1
|
Wu M, Liu X, Musat F, Guo J. Microbial oxidation of short-chain gaseous alkanes. Nat Microbiol 2025; 10:1042-1054. [PMID: 40234711 DOI: 10.1038/s41564-025-01982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/11/2025] [Indexed: 04/17/2025]
Abstract
Short-chain gaseous alkanes (SCGAs), including ethane, propane and butane, are major components of natural gas and their atmospheric emissions impact global air quality and tropospheric chemistry. Many microbial taxa can degrade SCGAs aerobically and anaerobically to CO2, acting as the major biological sink of these compounds and reducing their negative impacts on climate. Environmental metagenomics and cultivation efforts have expanded our understanding of SCGA-oxidizing microorganisms. In this Review, we discuss recent discoveries in the diversity, physiology and metabolism of aerobic and anaerobic SCGA-oxidizing microorganisms, highlight their climate implications and discuss how knowledge of these processes can help develop biotechnologies for environmental remediation and value-added chemical production.
Collapse
Affiliation(s)
- Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Xiawei Liu
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Florin Musat
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
2
|
Qiu YY, Xia J, Guo J, Gong X, Zhang L, Jiang F. Groundwater chromate removal by autotrophic sulfur disproportionation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100399. [PMID: 38469364 PMCID: PMC10926293 DOI: 10.1016/j.ese.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/13/2024]
Abstract
Chromate [Cr(VI)] contamination in groundwater is a global environmental challenge. Traditional elemental sulfur-based biotechnologies for Cr(VI) removal depend heavily on the synthesis of dissolved organic carbon to fuel heterotrophic Cr(VI) reduction, a bottleneck in the remediation process. Here we show an alternative approach by leveraging sulfur-disproportionating bacteria (SDB) inherent to groundwater ecosystems, offering a novel and efficient Cr(VI) removal strategy. We implemented SDB within a sulfur-packed bed reactor for treating Cr(VI)-contaminated groundwater, achieving a notable removal rate of 6.19 mg L-1 h-1 under oligotrophic conditions. We identified the chemical reduction of Cr(VI) via sulfide, produced through sulfur disproportionation, as a key mechanism, alongside microbial Cr(VI) reduction within the sulfur-based biosystem. Genome-centric metagenomic analysis revealed a symbiotic relationship among SDB, sulfur-oxidizing, and chromate-reducing bacteria within the reactor, suggesting that Cr(VI) detoxification by these microbial communities enhances the sulfur-disproportionation process. This research highlights the significance of sulfur disproportionation in the cryptic sulfur cycle in Cr(VI)-contaminated groundwater and proposes its practical application in groundwater remediation efforts.
Collapse
Affiliation(s)
- Yan-Ying Qiu
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Juntao Xia
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiahua Guo
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Liang Zhang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial International Joint Research Center on Urban Water Management and Treatment, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Zhou L, Lai CY, Wu M, Guo J. Simultaneous Biogas Upgrading and Valuable Chemical Production Using Homoacetogens in a Membrane Biofilm Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12509-12519. [PMID: 38963393 DOI: 10.1021/acs.est.4c02021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Biogas produced from anaerobic digestion usually contains impurities, particularly with a high content of CO2 (15-60%), thus decreasing its caloric value and limiting its application as an energy source. H2-driven biogas upgrading using homoacetogens is a promising approach for upgrading biogas to biomethane and converting CO2 to acetate simultaneously. Herein, we developed a novel membrane biofilm reactor (MBfR) with H2 and biogas separately supplied via bubbleless hollow fiber membranes. The gas-permeable hollow fibers of the MBfR enabled high H2 and CO2 utilization efficiencies (∼98% and ∼97%, respectively) and achieved concurrent biomethane (∼94%) and acetate (∼450 mg/L/d) production. High-throughput 16S rRNA gene amplicon sequencing suggested that enriched microbial communities were dominated by Acetobacterium (38-48% relative abundance). In addition, reverse transcription quantitative PCR of the functional marker gene formyltetrahydrofolate synthetase showed that its expression level increased with increasing H2 and CO2 utilization efficiencies. These results indicate that Acetobacterium plays a key role in CO2 to acetate conversion. These findings are expected to facilitate energy-positive wastewater treatment and contribute to the development of a new solution to biogas upgrading.
