1
|
Kubeneck LJ, Rothwell KA, Notini L, ThomasArrigo LK, Schulz K, Fantappiè G, Joshi P, Huthwelker T, Kretzschmar R. In Situ Vivianite Formation in Intertidal Sediments: Ferrihydrite-Adsorbed P Triggers Vivianite Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:523-532. [PMID: 39719861 PMCID: PMC11741103 DOI: 10.1021/acs.est.4c10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
Coastal sediments are a key contributor to oceanic phosphorus (P) removal, impacting P bioavailability and primary productivity. Vivianite, an Fe(II)-phosphate mineral, can be a major P sink in nonsulfidic, reducing coastal sediments. Despite its importance, vivianite formation processes in sediments remain poorly understood. Here, we applied a novel approach to detect and quantify in situ vivianite formation in three intertidal flats. We conducted 7-week long incubations of mesh-bags filled with sediments mixed with (1) 57Fe-ferrihydrite, (2) 57Fe-ferrihydrite with adsorbed phosphate, and (3) 57Fe-ferrihydrite with adsorbed phosphate and some vivianite (natural Fe isotope abundance), which could serve as crystal growth sites. Synthesizing the ferrihydrite from 57Fe (96.1%) enabled us to detect transformation products using 57Fe-Mössbauer spectroscopy. Vivianite formed only in treatments containing adsorbed phosphate and only at the two sites where vivianite formation was thermodynamically feasible based on porewater chemistry. These results demonstrate vivianite formation within weeks when locally favorable Fe:P ratios exist. Although vivianite comprised a minor fraction of Fe (up to 15%), it represented a significant P pool (up to 72%), emphasizing its role in coastal P burial. Additionally, our results may apply to other environmental systems like limnic sediments.
Collapse
Affiliation(s)
- L. Joëlle Kubeneck
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
CHN, ETH Zürich, 8092 Zürich, Switzerland
| | - Katherine A. Rothwell
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
CHN, ETH Zürich, 8092 Zürich, Switzerland
- School
of Earth Sciences, University of Bristol, Bristol BS8 1RJ, U.K.
| | - Luiza Notini
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
CHN, ETH Zürich, 8092 Zürich, Switzerland
- Department
of Civil, Construction, and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Laurel K. ThomasArrigo
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
CHN, ETH Zürich, 8092 Zürich, Switzerland
- Environmental
Chemistry Group, Institute of Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Katrin Schulz
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
CHN, ETH Zürich, 8092 Zürich, Switzerland
| | - Giulia Fantappiè
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
CHN, ETH Zürich, 8092 Zürich, Switzerland
| | - Prachi Joshi
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| | | | - Ruben Kretzschmar
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
CHN, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
2
|
Schulz K, Wisawapipat W, Barmettler K, Grigg ARC, Kubeneck LJ, Notini L, ThomasArrigo LK, Kretzschmar R. Iron Oxyhydroxide Transformation in a Flooded Rice Paddy Field and the Effect of Adsorbed Phosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10601-10610. [PMID: 38833530 PMCID: PMC11191587 DOI: 10.1021/acs.est.4c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
The mobility and bioavailability of phosphate in paddy soils are closely coupled to redox-driven Fe-mineral dynamics. However, the role of phosphate during Fe-mineral dissolution and transformations in soils remains unclear. Here, we investigated the transformations of ferrihydrite and lepidocrocite and the effects of phosphate pre-adsorbed to ferrihydrite during a 16-week field incubation in a flooded sandy rice paddy soil in Thailand. For the deployment of the synthetic Fe-minerals in the soil, the minerals were contained in mesh bags either in pure form or after mixing with soil material. In the latter case, the Fe-minerals were labeled with 57Fe to allow the tracing of minerals in the soil matrix with 57Fe Mössbauer spectroscopy. Porewater geochemical conditions were monitored, and changes in the Fe-mineral composition were analyzed using 57Fe Mössbauer spectroscopy and/or X-ray diffraction analysis. Reductive dissolution of ferrihydrite and lepidocrocite played a minor role in the pure mineral mesh bags, while in the 57Fe-mineral-soil mixes more than half of the minerals was dissolved. The pure ferrihydrite was transformed largely to goethite (82-85%), while ferrihydrite mixed with soil only resulted in 32% of all remaining 57Fe present as goethite after 16 weeks. In contrast, lepidocrocite was only transformed to 12% goethite when not mixed with soil, but 31% of all remaining 57Fe was found in goethite when it was mixed with soil. Adsorbed phosphate strongly hindered ferrihydrite transformation to other minerals, regardless of whether it was mixed with soil. Our results clearly demonstrate the influence of the complex soil matrix on Fe-mineral transformations in soils under field conditions and how phosphate can impact Fe oxyhydroxide dynamics under Fe reducing soil conditions.
