1
|
Ariyarathna T, Fallis S, Davis MC, Tobias C. Quantifying removal and mineralization of nitrotriazolone in contrasting freshwater sediment systems using 13C and 15N stable isotope tracers. CHEMOSPHERE 2025; 376:144289. [PMID: 40086305 DOI: 10.1016/j.chemosphere.2025.144289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
The environmental fate of insensitive high explosive compound nitrotriazolone (NTO) has not been adequately studied in surface freshwater environments. The goal of this study was to evaluate and quantify removal and complete mineralization of NTO in distinct freshwater sediment systems. We conducted aquaria-scale experiments using four freshwater sediment types: low organic carbon (OC) river sand, low OC silt, high OC wetland sediment, high OC pond silt with and without submerged aquatic plants to investigate natural attenuation of NTO. Isotopically labeled NTO (13C and 15N) was added to the aquaria and time series aqueous and sediment samples were collected over three to four weeks. Aqueous NTO half-lives ranged from 6 to 63 days in the presence of sediments while no NTO loss from the aqueous phase was measured in the absence of sediment. Nitrotriazolone completely disappeared within one month in pond silt and wetland sediment aquaria that had higher sediment organic contents, facilitating NTO biotransformation in freshwater ecosystems. Approximately 7%-50% of the NTO loss was demonstrated to be complete mineralization, and NTO mineralization half-lives ranged from 17 to 533 days, with the shortest mineralization half-lives measured in the highest organic content wetland. There was good fidelity between the appearance of 13C tracer and 15N tracer in mineralization products, providing high confidence that both tracers were quantifying complete mineralization. For NTO, increased sediment organic content corresponded to both faster rates of loss of NTO from overlying water and a higher fraction of that loss representing mineralization.
Collapse
Affiliation(s)
- Thivanka Ariyarathna
- University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, Groton, CT, USA; Rowan University, Department of Environmental Science, 201 Mullica Hill Road, Glassboro, NJ, USA.
| | - Stephen Fallis
- Naval Air Warfare Center Weapons Division (NAWCWD), China Lake, California, USA.
| | - Matthew C Davis
- Naval Air Warfare Center Weapons Division (NAWCWD), China Lake, California, USA.
| | - Craig Tobias
- University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, Groton, CT, USA.
| |
Collapse
|
2
|
Cárdenas-Hernández PA, Murillo-Gelvez J, Rincón-Rodríguez JC, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Predicting Abiotic Reduction Rate Constants of Munition Compounds in Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3229-3238. [PMID: 39912794 DOI: 10.1021/acs.est.4c12872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
We report an empirical poly-parameter linear free energy relationship (LFER) for estimating the mass-normalized rate constants for the abiotic reduction of munition compounds (MC) in soil. A total of 131 kinetic experiments were performed, using three classes of MC (nitroaromatic [TNT, DNAN], nitramine [RDX], and azole [NTO]) and 11 soils having highly varied organic carbon and iron contents and reduced with dithionite to different electron contents. The LFER has the same form as that for MC reduction by FeIII (oxyhydr)oxide-FeaqII redox couples and predicts MC reduction rate constants to within an order of magnitude, using only the aqueous-phase one electron reduction potential (EH1) of the MC and the pe and pH of the soil. As previously shown for azoles, which exhibited markedly higher reactivity toward iron than toward carbon reductants relative to all neutral MC, NTO reduction rate depended on soil composition and hence a correction to model prediction was necessary at soil iron-to-carbon mass ratios ≲1. This is the first successful attempt to predict the reduction kinetics of structurally diverse nitro compounds in compositionally complex soils based on their thermodynamic properties. The LFER would be useful in the management/restoration (e.g., natural or enhanced attenuation) of soils impacted by MC or other nitro pollutants.
Collapse
Affiliation(s)
- Paula A Cárdenas-Hernández
- Department of Civil, Construction, and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jimmy Murillo-Gelvez
- Department of Civil, Construction, and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Juan C Rincón-Rodríguez
- Department of Civil, Construction, and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil, Construction, and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil, Construction, and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
- Mutch Associates LLC, Ramsey, New Jersey 07446, United States
| | - Pei C Chiu
- Department of Civil, Construction, and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Li X, Niu A, Yang S, Liu F. The reduction of nitrobenzene by Fe(II)-goethite-hematite heterogeneous systems: Insight from thermodynamic parameters of reduction potential. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122404. [PMID: 39250851 DOI: 10.1016/j.jenvman.2024.122404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Determining the contaminants reduction rate by dissolved ferrous iron (Fe(II)aq) bound to iron oxides is curial for evaluating the abiotic attenuation of contaminants in aquifers. However, few studies have assessed the contaminants reduction rate controlled by thermodynamic parameters in heterogeneous systems with different iron oxides. In this study, a linear free energy relationship (LFER) was established between the nitrobenzene reduction rate and the thermodynamic driving force (reduction potential (EH) and pH) in Fe(II)aq-goethite-hematite co-existing systems. Results showed that the reduction rate of nitrobenzene correlated with the EH of the heterogeneous system. The standard reduction potential (EH0mix) of the mixed iron oxides could be obtained by a proportionate linear combination of the single iron oxide system EH0. Based on this, the EH of the heterogeneous systems could be calculated theoretically by combining EH0mix and the Nernst equation. Furthermore, a parallel LFER with the slope of 1 was established to associate the nitrobenzene reduction rate with EH and pH. The intercept term was related to the adsorption capacity of different iron oxides towards Fe(II)aq. The Fe(II)aq saturation adsorption capacity of hematite was 1.5 times higher than that of goethite. After normalizing the nitrobenzene reduction rate to the Fe(II)aq saturation adsorption capacity, the maximum difference in intercept terms was reduced from 37% to 15%. These findings would provide an important and feasible methodological support for the quantitative evaluation of abiotic attenuation of contaminants in groundwater.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing, 100083, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Aiyu Niu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing, 100083, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Shanshan Yang
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing, 100083, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Fei Liu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing, 100083, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China.