Collapse
Affiliation(s)
- Linjie Zhou
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| |
Collapse
|
4
|
Zhou J, Yang L, Li X, Dai B, He J, Wu C, Pang S, Xia S, Rittmann BE. Biogenic Palladium Improved Perchlorate Reduction during Nitrate Co-Reduction by Diverting Electron Flow in a Hydrogenotrophic Biofilm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10644-10651. [PMID: 38832916 DOI: 10.1021/acs.est.4c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Microbial reduction of perchlorate (ClO4-) is emerging as a cost-effective strategy for groundwater remediation. However, the effectiveness of perchlorate reduction can be suppressed by the common co-contamination of nitrate (NO3-). We propose a means to overcome the limitation of ClO4- reduction: depositing palladium nanoparticles (Pd0NPs) within the matrix of a hydrogenotrophic biofilm. Two H2-based membrane biofilm reactors (MBfRs) were operated in parallel in long-term continuous and batch modes: one system had only a biofilm (bio-MBfR), while the other incorporated biogenic Pd0NPs in the biofilm matrix (bioPd-MBfR). For long-term co-reduction, bioPd-MBfR had a distinct advantage of oxyanion reduction fluxes, and it particularly alleviated the competitive advantage of NO3- reduction over ClO4- reduction. Batch tests also demonstrated that bioPd-MBfR gave more rapid reduction rates for ClO4- and ClO3- compared to those of bio-MBfR. Both biofilm communities were dominated by bacteria known to be perchlorate and nitrate reducers. Functional-gene abundances reflecting the intracellular electron flow from H2 to NADH to the reductases were supplanted by extracellular electron flow with the addition of Pd0NPs.
Collapse
Affiliation(s)
- Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ben Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Junxia He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chengyang Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Si Pang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
5
|
Zhang Z, Huang Z, Li H, Wang D, Yao Y, Dong K. Impact of Nitrate on the Removal of Pollutants from Water in Reducing Gas-Based Membrane Biofilm Reactors: A Review. MEMBRANES 2024; 14:109. [PMID: 38786943 PMCID: PMC11123063 DOI: 10.3390/membranes14050109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The membrane biofilm reactor (MBfR) is a novel wastewater treatment technology, garnering attention due to its high gas utilization rate and effective pollutant removal capability. This paper outlines the working mechanism, advantages, and disadvantages of MBfR, and the denitrification pathways, assessing the efficacy of MBfR in removing oxidized pollutants (sulfate (SO4-), perchlorate (ClO4-)), heavy metal ions (chromates (Cr(VI)), selenates (Se(VI))), and organic pollutants (tetracycline (TC), p-chloronitrobenzene (p-CNB)), and delves into the role of related microorganisms. Specifically, through the addition of nitrates (NO3-), this paper analyzes its impact on the removal efficiency of other pollutants and explores the changes in microbial communities. The results of the study show that NO3- inhibits the removal of other pollutants (oxidizing pollutants, heavy metal ions and organic pollutants), etc., in the simultaneous removal of multiple pollutants by MBfR.
Collapse
Affiliation(s)
- Zhiheng Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Zhian Huang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Yi Yao
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Kun Dong
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
6
|
Lv PL, Jia C, Wei CH, Zhao HP, Chen R. Efficient perchlorate reduction in microaerobic environment facilitated by partner methane oxidizers. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133683. [PMID: 38310847 DOI: 10.1016/j.jhazmat.2024.133683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
The conventional perchlorate (ClO4-) reduction typically necessitates anaerobic conditions. However, in this study, we observed efficient ClO4- reduction using CH4 as the electron donor in a microaerobic environment. The maximum ClO4- removal flux of 2.18 g/m2·d was achieved in CH4-based biofilm. The kinetics of ClO4- reduction showed significant differences, with trace oxygen increasing the reduction rate of ClO4-, whereas oxygen levels exceeding 2 mg/L decelerated the ClO4- reduction. In the absence of exogenous oxygen, anaerobic methanotrophic (ANME) archaea contribute more than 80% electrons through the reverse methanogenesis pathway for ClO4- reduction. Simultaneously, microorganisms activate CH4 by utilizing oxygen generated from chlorite (ClO2-) disproportionation. In the presence of exogenous oxygen, methane oxidizers predominantly consume oxygen to drive the aerobic oxidation of methane. It is indicated that methane oxidizers and perchlorate reducing bacteria can form aggregates to resist external oxygen shocks and achieve efficient ClO4- reduction under microaerobic condition. These findings provide new insights into biological CH4 mitigation and ClO4- removal in hypoxic environment.
