth and Environmental Sciences, Geomicrobiology Group, Williamson Building, M13 9QQ, Oxford Road, Manchester, UK.
| | - Jonathan R Lloyd
- University of Manchester, Department of Earth and Environmental Sciences, Geomicrobiology Group, Williamson Building, M13 9QQ, Oxford Road, Manchester, UK.
| |
Collapse
|
7
|
Wang H, Yang J, Zhang H, Zhao J, Liu H, Wang J, Li G, Liang H. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168277. [PMID: 37939956 DOI: 10.1016/j.scitotenv.2023.168277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
In this review, the application of membrane-based technology in water social circulation was summarized. Water social circulation encompassed the entire process from the acquirement to discharge of water from natural environment for human living and development. The focus of this review was primarily on the membrane-based technology in recovery of water and other valuable resources such as mineral ions, nitrogen and phosphorus. The main text was divided into four main sections according to water flow in the social circulation: drinking water treatment, agricultural utilization, industrial waste recycling, and urban wastewater reuse. In drinking water treatment, the acquirement of water resources was of the most importance. Pressure-driven membranes, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) were considered suitable in natural surface water treatment. Additionally, electrodialysis (ED) and membrane capacitive deionization (MCDI) were also effective in brackish water desalination. Agriculture required abundant water with relative low quality for irrigation. Therefore, the recovery of water from other stages of the social circulation has become a reasonable solution. Membrane bioreactor (MBR) was a typical technique attributed to low-toxicity effluent. In industrial waste reuse, the osmosis membranes (FO and PRO) were utilized due to the complex physical and chemical properties of industrial wastewater. Especially, membrane distillation (MD) might be promising when the wastewater was preheated. Resources recovery in urban wastewater was mainly divided into recovery of bioenergy (via anaerobic membrane bioreactors, AnMBR), nitrogen (utilizing MD and gas-permeable membrane), and phosphorus (through MBR with chemical precipitation). Furthermore, hybrid/integrated systems with membranes as the core component enhanced their performance and long-term working ability in utilization. Generally, concentrate management and energy consumption control might be the key areas for future advancements of membrane-based technology.
Collapse
Affiliation(s)
- Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Hongzhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
8
|
Duan Y, Gao B, Liu J, Sillanpää M. The activation of peroxymonosulfate by biochar derived from anaerobic and aerobic iron-containing excess sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59027-59047. [PMID: 37000396 DOI: 10.1007/s11356-023-26622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
The excess sludge from municipal sewage treatment plants is rich in Fe (III) due to chemical dephosphorization. The activation of peroxymonosulfate (PMS) by biochar derived from anaerobic and aerobic iron-containing excess sludge was studied systematically in this research. Fe (III)-containing excess sludge was cultured in an anaerobic environment for conversion of partial Fe (III) to Fe (II), which was further carbonized to prepare biochar labeled AnSx@Fe. Meanwhile, aerobic sludge with different Fe (III) content was directly carbonized to produce biochar labeled AeS@Fe. For biochar (AnS20@Fe-15%) prepared from 15% Fe(III)-containing anaerobic cultured 20 days sludge, the relative contents of Fe (III) and Fe (II) were 21.26% and 78.74%, which were 31.03% and 68.97% for biochar (AeS@Fe-10%) prepared from 10% Fe (III)-containing aerobic sludge. Fe (III) can be reduced to Fe (II) by both anaerobic culture and carbonization. Their removal rates of tetracycline (TC) through 60 min PMS activation were 97% and 98%, with TOC (Total organic carbon) removal of 61.8% and 53.4% respectively. The reactive species including sulfate radical [Formula: see text], hydroxyl radical (·OH) and singlet oxygen (1O2) were produced during PMS activation. After O2-aeration treatment of both AeS@Fe and AnSx@Fe, the relative content of Fe (II) was decreased and group C = O was disappeared, which resulted in reduction of [Formula: see text], ·OH and 1O2. The generation of [Formula: see text] and ·OH was dominated by the Fe (II) activation and the 1O2 generation was originated from graphite type N and C = O. Direct carbonization of aerobic and anaerobic sludge is a feasible method to produce biochar for PMS activation.