| |
Collapse
|
4
|
Rincón-Rodríguez JC, Cárdenas-Hernández PA, Murillo-Gelvez J, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Comparative Evaluation of Mediated Electrochemical Reduction and Chemical Redox Titration for Quantifying the Electron Accepting Capacities of Soils and Redox-Active Soil Constituents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17674-17684. [PMID: 39322992 DOI: 10.1021/acs.est.4c06514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The electron accepting capacity (EAC) of soil plays a pivotal role in the biogeochemical cycling of nutrients and transformation of redox-labile contaminants. Prior EAC studies of soils and soil constituents utilized different methods, reductants, and mediators, making cross-study comparison difficult. This study was conducted to quantify and compare the EACs of two soil constituents (hematite and Leonardite humic acid) and 12 soils of diverse composition, using chemical redox titration (CRT) with dithionite as the reductant and mediated electrochemical reduction (MER) with diquat as the mediator. The EACs of hematite and humic acid measured by CRT (EACCRT) and MER (EACMER) are similar and close to the theoretical/reported values. For soils, EACCRT and EACMER increased with iron and organic carbon (TOC) contents, suggesting iron and carbon were the main contributors to soil EAC. EACCRT > EACMER for all soils, and their difference (ΔEAC = EACCRT - EACMER) increased with TOC, presumably due to the longer contact time in CRT and thus more complete reduction of carbonaceous redox moieties. We propose an equation that relates EACCRT to EACMER (ΔEAC = 1796fTOC + 32) and another that predicts EACCRT from dithionite-reducible Fe and TOC (EACCRT = 2705 μmol e-/g C × fTOC + 17907 μmol e-/g Fe × fFedithionite-reducible). Our results suggest that at least 10-15% of soil organic carbon contributed to EACCRT.
Collapse
Affiliation(s)
- Juan C Rincón-Rodríguez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Paula A Cárdenas-Hernández
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jimmy Murillo-Gelvez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
- Mutch Associates LLC, Ramsey, New Jersey 07446, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
5
|
Cheng W, Li J, Sun J, Luo T, Marsac R, Boily JF, Hanna K. Nalidixic Acid and Fe(II)/Cu(II) Coadsorption at Goethite and Akaganéite Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15680-15692. [PMID: 37796760 DOI: 10.1021/acs.est.3c05727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Interactions between aqueous Fe(II) and solid Fe(III) oxy(hydr)oxide surfaces play determining roles in the fate of organic contaminants in nature. In this study, the adsorption of nalidixic acid (NA), a representative redox-inactive quinolone antibiotic, on synthetic goethite (α-FeOOH) and akaganéite (β-FeOOH) was examined under varying conditions of pH and cation type and concentration, by means of adsorption experiments, attenuated total reflectance-Fourier transform infrared spectroscopy, surface complexation modeling (SCM), and powder X-ray diffraction. Batch adsorption experiments showed that Fe(II) had marginal effects on NA adsorption onto akaganéite but enhanced NA adsorption on goethite. This enhancement is attributed to the formation of goethite-Fe(II)-NA ternary complexes, without the need for heterogeneous Fe(II)-Fe(III) electron transfer at low Fe(II) loadings (2 Fe/nm2), as confirmed by SCM. However, higher Fe(II) loadings required a goethite-magnetite composite in the SCM to explain Fe(II)-driven recrystallization and its impact on NA binding. The use of a surface ternary complex by SCM was supported further in experiments involving Cu(II), a prevalent environmental metal incapable of transforming Fe(III) oxy(hydr)oxides, which was observed to enhance NA loadings on goethite. However, Cu(II)-NA aqueous complexation and potential Cu(OH)2 precipitates counteracted the formation of ternary surface complexes, leading to decreased NA loadings on akaganéite. These results have direct implications for the fate of organic contaminants, especially those at oxic-anoxic boundaries.
Collapse
Affiliation(s)
- Wei Cheng
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Jiabin Li
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Jie Sun
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Tao Luo
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Rémi Marsac
- Université de Rennes, CNRS, Géosciences Rennes─UMR 6118, F-35000 Rennes, France
| | | | - Khalil Hanna
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
6
|
Cárdenas-Hernández PA, Hickey K, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Linear Free Energy Relationship for Predicting the Rate Constants of Munition Compound Reduction by the Fe(II)-Hematite and Fe(II)-Goethite Redox Couples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13646-13657. [PMID: 37610109 DOI: 10.1021/acs.est.3c04714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Abiotic reduction by iron minerals is arguably the most important fate process for munition compounds (MCs) in subsurface environments. No model currently exists that can predict the abiotic reduction rates of structurally diverse MCs by iron (oxyhydr)oxides. We performed batch experiments to measure the rate constants for the reduction of three classes of MCs (poly-nitroaromatics, nitramines, and azoles) by hematite or goethite in the presence of aqueous Fe2+. The surface area-normalized reduction rate constant (kSA) depended on the aqueous-phase one-electron reduction potential (EH1) of the MC and the thermodynamic state (i.e., pe and pH) of the iron oxide-Feaq2+ system. A linear free energy relationship (LFER), similar to that reported previously for nitrobenzene, successfully captures all MC reduction rate constants that span 6 orders of magnitude: log ( k S A ) = ( 1.12 ± 0.04 ) [ 0.53 E H 1 59 m V - ( p H + p e ) ] + ( 5.52 ± 0.23 ) . The finding that the rate constants of all the different classes of MCs can be described by a single LFER suggests that these structurally diverse nitro compounds are reduced by iron oxide-Feaq2+ couples through a common mechanism up to the rate-limiting step. Multiple mechanistic implications of the results are discussed. This study expands the applicability of the LFER model for predicting the reduction rates of legacy and emerging MCs and potentially other nitro compounds.