Collapse
Affiliation(s)
- Pan-Long Lv
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China
| | - Chuan Jia
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China
| | - Chi-Hang Wei
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Rong Chen
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
7
|
Sun YL, Zhu L, Zheng K, Qian ZM, Cheng HY, Zhang XN, Wang AJ. Thermodynamic Inhibition of Microbial Sulfur Disproportionation in a Multisubunit Designed Sulfur-Siderite Packed Bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4193-4203. [PMID: 38393778 DOI: 10.1021/acs.est.3c06120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Sulfur disproportionation (S0DP) poses a challenge to the robust application of sulfur autotrophic denitrification due to unpredictable sulfide production, which risks the safety of downstream ecosystems. This study explored the S0DP occurrence boundaries with nitrate loading and temperature effects. The boundary values increased with the increase in temperature, exhibiting below 0.15 and 0.53 kg-N/m3/d of nitrate loading at 20 and 30 °C, respectively. A pilot-scale sulfur-siderite packed bioreactor (150 m3/d treatment capacity) was optimally designed with multiple subunits to dynamically distribute the loading of sulfur-heterologous electron acceptors. Operating two active and one standby subunit achieved an effective denitrification rate of 0.31 kg-N/m3/d at 20 °C. For the standby subunit, involving oxygen by aeration effectively transformed the facultative S0DP functional community from S0DP metabolism to aerobic respiration, but with enormous sulfur consumption resulting in ongoing sulfate production of over 3000 mg/L. Meanwhile, acidification by the sulfur oxidation process could reduce the pH to as low as 2.5, which evaluated the Gibbs free energy (ΔG) of the S0DP reaction to +2.56 kJ, thermodynamically suppressing the S0DP occurrence. Therefore, a multisubunit design along with S0DP inhibition strategies of short-term aeration and long-term acidification is suggested for managing S0DP in various practical sulfur-packed bioreactors.
Collapse
Affiliation(s)
- Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Kun Zheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Zhi-Min Qian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
| |
Collapse
|
8
|
Chi Z, Liu X, Li H, Liang S, Luo YH, Zhou C, Rittmann BE. Co-metabolic biodegradation of chlorinated ethene in an oxygen- and ethane-based membrane biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167323. [PMID: 37742949 DOI: 10.1016/j.scitotenv.2023.167323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Groundwater contamination by chlorinated ethenes is an urgent concern worldwide. One approach for detoxifying chlorinated ethenes is aerobic co-metabilims using ethane (C2H6) as the primary substrate. This study evaluated long-term continuous biodegradation of three chlorinated alkenes in a membrane biofilm reactor (MBfR) that delivered C2H6 and O2 via gas-transfer membranes. During 133 days of continuous operation, removals of dichloroethane (DCE), trichloroethene (TCE), and tetrachloroethene (PCE) were as high as 94 % and with effluent concentrations below 5 μM. In situ batch tests showed that the co-metabolic kinetics were faster with more chlorination. C2H6-oxidizing Comamonadaceae and "others," such as Methylococcaceae, oxidized C2H6 via monooxyenation reactions. The abundant non-ethane monooxygenases, particularly propane monooxygenase, appears to have been responsible for C2H6 aerobic metabolism and co-metabolism of chlorinated ethenes. This work proves that the C2H6 + O2 MBfR is a platform for ex-situ bioremediation of chlorinated ethenes, and the generalized action of the monooxygenases may make it applicable for other chlorinated organic contaminants.