Collapse
Affiliation(s)
- Yanan Duan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bo Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Jiadong Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Selangor, 43600, Bangi, Malaysia
- Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, China
- Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
9
|
Zhao X, Teng Z, Wang G, Luo W, Guo Y, Ji X, Hu W, Li M. Anaerobic syntrophic system composed of phosphate solubilizing bacteria and dissimilatory iron reducing bacteria induces cadmium immobilization via secondary mineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130702. [PMID: 36587597 DOI: 10.1016/j.jhazmat.2022.130702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Secondary mineralization is a promising method for remediating cadmium (Cd) pollution in sediments, but the poor stability of Cd-containing secondary minerals is a bottleneck that limits the development of this approach. The existence of phosphate can enhance the formation of stable secondary minerals and points a new direction for Cd immobilization. In this research, a novel syntrophic system composed of phosphate solubilizing bacteria (PSB) and dissimilatory iron reducing bacteria (DIRB) was established and the effect and mechanism of Cd immobilization in the system were also explored. The results showed that under the conditions of DIRB:PSB (V:V)= 3:1, syntrophic bacteria dosage of 5% and glucose dosage of 5 g/L, Cd incorporated in the secondary minerals could account for about 60% of the total Cd. In the pH range of 5-9, alkaline environment was conducive to the immobilization of Cd and the percentage of combined Cd was up to 58%, while the combined Cd in secondary minerals decreased from 62% to 56% with the increase of initial Cd concentration from 0.1 to 0.3 mmol/L. In addition, XRD, XPS, Mössbauer and other characterization results showed that secondary minerals, such as Cd exchange hydroxyapatite (Cd-HAP) and kryzhanovskite (Fe3(PO4)2(OH)3) were formed in this new system. The established syntrophic system of PSB and DIRB is thus a prospective bioremediation technology for Cd immobilization in sediments and can avoid the potential risk might be caused by the addition of phosphorus-containing materials.
Collapse
Affiliation(s)
- Xin Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zedong Teng
- Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Key Laboratory of Green Process and Engineering, Beijing 100190, China; Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Gongting Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wenqing Luo
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Yang X, Zhang C, Zhang X, Deng S, Cheng X, Waite TD. Phosphate Recovery from Aqueous Solutions via Vivianite Crystallization: Interference of Fe II Oxidation at Different DO Concentrations and pHs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2105-2117. [PMID: 36688915 DOI: 10.1021/acs.est.2c06668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Vivianite (Fe3(PO4)2·8H2O) crystallization has attracted increasing attention as a promising approach for removing and recovering P from wastewaters. However, FeII is susceptible to oxygen with its oxidation inevitably influencing the crystallization of vivianite. In this study, the profile of vivianite crystallization in the presence of dissolved oxygen (DO) was investigated at pHs 5-7 in a continuous stirred-tank reactor. It is found that the influence of DO on vivianite crystallization was highly pH-related. At pH 5, the low rate of FeII oxidation at all of the investigated DO of 0-5 mg/L and the low degree of vivianite supersaturation resulted in slow crystallization with the product being highly crystalline vivianite, but the P removal efficiency was only 30-40%. The removal of P from the solution was substantially more effective (to >90%) in the DO-removed reactors at pH 6 and 7, whereas the efficiencies of P removal and especially recovery decreased by 10-20% when FeII oxidation became more severe at DO concentrations >2.5 mg/L (except at pH 6 with 2.5 mg/L DO). The elevated degree of vivianite supersaturation and enhanced rate and extent of FeII oxidation at the higher pHs led to decreases in the size and homogeneity of the products. At the same pH, amorphous ferric oxyhydroxide (AFO)─the product of FeII oxidation and FeIII hydrolysis─interferes with vivianite crystallization with the induction of aggregation of crystal fines by AFO, leading to increases in the size of the obtained solids.