Collapse
Affiliation(s)
- Paula A Cárdenas-Hernández
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kevin Hickey
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
- Mutch Associates LLC, Ramsey, New Jersey 07446, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
7
|
Hickey KP, Cardenas-Hernandez P, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Thermodynamic Two-Site Surface Reaction Model for Predicting Munition Constituent Reduction Kinetics with Iron (Oxyhydr)oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12411-12420. [PMID: 37566737 DOI: 10.1021/acs.est.3c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Iron (oxyhydr)oxides comprise a significant portion of the redox-active fraction of soils and are key reductants for remediation of sites contaminated with munition constituents (MCs). Previous studies of MC reduction kinetics with iron oxides have focused on the concentration of sorbed Fe(II) as a key parameter. To build a reaction kinetic model, it is necessary to predict the concentration of sorbed Fe(II) as a function of system conditions and the redox state. A thermodynamic framework is formulated that includes a generalized double-layer model that utilizes surface acidity and surface complexation reactions to predict sorbed Fe(II) concentrations that are used for fitting MC reduction kinetics. Monodentate- and bidentate Fe(II)-binding sites are used with individual oxide sorption characteristics determined through data fitting. Results with four oxides (goethite, hematite, lepidocrocite, and ferrihydrite) and four nitro compounds (NB, CN-NB, Cl-NB, and NTO) from six separate studies have shown good agreement when comparing observed and predicted surface area-normalized rate constants. While both site types are required to reproduce the experimental redox titration, only the monodentate site concentration controls the MC reaction kinetics. This model represents a significant step toward predicting the timescales of MC degradation in the subsurface.
Collapse
Affiliation(s)
- Kevin P Hickey
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Paula Cardenas-Hernandez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
8
|
Liu J, Xiang Y, Chen Y, Zhang H, Ye B, Ren L, Tan W, Kappler A, Hou J. Quantitative Contribution of Oxygen Vacancy Defects to Arsenate Immobilization on Hematite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12453-12464. [PMID: 37561149 DOI: 10.1021/acs.est.3c03441] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Hematite is a common iron oxide in natural environments, which has been observed to influence the transport and fate of arsenate by its association with hematite. Although oxygen vacancies were demonstrated to exist in hematite, their contributions to the arsenate immobilization have not been quantified. In this study, hematite samples with tunable oxygen vacancy defect (OVD) concentrations were synthesized by treating defect-free hematite using different NaBH4 solutions. The vacancy defects were characterized by positron annihilation lifetime spectroscopy, Doppler broadening of annihilation radiation, extended X-ray absorption fine structure (EXAFS), thermogravimetric mass spectrometry (TG-MS), electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS). The results revealed that oxygen vacancy was the primary defect type existing on the hematite surface. TG-MS combined with EPR analysis allowed quantification of OVD concentrations in hematite. Batch experiments revealed that OVDs had a positive effect on arsenate adsorption, which could be quantitatively described by a linear relationship between the OVD concentration (Cdef, mmol m-2) and the enhanced arsenate adsorption amount caused by defects (ΔQm, μmol m-2) (ΔQm = 20.94 Cdef, R2 = 0.9813). NH3-diffuse reflectance infrared Fourier transform (NH3-DRIFT) analysis and density functional theory (DFT) calculations demonstrated that OVDs in hematite were beneficial to the improvement in adsorption strength of surface-active sites, thus considerably promoting the immobilization of arsenate.
Collapse
Affiliation(s)
- Juan Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongjin Xiang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiwen Chen
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen 72076, Germany
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Lin WH, Chien CC, Ou JH, Yu YL, Chen SC, Kao CM. Cleanup of Cr(VI)-polluted groundwater using immobilized bacterial consortia via bioreduction mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117947. [PMID: 37075632 DOI: 10.1016/j.jenvman.2023.117947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/02/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Cr(VI) bioreduction has become a remedial alternative for Cr(VI)-polluted site cleanup. However, lack of appropriate Cr(VI)-bioreducing bacteria limit the field application of the in situ bioremediation process. In this study, two different immobilized Cr(VI)-bioreducing bacterial consortia using novel immobilization agents have been developed for Cr(VI)-polluted groundwater remediation: (1) granular activated carbon (GAC) + silica gel + Cr(VI)-bioreducing bacterial consortia (GSIB), and (2) GAC + sodium alginate (SA) + polyvinyl alcohol (PVA) + Cr(VI)-bioreducing bacterial consortia (GSPB). Moreover, two unique substrates [carbon-based agent (CBA) and emulsified polycolloid substrate (EPS)] were developed and used as the carbon sources for Cr(VI) bioreduction enhancement. The microbial diversity, dominant Cr-bioreducing bacteria, and changes of Cr(VI)-reducing genes (nsfA, yieF, and chrR) were analyzed to assess the effectiveness of Cr(VI) bioreduction. Approximately 99% of Cr(VI) could be bioreduced in microcosms with GSIB and CBA addition after 70 days of operation, which caused increased populations of total bacteria, nsfA, yieF, and chrR from 2.9 × 108 to 2.1 × 1012, 4.2 × 104 to 6.3 × 1011, 4.8 × 104 to 2 × 1011, and 6.9 × 104 to 3.7 × 107 gene copies/L. In microcosms with CBA and suspended bacteria addition (without bacterial immobilization), the Cr(VI) reduction efficiency dropped to 60.3%, indicating that immobilized Cr-bioreducing bacteria supplement could enhance Cr(VI) bioreduction. Supplement of GSPB led to a declined bacterial growth due to the cracking of the materials. The addition of GSIB and CBA could establish a reduced condition, which favored the growth of Cr(VI)-reducing bacteria. The Cr(VI) bioreduction efficiency could be significantly improved through adsorption and bioreduction mechanisms, and production of Cr(OH)3 precipitates confirmed the occurrence of Cr(VI) reduction. The main Cr-bioreducing bacteria included Trichococcus, Escherichia-Shigella, and Lactobacillus. Results suggest that the developed GSIB bioremedial system could be applied to cleanup Cr(VI)-polluted groundwater effectively.