Collapse
Affiliation(s)
- Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Xinyang Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| | - Shen Liang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, PR China.
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| |
Collapse
|
9
|
Wu M, Lai CY, Wang Y, Yuan Z, Guo J. Microbial nitrate reduction in propane- or butane-based membrane biofilm reactors under oxygen-limiting conditions. WATER RESEARCH 2023; 235:119887. [PMID: 36947926 DOI: 10.1016/j.watres.2023.119887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Nitrate contamination has been commonly detected in water environments and poses serious hazards to human health. Previously methane was proposed as a promising electron donor to remove nitrate from contaminated water. Compared with pure methane, natural gas, which not only contains methane but also other short chain gaseous alkanes (SCGAs), is less expensive and more widely available, representing a more attractive electron source for removing oxidized contaminants. However, it remains unknown if these SCGAs can be utilized as electron donors for nitrate reduction. Here, two lab-scale membrane biofilm reactors (MBfRs) separately supplied with propane and butane were operated under oxygen-limiting conditions to test its feasibility of microbial nitrate reduction. Long-term performance suggested nitrate could be continuously removed at a rate of ∼40-50 mg N/L/d using propane/butane as electron donors. In the absence of propane/butane, nitrate removal rates significantly decreased both in the long-term operation (∼2-10 and ∼4-9 mg N/L/d for propane- and butane-based MBfRs, respectively) and batch tests, indicating nitrate bio-reduction was driven by propane/butane. The consumption rates of nitrate and propane/butane dramatically decreased under anaerobic conditions, but recovered after resupplying limited oxygen, suggesting oxygen was an essential triggering factor for propane/butane-based nitrate reduction. High-throughput sequencing targeting 16S rRNA, bmoX and narG genes indicated Mycobacterium/Rhodococcus/Thauera were the potential microorganisms oxidizing propane/butane, while various denitrifiers (e.g. Dechloromonas, Denitratisoma, Zoogloea, Acidovorax, Variovorax, Pseudogulbenkiania and Rhodanobacter) might perform nitrate reduction in the biofilms. Our findings provide evidence to link SCGA oxidation with nitrate reduction under oxygen-limiting conditions and may ultimately facilitate the design of cost-effective techniques for ex-situ groundwater remediation using natural gas.
Collapse
Affiliation(s)
- Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Yulu Wang
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
10
|
Feng H, Liao X, Yang R, Chen S, Zhang Z, Tong J, Liu J, Wang X. Generation, toxicity, and reduction of chlorinated byproducts: Overcome bottlenecks of electrochemical advanced oxidation technology to treat high chloride wastewater. WATER RESEARCH 2023; 230:119531. [PMID: 36580803 DOI: 10.1016/j.watres.2022.119531] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Electrochemical advanced oxidation process (EAOP) is recommended for high-strength refractory organics wastewater treatment, but the accompanying chlorinated byproduct generation becomes a bottleneck that limits the application of this technology to actual wastewater. In this study, we applied EAOP (0.4-40 mA cm-2) to treat ultrafiltration effluent of an actual landfill leachate, and quantitatively assessed the toxicities of the dominant chlorinated byproducts in EAOP-treated effluent. Considering both toxic effect and dose, it followed the order: active chlorine > chlorate > perchlorate > organochlorines. The toxic active chlorine could spontaneously decompose by settling. And secondary bioreactor originally serving for denitrification could be used to reduce perchlorate and chlorate. The effects of residual active chlorine and extra carbon addition on simultaneous denitrification, perchlorate, and chlorate reduction were investigated. It seemed that 20 mg of active chlorine was an acceptable level to bioactivity, and sufficient electron donors favored the removal of chlorate and perchlorate. Pseudomonas was identified as an active chlorine tolerant chlorate-reducing bacteria. And Thauera was responsible for perchlorate reduction under the conditions of sufficient carbon source supply. Our results confirmed that the perchlorate and chlorate concentrations in the effluent below their health advisory levels were achievable, solving the issue of toxic chlorinated byproduct generation during EAOP. This study provided a solution to realistic application of EAOP to treat high chloride wastewater.