Collapse
Affiliation(s)
- Xiaofan Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing100083, China
| | - Changyong Zhang
- Water Research Center, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Xinran Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing100083, China
| | - Shaoyu Deng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing100083, China
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing100083, China
| | - T David Waite
- Water Research Center, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW2052, Australia
| |
Collapse
|
11
|
Wang S, Li N, Yuan Q, Liang D, Chang J, Wang X, Ren N. Vivianite recovery from high concentration phosphorus wastewater with mine drainage as iron sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160098. [PMID: 36370783 DOI: 10.1016/j.scitotenv.2022.160098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
High concentration phosphorus wastewater has attracted much attention due to the safety of water ecology and the potential crisis of phosphorus resource, which is caused by large amounts of phosphorus discharging into natural water bodies. Vivianite (Fe3(PO4)2·8H2O) crystallization has been considered as an effective technology for phosphorus recovery. In this study, we develop a potentially low-cost, sustainable approach to recover phosphorus from high concentration phosphorus wastewater using mine drainage as iron source. Inoculated with both sewage and Geobacter, mine drainage was suitable for vivianite recovery from high concentration phosphorus wastewater with PO43- concentration between 6 and 18 mM. When the PO43- concentration increased gradually, both phosphorus removal efficiency (RP) and vivianite recovery efficiency (RV) decreased significantly. The highest RV of 48 % was obtained with 9 mM PO43- in Geobacter batches (CJ2 batches), which was 15 % higher than that in the paralleled sewage batches (33 % in HJ2). Simultaneously, vivianite accounted for 91 % of the solid phosphate compounds in CJ2 batches due to the enhancement of Geobacter.
Collapse
Affiliation(s)
- Shu Wang
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Nan Li
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qing Yuan
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Danhui Liang
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jifei Chang
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Yang S, Yang X, Zhang C, Deng S, Zhang X, Zhang Y, Cheng X. Significantly enhanced P release from vivianite as a fertilizer in rhizospheric soil: Effects of citrate. ENVIRONMENTAL RESEARCH 2022; 212:113567. [PMID: 35643311 DOI: 10.1016/j.envres.2022.113567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The use of vivianite (Fe3(PO4)2∙8H2O) as a slow-release P fertilizer in agriculture could be a promising way for the utilization of the recovered vivianite products from sewage treatment systems but the efficiency of vivianite-P release in the rhizospheric soil was yet unclear. In this work the dissolution of vivianite was investigated under anoxic and aerobic conditions with the focus on the effects of citrate as a common organic matter in the rhizosphere by tracking the kinetics of P release and the variations of aqueous and solid phases. The results show that citrate effectively induced the dissolution of vivianite particles at pH 6 with simultaneous release of Fe and PO4-P. The enhancement of vivianite dissolution was positively correlated to the concentrations of citrate with complete dissolution observed when citrate was above 6 mM. Compared with anoxic conditions, aerobic conditions further enhanced the dissolution of vivianite to some extent, which could be partially attributed to the oxidation and removal of aqueous FeII in the solution that drove the equilibrium towards dissolution. In the presence of 2 mM citrate, the decrease in pH from 6.0 to 4.0 enhanced the vivianite-P release by 56.1%, indicating the pH dependence of the citrate-induced vivianite dissolution. This study has shown that the efficiency of P release from vivianite products as a fertilizer varies largely under different physico-chemical conditions in the rhizospheric microenvironment, which is critical for determining the dosage of vivianite for a specific soil.