Collapse
Affiliation(s)
- Wei-Han Lin
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - Jiun-Hau Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ying-Liang Yu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Lai J, Tang T, Du X, Wang R, Liang J, Song D, Dang Z, Lu G. Oxidation of 1,3-diphenylguanidine (DPG) by goethite activated persulfate: Mechanisms, products identification and reaction sites prediction. ENVIRONMENTAL RESEARCH 2023:116308. [PMID: 37290617 DOI: 10.1016/j.envres.2023.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
As emerging pollutants continue to be discovered, studies on the degradation behavior of emerging pollutants have proliferated, but few studies have focused on the reactivity of the new pollutants themselves. The work investigated the oxidation of a representative roadway runoff-derived organic contaminant, 1,3-diphenylguanidine (DPG) by goethite activated persulfate (PS). DPG exhibited the highest degradation rate (kd = 0.42 h-1) with present of PS and goethite at pH 5.0, then started to decrease with increasing pH. Chloride ion inhibited DPG degradation by scavenging HO·. Both HO· and SO4-· were generated in goethite activated PS system. Competitive kinetic experiments and flash photolysis experiments were conducted to investigate free radical reaction rate. The second-order reaction rate constants for DPG reacting with HO· and SO4-· were quantified (kDPG + HO·,kDPG + SO4-·), which both reached above 109 M-1 s-1. Chemical structures of five products were identified, four of them were previously detected in DPG photodegradation, bromination and chlorination processes. By density functional theory (DFT) calculations, ortho- and para- C were more easily attacked by both HO· and SO4-·. Abstraction of H on N by HO· and SO4-· were the favorable pathways, and the product TP-210 might be generated by cyclization of DPG radical from abstraction of H on N (3). The results of this study help us to better understand the reactivity of DPG with SO4-· and HO·.
Collapse
Affiliation(s)
- Jinbin Lai
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ting Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Dehao Song
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Murillo-Gelvez J, Hickey K, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Electron Transfer Energy and Hydrogen Atom Transfer Energy-Based Linear Free Energy Relationships for Predicting the Rate Constants of Munition Constituent Reduction by Hydroquinones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5284-5295. [PMID: 36961098 DOI: 10.1021/acs.est.2c08931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
No single linear free energy relationship (LFER) exists that can predict reduction rate constants of all munition constituents (MCs). To address this knowledge gap, we measured the reduction rates of MCs and their surrogates including nitroaromatics [NACs; 2,4,6-trinitrotoluene (TNT), 2,4-dinitroanisole (DNAN), 2-amino-4,6-dinitrotoluene (2-A-DNT), 4-amino-2,6-dinitrotoluene (4-A-DNT), and 2,4-dinitrotoluene (DNT)], nitramines [hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and nitroguanidine (NQ)], and azoles [3-nitro-1,2,4-triazol-5-one (NTO) and 3,4-dinitropyrazole (DNP)] by three dithionite-reduced quinones (lawsone, AQDS, and AQS). All MCs/NACs were reduced by the hydroquinones except NQ. Hydroquinone and MC speciations were varied by controlling pH, permitting the application of a speciation model to determine second-order rate constants (k) from observed pseudo-first-order rate constants. The intrinsic reactivity of MCs (oxidants) decreased upon deprotonation, while the opposite was true for hydroquinones (reductants). The rate constants spanned ∼6 orders of magnitude in the order NTO ≈ TNT > DNP > DNT ≈ DNAN ≈ 2-A-DNT > DNP- > 4-A-DNT > NTO- > RDX. LFERs developed using density functional theory-calculated electron transfer and hydrogen atom transfer energies and reported one-electron reduction potentials successfully predicted k, suggesting that these structurally diverse MCs/NACs are all reduced by hydroquinones through the same mechanism and rate-limiting step. These results increase the applicability of LFER models for predicting the fate and half-lives of MCs and related nitro compounds in reducing environments.
Collapse
Affiliation(s)
- Jimmy Murillo-Gelvez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kevin Hickey
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
- Mutch Associates LLC, Ramsey, New Jersey 07446, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
Schroer HW, Londono E, Li X, Lehmler HJ, Arnold W, Just CL. Photolysis of 3-Nitro-1,2,4-triazol-5-one: Mechanisms and Products. ACS ES&T WATER 2023; 3:783-792. [PMID: 36936519 PMCID: PMC10012174 DOI: 10.1021/acsestwater.2c00567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Insensitive munitions formulations that include 3-nitro-1,2,4-triazol-5-one (NTO) are replacing traditional explosive compounds. While these new formulations have superior safety characteristics, the compounds have greater environmental mobility, raising concern over potential contamination and cleanup of training and manufacturing facilities. Here, we examine the mechanisms and products of NTO photolysis in simulated sunlight to further inform NTO degradation in sunlit surface waters. We demonstrate that NTO produces singlet oxygen and that dissolved oxygen increases the NTO photolysis rate in deionized water. The rate of NTO photolysis is independent of concentration and decreases slightly in the presence of Suwannee River Natural Organic Matter. The apparent quantum yield of NTO generally decreases as pH increases, ranging from 2.0 × 10-5 at pH 12 to 1.3 × 10-3 at pH 2. Bimolecular reaction rate constants for NTO with singlet oxygen and hydroxyl radical were measured to be (1.95 ± 0.15) × 106 and (3.28 ± 0.23) × 1010 M-1 s-1, respectively. Major photolysis reaction products were ammonium, nitrite, and nitrate, with nitrite produced in nearly stoichiometric yield upon the reaction of NTO with singlet oxygen. Environmental half-lives are predicted to span from 1.1 to 5.7 days. Taken together, these data enhance our understanding of NTO photolysis under environmentally relevant conditions.