Collapse
Affiliation(s)
- Hualiang Feng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xinqing Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruili Yang
- Yancheng Institute of Technology, Jiangsu, Yancheng 224051, China
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhaoji Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jinsheng Tong
- Longyan Water Environment Development Co. Ltd., Longyan 364000, China
| | - Jiajian Liu
- Longyan Water Environment Development Co. Ltd., Longyan 364000, China
| | - Xiaojun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
11
|
Dong X, Yu K, Jia X, Zhang Y, Peng X. Perchlorate reduction kinetics and genome-resolved metagenomics identify metabolic interactions in acclimated saline lake perchlorate-reducing consortia. WATER RESEARCH 2022; 227:119343. [PMID: 36371918 DOI: 10.1016/j.watres.2022.119343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Perchlorate is a widely detected environmental contaminant in surface and underground water, that seriously impacts human health by inhibiting the uptake of thyroidal radioiodine. Perchlorate reduction due to saline lake microorganisms is not as well understood as that in marine environments. In this study, we enriched a perchlorate-reducing microbial consortium collected from saline lake sediments and found that the perchlorate reduction kinetics of the enriched consortium fit the Michaelis-Menten kinetics well, with a maximum specific substrate reduction rate (qmax) of 0.596 ± 0.001 mg ClO4-/mg DW/h and half-saturation constant (Ks) of 16.549 ± 0.488 mg ClO4-/L. Furthermore, we used improved metagenome binning to reconstruct high-quality metagenome-assembled genomes from the metagenomes of the microbial consortia, including the perchlorate-reducing bacteria (PRB) Dechloromonas agitata and Wolinella succinogenes, with the genome of W. succinogenes harboring complete functional genes for perchlorate reduction being the first recovered. Given that the electrons were directly transferred to the electronic carrier cytochrome c-553 from the quinone pool, the electron transfer pathway of W. succinogenes was shorter and more efficient than the canonical pattern. This finding provides a theoretical basis for microbial remediation of sites contaminated by high concentrations of perchlorate. Metagenomic binning and metatranscriptomic analyses revealed the gene transcription variation of perchlorate reductase pcr and chlorite dismutase cld by PRB and the synergistic metabolic mechanism.
Collapse
Affiliation(s)
- Xiaoqi Dong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaqi Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
12
|
Zhang X, McIlroy SJ, Vassilev I, Rabiee H, Plan M, Cai C, Virdis B, Tyson GW, Yuan Z, Hu S. Polyhydroxyalkanoate-driven current generation via acetate by an anaerobic methanotrophic consortium. WATER RESEARCH 2022; 221:118743. [PMID: 35724480 DOI: 10.1016/j.watres.2022.118743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/23/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic oxidation of methane (AOM) is an important microbial process mitigating methane (CH4) emission from natural sediments. Anaerobic methanotrophic archaea (ANME) have been shown to mediate AOM coupled to the reduction of several compounds, either directly (i.e. nitrate, metal oxides) or in consortia with syntrophic bacterial partners (i.e. sulfate). However, the mechanisms underlying extracellular electron transfer (EET) between ANME and their bacterial partners or external electron acceptors are poorly understood. In this study, we investigated electron and carbon flow for an anaerobic methanotrophic consortium dominated by 'Candidatus Methanoperedens nitroreducens' in a CH4-fed microbial electrolysis cell (MEC). Acetate was identified as a likely intermediate for the methanotrophic consortium, which stimulated the growth of the known electroactive genus Geobacter. Electrochemical characterization, stoichiometric calculations of the system, along with stable isotope-based assays, revealed that acetate was not produced from CH4 directly. In the absence of CH4, current was still generated and the microbial community remained largely unchanged. A substantial portion of the generated current in the absence of CH4 was linked to the oxidation of the intracellular polyhydroxybutyrate (PHB) and the breakdown of extracellular polymeric substances (EPSs). The ability of 'Ca. M. nitroreducens' to use stored PHB as a carbon and energy source, and its ability to donate acetate as a diffusible electron carrier expands the known metabolic diversity of this lineage that likely underpins its success in natural systems.