Collapse
Affiliation(s)
- Songying Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xiaofan Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Changyong Zhang
- Water Research Center, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shaoyu Deng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xinran Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Yue Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
13
|
Millán-Becerro R, Macías F, Cánovas CR, Pérez-López R, Fuentes-López JM. Environmental management and potential valorization of wastes generated in passive treatments of fertilizer industry effluents. CHEMOSPHERE 2022; 295:133876. [PMID: 35131274 DOI: 10.1016/j.chemosphere.2022.133876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/24/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
A phosphogypsum stack located in SW Spain releases highly acidic and contaminated leachates to the surrounding estuarine environment. Column experiments, based on a mixture of an alkaline reagent (i.e., MgO or Ca(OH)2) dispersed in an inert matrix (dispersed alkaline substrate (DAS) technology), have shown high effectiveness for the treatment of phosphogypsum leachates. MgO-DAS and Ca(OH)2-DAS treatment systems achieved near total removal of PO4, F, Fe, Zn, Al, Cr, Cd, U, and As, with initial reactive mass:volume of leachate treated ratios of 3.98 g/L and 6.35 g/L, respectively. The precipitation of phosphate (i.e., brushite, cattiite, fluorapatite, struvite and Mn3Zn(PO4)2·2H2O) and sulfate (i.e., despujolsite and gypsum) minerals could control the solubility of contaminants during the treatments. Therefore, the hazardousness of these wastes must be accurately assessed in order to be properly managed, avoiding potential environmental impacts. For this purpose, two standardized leaching tests (EN-12457-2 from the European Union and TCLP from the United States) were performed. According to European Union (EN-12457-2) regulation, some wastes recovered from DAS treatments should be classified as hazardous wastes because of the high concentrations of SO4 or Sb that are leached. However, according to United States (US EPA-TCLP) legislation, all DAS wastes are designated as non-hazardous wastes. Moreover, the solids generated in the DAS systems could constitute a promising secondary source of calcite and/or P. This research could contribute to worldwide suitable waste management for the fertilizer industry.
Collapse
Affiliation(s)
- Ricardo Millán-Becerro
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment, University of Huelva, Campus 'El Carmen', 21071, Huelva, Spain.
| | - Francisco Macías
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment, University of Huelva, Campus 'El Carmen', 21071, Huelva, Spain
| | - Carlos R Cánovas
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment, University of Huelva, Campus 'El Carmen', 21071, Huelva, Spain
| | - Rafael Pérez-López
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment, University of Huelva, Campus 'El Carmen', 21071, Huelva, Spain
| | - José M Fuentes-López
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment, University of Huelva, Campus 'El Carmen', 21071, Huelva, Spain
| |
Collapse
|
14
|
Wang Q, Kim TH, Reitzel K, Almind-Jørgensen N, Nielsen UG. Quantitative determination of vivianite in sewage sludge by a phosphate extraction protocol validated by PXRD, SEM-EDS, and 31P NMR spectroscopy towards efficient vivianite recovery. WATER RESEARCH 2021; 202:117411. [PMID: 34274899 DOI: 10.1016/j.watres.2021.117411] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Vivianite (Fe3(PO4)2⋅8H2O) is a potential phosphorus (P) recovery product from wastewater treatment plants (WWTPs). However, routine methods for quantification of vivianite bound P (vivianite-P) are needed to establish the link between vivianite formation and operating conditions, as current approaches require specialized instrumentation (Mössbauer or synchrotron). This study modified a conventional sequential P extraction protocol by insertion of an extraction step (0.2% 2,2'-bipyridine + 0.1 M KCl) targeting vivianite-P (Gu et al., Water Research, 2016, 103, 352-361). This protocol was tested on digested and dewatered sludge from two WWTPs, in which vivianite (molar Fe:P ratios of 1.0-1.6) was unambiguously identified by optical microscopy, powder X-ray diffraction, and scanning electron microscopy with energy dispersive X-ray spectroscopy. The results showed that vivianite-P was separated from iron(III)-bound P (Fe(III)-P) in the sludge. Vivianite-P constituted about half of the total P (TP) in the sludge from a Fe dosing chemical P removal (CPR) WWTP, but only 16-26% of TP in the sludge from a WWTP using a combination of Fe dosing CPR and enhanced biological P removal (EBPR). The modified protocol revealed that Fe-bound P (Fe-P, i.e., vivianite-P + Fe(III)-P) was the dominant P fraction, in agreement with quantitative 31P nuclear magnetic resonance (NMR) experiments. Moreover, it was shown that the conventional P extraction protocol underestimated the Fe-P content by 6-35%. The established protocol represents a reliable in-house analytical method that can distinguish and quantify vivianite-P and Fe(III)-P in sludge, i.e. facilitate optimized vivianite production at WWTPs.