Collapse
Affiliation(s)
- Hunter W. Schroer
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| | - Esteban Londono
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| | - Xueshu Li
- Occupational
& Environmental Health, The University
of Iowa, Iowa City, Iowa52246, United States
| | - Hans-Joachim Lehmler
- Occupational
& Environmental Health, The University
of Iowa, Iowa City, Iowa52246, United States
| | - William Arnold
- Department
of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota55455, United States
| | - Craig L. Just
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| |
Collapse
|
13
|
Ariyarathna T, Twarz S, Tobias C. Adsorption and Removal Kinetics of 2,4-Dinitroanisole and Nitrotriazolone in Contrasting Freshwater Sediments: Batch Study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:46-59. [PMID: 36342340 DOI: 10.1002/etc.5509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Environmental release of 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) is of great concern due to high migration potential in the environment. In the present study we evaluated the adsorption and microbially-mediated removal kinetics of dissolved DNAN and NTO in contrasting freshwater sediments with different total organic carbon (TOC) content. River sand (low TOC), pond silt (high TOC), clay-rich lake sediment (low TOC), wetland silt (high TOC), carbonate sand (low TOC), and iron-rich clay (low TOC) were evaluated. Separate abiotic and biotic bench-top sediment slurry incubations were carried out at 23, 15, and 4 °C for DNAN and NTO. Experiments were conducted over 3 weeks. Time series aqueous samples and sediment samples collected at the end of the experiment were analyzed for DNAN and NTO concentrations. The DNAN compound equilibrated with sediment within the first 2 h after addition whereas NTO showed no adsorption. 2,4-Dinitroanisole adsorbed more onto fine-grained organic-rich sediments (Kd = 2-40 L kg-1 sed-1 ) than coarse-grained organic-poor sediments (Kd = 0.2-0.6 L kg-1 sed-1 ), and the TOC content and cation exchange capacity of sediment were reliable predictors for abiotic DNAN adsorption. Adsorption rate constants and equilibrium partitioning constants for DNAN were inversely proportional to temperature in all sediment types. The biotic removal half-life of DNAN was faster (t1/2 = 0.1-58 h) than that of NTO (t1/2 = 5-347 h) in all sediment slurries. Biotic removal rates (t1/2 = 0.1-58 h) were higher than abiotic rates (t1/2 = 0.3-107 h) for DNAN at 23 °C. Smaller grain size coupled with higher TOC content enhanced biotic NTO and DNAN removal in freshwater environments. Environ Toxicol Chem 2023;42:46-59. © 2022 SETAC.
Collapse
Affiliation(s)
- Thivanka Ariyarathna
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
- Department of Environmental Sciences, Rowan University, Glassboro, New Jersey, USA
| | - Sydney Twarz
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Craig Tobias
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
14
|
Menezes O, Kocaman K, Wong S, Rios-Valenciana EE, Baker EJ, Hatt JK, Zhao J, Madeira CL, Krzmarzick MJ, Spain JC, Sierra-Alvarez R, Konstantinidis KT, Field JA. Quinone Moieties Link the Microbial Respiration of Natural Organic Matter to the Chemical Reduction of Diverse Nitroaromatic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9387-9397. [PMID: 35704431 DOI: 10.1021/acs.est.2c01329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insensitive munitions compounds (IMCs) are emerging nitroaromatic contaminants developed by the military as safer-to-handle alternatives to conventional explosives. Biotransformation of nitroaromatics via microbial respiration has only been reported for a limited number of substrates. Important soil microorganisms can respire natural organic matter (NOM) by reducing its quinone moieties to hydroquinones. Thus, we investigated the NOM respiration combined with the abiotic reduction of nitroaromatics by the hydroquinones formed. First, we established nitroaromatic concentration ranges that were nontoxic to the quinone respiration. Then, an enrichment culture dominated by Geobacter anodireducens could indirectly reduce a broad array of nitroaromatics by first respiring NOM components or the NOM surrogate anthraquinone-2,6-disulfonate (AQDS). Without quinones, no nitroaromatic tested was reduced except for the IMC 3-nitro-1,2,4-triazol-5-one (NTO). Thus, the quinone respiration expanded the spectrum of nitroaromatics susceptible to transformation. The system functioned with very low quinone concentrations because NOM was recycled by the nitroaromatic reduction. A metatranscriptomic analysis demonstrated that the microorganisms obtained energy from quinone or NTO reduction since respiratory genes were upregulated when AQDS or NTO was the electron acceptor. The results indicated microbial NOM respiration sustained by the nitroaromatic-dependent cycling of quinones. This process can be applied as a nitroaromatic remediation strategy, provided that a quinone pool is available for microorganisms.
Collapse
Affiliation(s)
- Osmar Menezes
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Kumru Kocaman
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stanley Wong
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Erika E Rios-Valenciana
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Eliot J Baker
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jianshu Zhao
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| | - Camila L Madeira
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Mark J Krzmarzick
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jim C Spain
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Center for Environmental Diagnostics & Bioremediation, University of West Florida, Pensacola, Florida 32514, United States
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
15
|
Hao T, Huang Y, Li F, Wu Y, Fang L. Facet-dependent Fe(II) redox chemistry on iron oxide for organic pollutant transformation and mechanisms. WATER RESEARCH 2022; 219:118587. [PMID: 35605391 DOI: 10.1016/j.watres.2022.118587] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Fe(II) redox chemistry is a pivotal process of biogeochemical Fe cycle and the transformation of organic pollutants in subsurface aquifers, while its interfacial reactivity on iron oxides with varying surface chemistries remains largely unexplored. In this study, the redox processes of Fe(II) on two hematite with highly exposed {001} and {110} facets and their impacts on the transformation of nitrobenzene were investigated. Results suggest that Fe(II) adsorption is the rate-limiting step of the redox chain reactions, controlling the reduction potential (EH). Nitrobenzene activates the facet electron transfer on hematite, leading to nitrobenzene reduction and Fe(II) oxidation. Moreover, {001} facet exhibits a higher reactivity and electron transport efficiency than {110} facet, which is attributed to a lower site density (0.809 #Fe/nm2) and a lower EH of hematite {001} facet than that of {110} facet. It is worth noting that the facet-dependent reduction activity is more intense at low pH or high Fe(II) activity. A slight dissolution of {110} facet was observed, indicating hematite {001} facet exhibits higher thermodynamic stability than {110} facet. This study confirms the facet-dependent reducing activity of surface bound Fe(II) on hematite, providing a new perspective for in-depth understanding of the interfacial reactions on hematite. The findings of this work broaden the biogeochemical process of Fe cycle in subsurface environments and its impact on the fate of organic pollutants in groundwater.
