1
|
Rokhbar M, Keshavarzi B, Moore F, Zarei M, Hooda PS, Risk MJ. Occurrence and source of PAHs in Miankaleh International Wetland in Iran. CHEMOSPHERE 2023; 321:138140. [PMID: 36791821 DOI: 10.1016/j.chemosphere.2023.138140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
We examined the occurrence and sources of 16 priority PAHs in the water and sediment samples of the Miankaleh Wetland (Coastal Biosphere Reserve), famous for harbouring huge flocks of migrating birds. The water and sediment samples collected from various locations were visualized and processed using a self-organizing map, positive matrix factorization and GIS. All the sediment samples, and >90% of the water samples, showed some degree of PAHs contamination. Higher PAH levels occur near the Chopoghi Channel, powerplants, sewage outfalls, and near fishing operations. Compared with previous study in this area, the PAHs concentration in the sediments of aquatic ecosystem of Miankaleh Wetland is increasing. The levels of PAH contamination seem too low to account for the mass deaths of migratory birds, and botulinus contamination seems the likely cause. Fugacity calculations show that the sediments act as a sink for PAHs. According to PMF and SOM analyses, three origins of PAHs were recognized: (i) fossil fuel and vehicular emissions with high-molecular weight PAHs (4-5 ring); (ii) municipal and industrial sewages characterized by low-molecular weight PAHs (2-3 ring) typical of petrogenic sources; and (iii) port activity characterized by prevalence of petrogenic influence and petroleum-related activities (combustion PAHs and low-molecular weight PAHs) consistent with port activity. This wetland needs serious attention because of continuous input of pollutants. The results and the methods used in this study may assist in improving coastal wetlands management.
Collapse
Affiliation(s)
- Mahsa Rokhbar
- Department of Earth Sciences, College of Science, Shiraz University, 71454, Shiraz, Iran
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, 71454, Shiraz, Iran.
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, 71454, Shiraz, Iran
| | - Mehdi Zarei
- Department of Earth Sciences, College of Science, Shiraz University, 71454, Shiraz, Iran
| | - Peter S Hooda
- Department of Geography, Geology and the Environment, Kingston University London, Kingston Upon Thames, KT12EE, UK
| | - Michael J Risk
- Department of Earth Sciences, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
2
|
Carvalho ACB, Moreira VA, Vicente MDC, Bidone ED, Bernardes MC, Sabadini-Santos E. Sterol and PAHs fingerprint analysis of organic matter at Southeast Brazilian Bay. MARINE POLLUTION BULLETIN 2022; 181:113899. [PMID: 35839664 DOI: 10.1016/j.marpolbul.2022.113899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/19/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Southeast Brazilian bays have been increasingly degraded by untreated organic loads. Therefore, to assess fecal contamination status, sediment quality regarding polycyclic aromatic hydrocarbons (PAHs), and sources of organic matter (OM), we have determined fine-grained and total organic carbon (TOC) content and concentrations of PAHs and sterols in twenty-six surface sediment samples in Sepetiba Bay. The fine-grained (1-26 %), TOC (0.20-3.45 %), PAHs (<LQ - 78.27 ng g-1) and sterols (0.10-21.58 μg g-1) results showed a decreasing trend from the internal to the external sector of the study area. The diagnostic ratios of selected PAHs and sterols indicated a mixture with significant contribution from continental and pyrolytic OM in all stations. The fecal contamination is significant to the internal sector of Sepetiba Bay. Considering a site-specific sediment quality guidelines (SQGs) the PAHs levels with more restricted benchmark values indicate the harbor and the internal sector as contaminated.
Collapse
Affiliation(s)
- Angelo C B Carvalho
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense - UFF, 24.020-141 Niterói, RJ, Brazil.