Collapse
Affiliation(s)
- Qian Wang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Tae-Hyun Kim
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark; Current address: Department of Environmental Engineering, Seoul National University of Science and Technology, 01811 Seoul, Korea
| | - Kasper Reitzel
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | - Ulla Gro Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
15
|
Yuan Q, Wang S, Wang X, Li N. Biosynthesis of vivianite from microbial extracellular electron transfer and environmental application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143076. [PMID: 33129535 DOI: 10.1016/j.scitotenv.2020.143076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/01/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Vivianite (Fe3(PO4)2·8H2O) is a common hydrous ferrous phosphate mineral which often occurs in reductive conditions, especially anoxic non-sulfide environment containing high concentrations of ferrous iron (Fe2+) and orthophosphate (PO43-). Vivianite is an important product of dissimilatory iron reduction and a promising route for phosphorus recovery from wastewater. Its formation is closely related to the extracellular electron transfer (EET), a key mechanism for microbial respiration and a crucial explanation for the reduction of metal oxides in soil and sediments. Despite of the natural ubiquity, easy accessibility and attractive economic value, the application value of vivianite has not received much attention. This review introduces the characteristics, occurrence and biosynthesis of vivianite from microbial EET, and systematically analyzes the application value of vivianite in the environmental field, including immobilization of heavy metals (HMs), dechlorination of carbon tetrachloride (CT), sedimentary phosphorus sequestration and eutrophication alleviation. Additionally, its potential functions as a slow-release fertilizer are discussed as well. In general, vivianite is expected to make more contributions to the future scientific research, especially the solution of environmental problems. Overcoming the lack of understanding and some technical limitations will be beneficial to the further application of vivianite in environmental field.
Collapse
Affiliation(s)
- Qing Yuan
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Shu Wang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
16
|
Tian J, Ge F, Zhang D, Deng S, Liu X. Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. BIOLOGY 2021; 10:158. [PMID: 33671192 PMCID: PMC7922199 DOI: 10.3390/biology10020158] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022]
Abstract
Phosphorus (P) is a vital element in biological molecules, and one of the main limiting elements for biomass production as plant-available P represents only a small fraction of total soil P. Increasing global food demand and modern agricultural consumption of P fertilizers could lead to excessive inputs of inorganic P in intensively managed croplands, consequently rising P losses and ongoing eutrophication of surface waters. Despite phosphate solubilizing microorganisms (PSMs) are widely accepted as eco-friendly P fertilizers for increasing agricultural productivity, a comprehensive and deeper understanding of the role of PSMs in P geochemical processes for managing P deficiency has received inadequate attention. In this review, we summarize the basic P forms and their geochemical and biological cycles in soil systems, how PSMs mediate soil P biogeochemical cycles, and the metabolic and enzymatic mechanisms behind these processes. We also highlight the important roles of PSMs in the biogeochemical P cycle and provide perspectives on several environmental issues to prioritize in future PSM applications.
Collapse
Affiliation(s)
- Jiang Tian
- Department of Chemical Engineering, Xiangtan University, Xiangtan 411105, China;
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China;
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China;
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China;
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua–Suzhou), Suzhou 215163, China;
| | - Xingwang Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China;
| |
Collapse
|