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Yao Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yundang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
16
|
Hickey KP, Murillo-Gelvez J, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Modeling the Reduction Kinetics of Munition Compounds by Humic Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4926-4935. [PMID: 35349281 DOI: 10.1021/acs.est.1c06130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dissolved organic matter (DOM) comprises a sizeable portion of the redox-active constituents in the environment and is an important reductant for the abiotic transformation of nitroaromatic compounds and munition constituents (NACs/MCs). Building a predictive kinetic model for these reactions would require the energies associated with both the reduction of the NACs/MCs and the oxidation of the DOM. The heterogeneous and unknown structure of DOM, however, has prohibited reliable determination of its oxidation energies. To overcome this limitation, humic acids (HAs) were used as model DOM, and their redox moieties were modeled as a collection of quinones of different redox potentials. The reduction and oxidation energies of the NACs/MCs and hydroquinones, respectively, via hydrogen atom transfer (HAT) reactions were then calculated quantum chemically. HAT energies have been used successfully in a linear free energy relationship (LFER) to predict second-order rate constants for NAC reduction by hydroquinones. Furthermore, a linear relationship between the HAT energies and the reduction potentials of quinones was established, which allows estimation of hydroquinone reactivity (i.e., rate constants) from HA redox titration data. A training set of three HAs and two NACs/MCs was used to generate a mean HA redox profile that successfully predicted reduction kinetics in multiple HA/MC systems.
Collapse
Affiliation(s)
- Kevin P Hickey
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jimmy Murillo-Gelvez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
17
|
Elijah Akanbi O, Kim I, Cha DK, Attavane AA, Hubbard BP, Chiu PC. A Synergistic Nano‐Zerovalent Iron‐Hydrogen Peroxide Technology for Insensitive Munitions Wastewater Treatment. PROPELLANTS EXPLOSIVES PYROTECHNICS 2022. [DOI: 10.1002/prep.202100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Inyoung Kim
- Department of Civil and Environmental Engineering University of Delaware Newark DE 19716 USA
| | - Daniel K. Cha
- Department of Civil and Environmental Engineering University of Delaware Newark DE 19716 USA
| | - Adithya A. Attavane
- U. S. Army Combat Capabilities Development Command Armaments Center Picatinny Arsenal NJ 07806 USA
| | - Brian P. Hubbard
- U. S. Army Joint Program Executive Office Armaments & Ammunition Picatinny Arsenal NJ 07806 USA
| | - Pei C. Chiu
- Department of Civil and Environmental Engineering University of Delaware Newark DE 19716 USA
| |
Collapse
|
18
|
Xin D, Girón J, Fuller ME, Chiu PC. Abiotic reduction of 3-nitro-1,2,4-triazol-5-one (NTO) and other munitions constituents by wood-derived biochar through its rechargeable electron storage capacity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:316-329. [PMID: 35050280 DOI: 10.1039/d1em00447f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The environmental fate of 3-nitro-1,2,4-triazol-5-one (NTO) and other insensitive munitions constituents (MCs) is of significant concern due to their high water solubility and mobility relative to legacy MCs. Plant-based biochars have been shown to possess a considerable electron storage capacity (ESC), which enables them to undergo reversible electron transfer reactions. We hypothesized biochar can act as a rechargeable electron donor to effect abiotic reduction of MCs repeatedly through its ESC. To test this hypothesis, MC reduction experiments were performed using wood-derived biochars that were oxidized with dissolved oxygen or reduced with dithionite. Removal of aqueous NTO, an anion at circumneutral pH, by oxidized biochar was minimal and occurred through reversible adsorption. In contrast, NTO removal by reduced biochar was much more pronounced and occurred predominantly through reduction, with concomitant formation of 3-amino-1,2,4-triazol-5-one (ATO). Mass balance and electron recovery with ferricyanide further showed that (1) the amount of NTO reduced to ATO was relatively constant (85-100 μmol per gram of biochar) at pH 6-10; (2) the fraction of biochar ESC reactive toward NTO was ca. 30% of that toward ferricyanide; (3) the NTO-reactive fraction of the ESC was regenerable over multiple redox cycles. We also evaluated biochar transformation of other MCs, including nitroguanidine (NQ), 2,4-dinitroanisole (DNAN), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). While mass and electron balances could not be established due to sorption, DNAN and RDX reduction by reduced biochar was confirmed via detection of multiple reduction products. In contrast, NQ was not reduced under any of the conditions tested. This study is the first demonstration of organic contaminant degradation through biochar's rechargeable ESC. Our results indicate biochar is a regenerable electron storage medium and sorbent that can remove MCs from water through concurrent reduction and sorption, and is thus potentially useful for pollution control and remediation at military facilities.
Collapse
Affiliation(s)
- Danhui Xin
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Julián Girón
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA.