Collapse
Affiliation(s)
- Katrin Schulz
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
CHN, ETH Zurich, Zurich 8092, Switzerland
| | - Worachart Wisawapipat
- Department
of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Kurt Barmettler
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
CHN, ETH Zurich, Zurich 8092, Switzerland
| | - Andrew R. C. Grigg
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
CHN, ETH Zurich, Zurich 8092, Switzerland
| | - L. Joëlle Kubeneck
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
CHN, ETH Zurich, Zurich 8092, Switzerland
| | - Luiza Notini
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
CHN, ETH Zurich, Zurich 8092, Switzerland
| | - Laurel K ThomasArrigo
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
CHN, ETH Zurich, Zurich 8092, Switzerland
| | - Ruben Kretzschmar
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
CHN, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
3
|
Liu M, Liu X, Graham NJD, Yu W. Uncovering the neglected role of anions in trivalent cation-based coagulation processes. WATER RESEARCH 2024; 254:121352. [PMID: 38401286 DOI: 10.1016/j.watres.2024.121352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Coagulation efficiency is heavily contingent upon a profound comprehension of the underlying mechanisms, facilitated by the evolution of coagulation theory. However, the role of anions, prevalent components in raw and wastewaters, has been relatively overlooked in this context. To address this gap, this study has investigated the impact of three common anions (i.e., chloride, sulfate, and phosphate) on Al-based coagulation. The results have shown that the influence of anions on coagulation depends predominantly on their ability to compete with hydroxyl groups throughout the entire coagulation process, encompassing hydrolysis, aggregation, and the growth of large flocs. Moreover, this competition is subject to the dual influence of both anion concentration and hydroxyl concentration (i.e., pH). The results have revealed the intricate interplay between anions and coagulants, their impact on floc structure, and their importance in optimizing coagulation efficiency and ensuring the production of high-quality water.
Collapse
Affiliation(s)
- Mengjie Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xun Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
Schulz K, Notini L, Grigg ARC, Kubeneck LJ, Wisawapipat W, ThomasArrigo LK, Kretzschmar R. Contact with soil impacts ferrihydrite and lepidocrocite transformations during redox cycling in a paddy soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1945-1961. [PMID: 37971060 DOI: 10.1039/d3em00314k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Iron (Fe) oxyhydroxides can be reductively dissolved or transformed under Fe reducing conditions, affecting mineral crystallinity and the sorption capacity for other elements. However, the pathways and rates at which these processes occur under natural soil conditions are still poorly understood. Here, we studied Fe oxyhydroxide transformations during reduction-oxidation cycles by incubating mesh bags containing ferrihydrite or lepidocrocite in paddy soil mesocosms for up to 12 weeks. To investigate the influence of close contact with the soil matrix, mesh bags were either filled with pure Fe minerals or with soil mixed with 57Fe-labeled Fe minerals. Three cycles of flooding (3 weeks) and drainage (1 week) were applied to induce soil redox cycles. The Fe mineral composition was analyzed with Fe K-edge X-ray absorption fine structure spectroscopy, X-ray diffraction analysis and/or 57Fe Mössbauer spectroscopy. Ferrihydrite and lepidocrocite in mesh bags without soil transformed to magnetite and/or goethite, likely catalyzed by Fe(II) released to the pore water by microbial Fe reduction in the surrounding soil. In contrast, 57Fe-ferrihydrite in mineral-soil mixes transformed to a highly disordered mixed-valence Fe(II)-Fe(III) phase, suggesting hindered transformation to crystalline Fe minerals. The 57Fe-lepidocrocite transformed to goethite and small amounts of the highly disordered Fe phase. The extent of reductive dissolution of minerals in 57Fe-mineral-soil mixes during anoxic periods increased with every redox cycle, while ferrihydrite and lepidocrocite precipitated during oxic periods. The results demonstrate that the soil matrix strongly impacts Fe oxyhydroxide transformations when minerals are in close spatial association or direct contact with other soil components. This can lead to highly disordered and reactive Fe phases from ferrihydrite rather than crystalline mineral products and promoted goethite formation from lepidocrocite.