Collapse
Affiliation(s)
- Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane 4072, Australia.
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Igor Vassilev
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Hesamoddin Rabiee
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane 4072, Australia
| | - Manuel Plan
- Metabolomics Australia (Queensland Node), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chen Cai
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane 4072, Australia; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane 4072, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
13
|
Lai CY, Wu M, Wang Y, Zhang J, Li J, Liu T, Xia J, Yuan Z, Guo J. Cross-feeding interactions in short chain gaseous alkane-driven perchlorate and selenate reduction. WATER RESEARCH 2021; 200:117215. [PMID: 34020333 DOI: 10.1016/j.watres.2021.117215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Short chain gaseous alkanes (SCGAs) mainly consist of methane (CH4), ethane (C2H6), propane (C3H8) and butane (C4H10). The first three SCGAs have been shown to remove perchlorate (ClO4-) and selenate (SeO42-), yet it is unknown whether C4H10 is available to reduce these contaminants. This study demonstrated that C4H10 fed biofilms were capable of reducing ClO4- and SeO42- to chloride (Cl-) and elemental selenium (Se0), respectively, by employing two independent membrane biofilms reactors (MBfRs). Batch tests showed that C4H10 and oxygen fed biofilms had much higher ClO4- and SeO42- reduction rates and enhanced expression levels of bmoX and pcrA than that without C4H10 or O2. Polyhydroxyalkanoates (PHA) accumulated in the biofilms when C4H10 was supplied, and they decomposed for driving ClO4- and SeO42- reduction when C4H10 was absent. Moreover, we revisited the literature and found that a cross-feeding pathway seems to be universal in microaerobic SCGA-driven perchlorate and selenate reduction processes. In the ClO4--reducing MBfRs, Mycobacterium primarily conducts C2H6 and C3H8 oxidation in synergy with Dechloromonas who performs perchlorate reduction, while both Mycobacterium and Rhodococcus carried out C4H10 oxidation with perchlorate-respiring Azospira as the partner. In the SeO42--reducing MBfRs, Mycobacterium oxidized C2H6 solely or oxidized C3H8 jointly with Rhodococcus, while Burkholderiaceae likely acted as the selenate-reducing bacterium. When C4H10 was supplied as the electron donor, both Mycobacterium and Rhodococcus conducted C4H10 oxidation in synergy with unknow selenate-reducing bacterium. Collectively, we confirm that from CH4 to C4H10, all SCGAs could be utilized as electron donors for bio-reduction process. These findings offer insights into SCGA-driven bio-reduction processes, and are helpful in establishing SCGA-based technologies for groundwater remediation.
Collapse
Affiliation(s)
- Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Yulu Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jiongbin Zhang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jiahui Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Tao Liu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jun Xia
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
14
|
Abstract
Catalytic membrane reactors have been widely used in different production industries around the world. Applying a catalytic membrane reactor (CMR) reduces waste generation from a cleaner process perspective and reduces energy consumption in line with the process intensification strategy. A CMR combines a chemical or biochemical reaction with a membrane separation process in a single unit by improving the performance of the process in terms of conversion and selectivity. The core of the CMR is the membrane which can be polymeric or inorganic depending on the operating conditions of the catalytic process. Besides, the membrane can be inert or catalytically active. The number of studies devoted to applying CMR with higher membrane area per unit volume in multi-phase reactions remains very limited for both catalytic polymeric and inorganic membranes. The various bio-based catalytic membrane system is also used in a different commercial application. The opportunities and advantages offered by applying catalytic membrane reactors to multi-phase systems need to be further explored. In this review, the preparation and the application of inorganic membrane reactors in the different catalytic processes as water gas shift (WGS), Fisher Tropsch synthesis (FTS), selective CO oxidation (CO SeLox), and so on, have been discussed.
Collapse
|