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
19
|
Menezes O, Yu Y, Root RA, Gavazza S, Chorover J, Sierra-Alvarez R, Field JA. Iron(II) monosulfide (FeS) minerals reductively transform the insensitive munitions compounds 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO). CHEMOSPHERE 2021; 285:131409. [PMID: 34271466 DOI: 10.1016/j.chemosphere.2021.131409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
As military applications of the insensitive munitions compounds (IMCs) 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) increase, there is a growing need to understand their environmental fate and to develop remediation strategies to mitigate their impacts. Iron (II) monosulfide (FeS) minerals are abundant in freshwater and marine sediments, marshes, and hydrothermal environments. This study shows that FeS solids can reduce DNAN and NTO to their corresponding amines under anoxic ambient conditions. The reactions between IMCs and the FeS minerals were surface-mediated since they did not occur when only dissolved Fe2+(aq) and S2-(aq) were present. Mackinawite, a tetragonal FeS with a layered structure, reduced DNAN mainly to 2-methoxy-5-nitroaniline (MENA), which in turn was partially reduced to 2-4-diaminoanisole (DAAN). The layered structure of mackinawite provided intercalation sites likely responsible for partial adsorption of MENA and DAAN. Mackinawite entirely reduced NTO to 3-amino-1,2,4-triazol-5-one (ATO). The reduction of IMCs showed concurrent oxidation of mackinawite to goethite and elemental sulfur. A commercial FeS product, composed mainly of pyrrhotite and troilite, reduced DNAN to DAAN and NTO to ATO. At pH 6.5, DNAN and NTO transformation rates were 667 and 912 μmol h-1 m-2, respectively, on the mackinawite surface and 417 and 1344 μmol h-1 m-2, respectively, on the commercial FeS surface. This is the first report of the reduction of a nitro-heterocyclic compound (NTO) by FeS minerals. The evidence indicates that DNAN and NTO can be rapidly transformed to their succeeding amines in anoxic subsurface environments and aquatic sediments rich in FeS minerals.
Collapse
Affiliation(s)
- Osmar Menezes
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, USA; Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, PE, 50740-530, Brazil
| | - Youngjae Yu
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Robert A Root
- Department of Environmental Science, The University of Arizona, AZ, 85721, USA
| | - Savia Gavazza
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, PE, 50740-530, Brazil
| | - Jon Chorover
- Department of Environmental Science, The University of Arizona, AZ, 85721, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jim A Field
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
20
|
Sciscenko I, Arques A, Escudero-Oñate C, Roccamante M, Ruiz-Delgado A, Miralles-Cuevas S, Malato S, Oller I. A Rational Analysis on Key Parameters Ruling Zerovalent Iron-Based Treatment Trains: Towards the Separation of Reductive from Oxidative Phases. NANOMATERIALS 2021; 11:nano11112948. [PMID: 34835712 PMCID: PMC8623565 DOI: 10.3390/nano11112948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022]
Abstract
The development of treatment trains for pollutant degradation employing zerovalent iron has been attracting a lot of interest in the last few years. This approach consists of pre-treatment only with zerovalent iron, followed by a Fenton oxidation taking advantage of the iron ions released in the first step. In this work, the advantages/disadvantages of this strategy were studied employing commercial zerovalent iron microparticles (mZVI). The effect of the initial amount of mZVI, H2O2, pH, conductivity, anions and dissolved oxygen were analysed using p-nitrobenzoic acid (PNBA) as model pollutant. 83% reduction of PNBA 6 µM into p-aminobenzoic acid (PABA) was achieved in natural water at an initial pH 3.0 and 1.4 g/L of mZVI, under aerobic conditions, in 2 h. An evaluation of the convenience of removing mZVI after the reductive phase before the Fenton oxidation was investigated together with mZVI reusability. The Fenton step against the more reactive PABA required 50 mg/L of H2O2 to achieve more than 96% removal in 15 min at pH 7.5 (final pH from the reductive step). At least one complete reuse cycle (reduction/oxidation) was achieved with the separated mZVI. This approach might be interesting to treat wastewater containing pollutants initially resistant to hydroxyl radicals.
Collapse
Affiliation(s)
- Iván Sciscenko
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell s/n, 03801 Alcoy, Spain; (I.S.); (A.A.)
| | - Antonio Arques
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell s/n, 03801 Alcoy, Spain; (I.S.); (A.A.)
| | - Carlos Escudero-Oñate
- Institute for Energy Technology (IFE), Instituttveien 18, Kjeller, 2007 Lillestrom, Norway;
| | - Melina Roccamante
- CIEMAT-Plataforma Solar de Almería, Carretera de Senés, km 4, 04200 Tabernas, Spain; (M.R.); (A.R.-D.); (S.M.)
| | - Ana Ruiz-Delgado
- CIEMAT-Plataforma Solar de Almería, Carretera de Senés, km 4, 04200 Tabernas, Spain; (M.R.); (A.R.-D.); (S.M.)
- CIESOL, Joint Centre of the University of Almería-CIEMAT, Ctra. Sacramento, s/n, La Cañada, 04120 Almería, Spain
| | - Sara Miralles-Cuevas
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Av. Ignacio Valdivieso 2409, San Joaquín, Santiago 8940000, Chile;
| | - Sixto Malato
- CIEMAT-Plataforma Solar de Almería, Carretera de Senés, km 4, 04200 Tabernas, Spain; (M.R.); (A.R.-D.); (S.M.)
- CIESOL, Joint Centre of the University of Almería-CIEMAT, Ctra. Sacramento, s/n, La Cañada, 04120 Almería, Spain
| | - Isabel Oller
- CIEMAT-Plataforma Solar de Almería, Carretera de Senés, km 4, 04200 Tabernas, Spain; (M.R.); (A.R.-D.); (S.M.)