| | - Vanessa A Moreira
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense - UFF, 24.020-141 Niterói, RJ, Brazil
| | - Murilo de C Vicente
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense - UFF, 24.020-141 Niterói, RJ, Brazil
| | - Edison Dausacker Bidone
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense - UFF, 24.020-141 Niterói, RJ, Brazil
| | - Marcelo C Bernardes
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense - UFF, 24.020-141 Niterói, RJ, Brazil
| | - Elisamara Sabadini-Santos
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense - UFF, 24.020-141 Niterói, RJ, Brazil
| |
Collapse
|
3
|
Zafarani GG, Karbalaei S, Golshani R, Pustokhina I, Walker TR. Baseline occurrence, distribution and sources of PAHs, TPH, and OCPs in surface sediments in Gorgan Bay, Iran. MARINE POLLUTION BULLETIN 2022; 175:113346. [PMID: 35114549 DOI: 10.1016/j.marpolbul.2022.113346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Baseline polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPH) and organochlorine pesticides (OCPs) in surface sediments were measured in Gorgan Bay, Iran. Total PAHs, TPH, and OCPs concentrations ranged between 13.70 and 23.68 ng g-1, 2.97 to 11.51 μg g-1 dry weight, and below detection to 1.41 ng g-1, respectively. Benzo [k] fluoranthene and anthracene had the highest (BkF; 19.77 ± 0.08 ng g-1), and lowest (Ant; 4.38 ± 1.72 ng g-1) individual PAH concentrations, respectively. The most abundant OCPs were β-Endosulfan, followed by methoxychlor and endrin. PAH isomeric ratios in sediments revealed that contamination originated from mixed sources, with a strong indication of pyrogenic sources. Ecological risk assessments based on sediment quality guidelines (SQGs) suggested that individual PAHs and OCPs posed low ecological risks in Gorgan Bay.
Collapse
Affiliation(s)
- Ghasem Ghorbanzadeh Zafarani
- Research Center for Environment and Sustainable Development (RCESD), Iranian Department of Environment, Tehran 141551156, Iran.
| | - Samaneh Karbalaei
- Research Center for Environment and Sustainable Development (RCESD), Iranian Department of Environment, Tehran 141551156, Iran
| | | | - Inna Pustokhina
- Sechenov First Moscow State Medical University, Department of Propaedeutics of Dental Diseases, Moscow, Russia
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
4
|
Ranjbar Jafarabadi A, Mashjoor S, Mohamadjafari Dehkordi S, Riyahi Bakhtiari A, Cappello T. Emerging POPs-type cocktail signatures in Pusa caspica in quantitative structure-activity relationship of Caspian Sea. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124334. [PMID: 33162245 DOI: 10.1016/j.jhazmat.2020.124334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
The Caspian seal Pusa caspica is the only endemic mammalian species throughout the Caspian Sea. This is the first report on risk assessment of persistent organic pollutants (POPs) in Caspian seals by age-sex and tissue-specific uptake, and their surrounding environment (seawater, surface sediments, and suspended particulate matters, SPMs) in the Gorgan Bay (Caspian Sea, Iran). Among the quantified 70 POPs (∑35PCBs, ∑3HCHs, ∑6CHLs, ∑6DDTs, ∑17PCDD/Fs, HCB, dieldrin, and aldrin), ∑35PCBs were dominant in abiotic matrices (48.80% of ∑70POPs), followed by HCHs > CHLs > DDTs > PCDD/Fs > other POPs in surface sediments > SPMs > seawater, while the toxic equivalent quantity (TEQWHO) exceeded the safe value (possible risk in this area). In biota, the highest levels of ∑70POPs were found in males (756.3 ng g-1 dw, p < 0.05), followed by females (419.0 ng g-1 dw) and pups (191.6 ng g-1 dw) in liver > kidney > muscle > blubber > intestine > fur > heart > spleen > brain. The positive age-related POPs declining correlation between mother-pup pairs suggested the possible maternal transfer of POPs to offspring. The cocktail toxicity assessment revealed that Caspian seals can pose a low risk based on their mixed-TEQ values. Self-organizing map (SOM) indicated the non-coplanar PCB-93 as the most over-represented functional congener in tissue-specific POPs bioaccumulation. Quantitative toxicant tissue-profiling is valuable for predicting the state of mixture toxicity in pinniped species.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Sakineh Mashjoor
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Shirin Mohamadjafari Dehkordi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Ranjbar Jafarabadi A, Mashjoor S, Riyahi Bakhtiari A, Jadot C. Dietary intake of polycyclic aromatic hydrocarbons (PAHs) from coral reef fish in the Persian Gulf — Human health risk assessment. Food Chem 2020; 329:127035. [DOI: 10.1016/j.foodchem.2020.127035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 01/07/2023]
|