Collapse
Affiliation(s)
- Katrin Schulz
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland
| | - Luiza Notini
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland
| | - Andrew R C Grigg
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland
| | - L Joëlle Kubeneck
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland
| | - Worachart Wisawapipat
- Soil Chemistry and Biogeochemistry Group, Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Laurel K ThomasArrigo
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland
- Environmental Chemistry Group, Institute of Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000, Neuchatel, Switzerland.
| | - Ruben Kretzschmar
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland
| |
Collapse
|
5
|
Notini L, Schulz K, Kubeneck LJ, Grigg ARC, Rothwell KA, Fantappiè G, ThomasArrigo LK, Kretzschmar R. A New Approach for Investigating Iron Mineral Transformations in Soils and Sediments Using 57Fe-Labeled Minerals and 57Fe Mössbauer Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37364169 DOI: 10.1021/acs.est.3c00434] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Iron minerals in soils and sediments play important roles in many biogeochemical processes and therefore influence the cycling of major and trace elements and the fate of pollutants in the environment. However, the kinetics and pathways of Fe mineral recrystallization and transformation processes under environmentally relevant conditions are still elusive. Here, we present a novel approach enabling us to follow the transformations of Fe minerals added to soils or sediments in close spatial association with complex solid matrices including other minerals, organic matter, and microorganisms. Minerals enriched with the stable isotope 57Fe are mixed with soil or sediment, and changes in Fe speciation are subsequently studied by 57Fe Mössbauer spectroscopy, which exclusively detects 57Fe. In this study, 57Fe-labeled ferrihydrite was synthesized, mixed with four soils differing in chemical and physical properties, and incubated for 12+ weeks under anoxic conditions. Our results reveal that the formation of crystalline Fe(III)(oxyhydr)oxides such as lepidocrocite and goethite was strongly suppressed, and instead formation of a green rust-like phase was observed in all soils. These results contrast those from Fe(II)-catalyzed ferrihydrite transformation experiments, where formation of lepidocrocite, goethite, and/or magnetite often occurs. The presented approach allows control over the composition and crystallinity of the initial Fe mineral, and it can be easily adapted to other experimental setups or Fe minerals. It thus offers great potential for future investigations of Fe mineral transformations in situ under environmentally relevant conditions, in both the laboratory and the field.
Collapse
Affiliation(s)
- Luiza Notini
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Katrin Schulz
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - L Joëlle Kubeneck
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Andrew R C Grigg
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Katherine A Rothwell
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Giulia Fantappiè
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Laurel K ThomasArrigo
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Ruben Kretzschmar
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| |
Collapse
|
6
|
Grigg ARC, ThomasArrigo LK, Schulz K, Rothwell KA, Kaegi R, Kretzschmar R. Ferrihydrite transformations in flooded paddy soils: rates, pathways, and product spatial distributions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1867-1882. [PMID: 36131682 PMCID: PMC9580987 DOI: 10.1039/d2em00290f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Complex interactions between redox-driven element cycles in soils influence iron mineral transformation processes. The rates and pathways of iron mineral transformation processes have been studied intensely in model systems such as mixed suspensions, but transformation in complex heterogeneous porous media is not well understood. Here, mesh bags containing 0.5 g of ferrihydrite were incubated in five water-saturated paddy soils with contrasting microbial iron-reduction potential for up to twelve weeks. Using X-ray diffraction analysis, we show near-complete transformation of the ferrihydrite to lepidocrocite and goethite within six weeks in the soil with the highest iron(II) release, and slower transformation with higher ratios of goethite to lepidocrocite in soils with lower iron(II) release. In the least reduced soil, no mineral transformations were observed. In soils where ferrihydrite transformation occurred, the transformation rate was one to three orders of magnitude slower than transformation in comparable mixed-suspension studies. To interpret the spatial distribution of ferrihydrite and its transformation products, we developed a novel application of confocal micro-Raman spectroscopy in which we identified and mapped minerals on selected cross sections of mesh bag contents. After two weeks of flooded incubation, ferrihydrite was still abundant in the core of some mesh bags, and as a rim at the mineral-soil interface. The reacted outer core contained unevenly mixed ferrihydrite, goethite and lepidocrocite on the micrometre scale. The slower rate of transformation and uneven distribution of product minerals highlight the influence of biogeochemically complex matrices and diffusion processes on the transformation of minerals, and the importance of studying iron mineral transformation in environmental media.