- CIESOL, Joint Centre of the University of Almería-CIEMAT, Ctra. Sacramento, s/n, La Cañada, 04120 Almería, Spain
- Correspondence:
| |
Collapse
|
21
|
Robinson TC, Latta DE, Notini L, Schilling KE, Scherer MM. Abiotic reduction of nitrite by Fe(II): a comparison of rates and N 2O production. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1531-1541. [PMID: 34515719 DOI: 10.1039/d1em00222h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Abiotic reduction of nitrite (NO2-) by Fe(II) species (i.e., chemodenitrification) has been demonstrated in a variety of natural environments and laboratory studies, and is a potentially significant source of atmospheric nitrous oxide (N2O) emissions. It is, however, unclear how chemodenitrification rates and N2O yields vary among heterogeneous Fe(II) species under similar conditions and whether abiotic reduction competes with biological NO2- reduction. Here, we measured rates of NO2- reduction and extents of N2O production by several Fe(II) species under consistent, environmentally relevant conditions (i.e., pH 7.0, bicarbonate buffer, and 0.1 mM NO2-). Nitrite reduction rates varied significantly among the heterogeneous Fe(II) species with half-lives (t1/2) ranging from as low as an hour to over two weeks following the trend of goethite/Fe(II) ∼ hematite/Fe(II) ∼ magnetites > maghemite/Fe(II) > sediment/Fe(II). Interestingly, we observed no clear trend of increasing NO2- reduction rates with higher magnetite stoichiometry (x = Fe2+/Fe3+). Nitrogen recovery as N2O also varied significantly among the Fe species ranging from 21% to 100% recovery. We further probed both chemodenitrification and biological denitrification in the absence and presence of added aqueous Fe(II) with a sediment collected from the floodplain of an agricultural watershed. While abiotic NO2- reduction by the sediment + Fe(II) was much slower than the laboratory Fe(II) species, we found near complete mass N balance during chemodenitrification, as well as evidence for both abiotic and biological NO2- reduction potentially occurring in the sediment under anoxic conditions. Our results suggest that in redox active sediments and soils both chemodenitrification and biological denitrification are likely to occur simultaneously, and that agricultural watersheds may be significant sources of N2O emissions.
Collapse
Affiliation(s)
- Thomas C Robinson
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, USA.
| | - Drew E Latta
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, USA.
| | - Luiza Notini
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, USA.
| | - Keith E Schilling
- Iowa Geological Survey, 300 Trowbridge Hall, Iowa City, IA 52242-1319, USA
| | - Michelle M Scherer
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
22
|
Murillo-Gelvez J, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Reductive Transformation of 3-Nitro-1,2,4-triazol-5-one (NTO) by Leonardite Humic Acid and Anthraquinone-2,6-disulfonate (AQDS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12973-12983. [PMID: 34533928 DOI: 10.1021/acs.est.1c03333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
3-Nitro-1,2,4-triazol-5-one (NTO) is a major and the most water-soluble constituent in the insensitive munition formulations IMX-101 and IMX-104. While NTO is known to undergo redox reactions in soils, its reaction with soil humic acid has not been evaluated. We studied NTO reduction by anthraquinone-2,6-disulfonate (AQDS) and Leonardite humic acid (LHA) reduced with dithionite. Both LHA and AQDS reduced NTO to 3-amino-1,2,4-triazol-5-one (ATO), stoichiometrically at alkaline pH and partially (50-60%) at pH ≤ 6.5. Due to NTO and hydroquinone speciation, the pseudo-first-order rate constants (kObs) varied by 3 orders of magnitude from pH 1.5 to 12.5 but remained constant from pH 4 to 10. This distinct pH dependency of kObs suggests that NTO reactivity decreases upon deprotonation and offsets the increasing AQDS reactivity with pH. The reduction of NTO by LHA deviated continuously from first-order behavior for >600 h. The extent of reduction increased with pH and LHA electron content, likely due to greater reactivity of and/or accessibility to hydroquinone groups. Only a fraction of the electrons stored in LHA was utilized for NTO reduction. Electron balance analysis and LHA redox potential profile suggest that the physical conformation of LHA kinetically limited NTO access to hydroquinone groups. This study demonstrates the importance of carbonaceous materials in controlling the environmental fate of NTO.
Collapse
Affiliation(s)
- Jimmy Murillo-Gelvez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
- Mutch Associates LLC, Ramsey, New Jersey 07446, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
23
|
Tong Y, Berens MJ, Ulrich BA, Bolotin J, Strehlau JH, Hofstetter TB, Arnold WA. Exploring the Utility of Compound-Specific Isotope Analysis for Assessing Ferrous Iron-Mediated Reduction of RDX in the Subsurface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6752-6763. [PMID: 33900746 DOI: 10.1021/acs.est.0c08420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Subsurface contamination with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) at ordnance production and testing sites is a problem because of the persistence, mobility, and toxicity of RDX and the formation of toxic products under anoxic conditions. While the utility of compound-specific isotope analysis for inferring natural attenuation pathways from stable isotope ratios has been demonstrated, the stable isotope fractionation for RDX reduction by iron-bearing minerals remains unknown. Here, we evaluated N and C isotope fractionation of RDX during reduction by Fe(II) associated with Fe minerals and natural sediments and applied N isotope ratios to the assessment of mineral-catalyzed RDX reduction in a contaminant plume and in sediment columns treated by in situ chemical reduction. Laboratory studies revealed that RDX was reduced to nitroso compounds without denitration and the concomitant ring cleavage. Fe(II)/iron oxide mineral-catalyzed reactions exhibited N isotope enrichment factors, εN, between -6.3±0.3‰ and -8.2±0.2‰, corresponding to an apparent 15N kinetic isotope effect of 1.04-1.05. The observed variations of the δ15N of ∼15‰ in RDX from groundwater samples suggested an extent of reductive transformation of 85% at an ammunition plant. Conversely, we observed masking of N isotope fractionation after RDX reduction in laboratory flow-through systems, which was presumably due to limited accessibility to reactive Fe(II).
Collapse
Affiliation(s)
- Yiran Tong
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Matthew J Berens
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Bridget A Ulrich
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Jakov Bolotin
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Jennifer H Strehlau
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Thomas B Hofstetter
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| |
Collapse
|