Collapse
Affiliation(s)
- Andrew R C Grigg
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland.
| | - Laurel K ThomasArrigo
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland.
| | - Katrin Schulz
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland.
| | - Katherine A Rothwell
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland.
| | - Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Ruben Kretzschmar
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland.
| |
Collapse
|
7
|
Li M, Chen N, Shang H, Ling C, Wei K, Zhao S, Zhou B, Jia F, Ai Z, Zhang L. An Electrochemical Strategy for Simultaneous Heavy Metal Complexes Wastewater Treatment and Resource Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10945-10953. [PMID: 35830297 DOI: 10.1021/acs.est.2c02363] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heavy metals chelated with coexisting organic ligands in wastewater impose severe risks to public health and the ambient ecosystem but are also valuable metal resources. For sustainable development goals, the treatment of heavy metal complexes wastewater requires simultaneous metal-organic bond destruction and metal resource recovery. In this study, we demonstrated that a neutral pH electro-Fenton (EF) system, which was composed of an iron anode, carbon cloth cathode, and sodium tetrapolyphosphate electrolyte (Na6TPP), could induce a successive single-electron activation pathway of molecular oxygen due to the formation of Fe(II)-TPP complexes. The boosted •OH generation in the Na6TPP-EF process could decomplex 99.9% of copper ethylene diamine tetraacetate within 8 h; meanwhile, the released Cu ions were in situ deposited on the carbon cloth cathode in the form of Cu nanoparticles with a high energy efficiency of 2.45 g kWh-1. Impressively, the recovered Cu nanoparticles were of purity over 95.0%. More importantly, this neutral EF strategy could realize the simultaneous removal of Cu, Ni, and Cr complexes from real electroplating effluents. This study provides a promising neutral EF system for simultaneous heavy metal complexes wastewater treatment and resource recovery and sheds light on the importance of molecular oxygen activation in the field of pollutant control.
Collapse
Affiliation(s)
- Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Na Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Huan Shang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Cancan Ling
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Kai Wei
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shengxi Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Biao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
8
|
Li X, Graham NJD, Deng W, Liu M, Liu T, Yu W. Structural Variation of Precipitates Formed by Fe(II) Oxidation and Impact on the Retention of Phosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4345-4355. [PMID: 35319869 DOI: 10.1021/acs.est.1c06256] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The oxidation-precipitation process of Fe(II) is ubiquitous in the environment and critically affects the fate of contaminants and nutrients in natural systems where Fe(II) is present. Here, we explored the effect of H2O2 concentration on the structure of precipitates formed by Fe(II) oxidation and compared the precipitates to those formed by Fe(III) hydrolysis. Additionally, the phosphate retention under different H2O2 concentrations was evaluated. XRD, TEM, PDA, XPS, and UV-visible absorbance spectroscopy were used to characterize the structure of the formed precipitates; UV-visible absorbance spectroscopy was also used to determine the residual phosphate and Fe(II) in solution. It was found that the predominant precipitates in Fe(II) solution changed from planar-shaped crystalline lepidocrocite (γ-FeOOH) to poor short-range order (poorly crystalline) spherical-shaped hydrous ferric oxide (HFO) with increasing H2O2 concentrations. Although the HFO precipitates formed from Fe(II) resembled those formed from Fe(III) hydrolysis, the former was larger and had clearer lattice fringes. During the formation of γ-FeOOH, both Fe(II)-Fe(III) complexes and ligand-to-metal charge transfer processes were observed, and it was found that Fe(II) was present in the planar-shaped precipitates. Fe(II) might be present in the interior of precipitates as Fe(OH)2, which could serve as a nucleus for the epitaxial growth of γ-FeOOH. In addition, the extent of phosphate retention increased with the H2O2 concentration, indicating the increased reactivity of formed precipitates with H2O2 concentration. More phosphate was retained via coprecipitation with Fe than adsorption on the preformed Fe precipitates due to the incorporation of phosphate within the structure of the formed Fe hydroxyphosphate via coprecipitation.
Collapse
Affiliation(s)
- Xian Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Wensheng Deng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Ting Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| |
Collapse
|