1
|
Zhao M, Chen F, Zhang B, Liu H, Li Z, Li G, Zhao M, Ma Y. Liquid metasurface for size-independent detection of microplastics. Talanta 2025; 284:127221. [PMID: 39550809 DOI: 10.1016/j.talanta.2024.127221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Microplastics (MPs) are widely distributed in water, soil, and air, drawing a global concern as a cause of chronic diseases and immune system disruption. Though as one of the most promising techniques in MP detection, the surface-enhanced Raman scattering (SERS) is heavily dependent on the distribution of the "hot spots" and the size of MPs, known as "coffee ring effect" and "size effect" respectively, imposing major challenges in the quantitative detection of various sized MPs on conventional SERS substrates. Here we present a self-healing metasurface based on plasmonic nanoparticle (NP) array at the liquid-liquid interface (LLI) and air-liquid interface (ALI). The fluidic nature of the metasurface and the repulsive forces between NPs offer atomic-level flatness and uniform distribution for "hot spots". Additionally, MPs are dissolved in the oil phase, uniformly enriched in the form of polymer molecular chains on the liquid metasurface, irrespective of the size of the MPs. This molecular dispersity of the dissolved MPs enhances the overlap between the "hot spots" and scattering volume of MPs, significantly improving the intensity and reproducibility of SERS. The sensing platform is successfully applied in trace detections of various MPs (PS, PET, PMMA, and PC), and validated in real samples.
Collapse
Affiliation(s)
- Mingfu Zhao
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Feng Chen
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Bin Zhang
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Hong Liu
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Zeying Li
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Gengchen Li
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Minggang Zhao
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China.
| | - Ye Ma
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China.
| |
Collapse
|
2
|
Teng T, Huang WE, Li G, Wang X, Song Y, Tang X, Dawa D, Jiang B, Zhang D. Application of magnetic-nanoparticle functionalized whole-cell biosensor array for bioavailability and ecotoxicity estimation at urban contaminated sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165292. [PMID: 37414179 DOI: 10.1016/j.scitotenv.2023.165292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
The bioavailability and ecotoxicity of pollutants are important for urban ecological systems and human health, particularly at contaminated urban sites. Therefore, whole-cell bioreporters are used in many studies to assess the risks of priority chemicals; however, their application is restricted by low throughput for specific compounds and complicated operations for field tests. In this study, an assembly technology for manufacturing Acinetobacter-based biosensor arrays using magnetic nanoparticle functionalization was developed to solve this problem. The bioreporter cells maintained high viability, sensitivity, and specificity in sensing 28 priority chemicals, seven heavy metals, and seven inorganic compounds in a high-throughput manner, and their performance remained acceptable for at least 20 d. We also tested the performance by assessing 22 real environmental soil samples from urban areas in China, and our results showed positive correlations between the biosensor estimation and chemical analysis. Our findings prove the feasibility of the magnetic nanoparticle-functionalized biosensor array to recognize the types and toxicities of multiple contaminants for online environmental monitoring at contaminated sites.
Collapse
Affiliation(s)
- Tingting Teng
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China; Suzhou Yiqing Environmental Technology Co. Ltd., Suzhou 215163, PR China
| | - Yizhi Song
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China
| | - Xiaoyi Tang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 2YQ, UK
| | - Dunzhu Dawa
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
3
|
Ejenavi O, Teng T, Huang W, Wang X, Zhang W, Zhang D. Online detection of alkanes by a biological-phase microextraction and biosensing (BPME-BS) device. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131316. [PMID: 37003003 DOI: 10.1016/j.jhazmat.2023.131316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Oil spill incidents occur frequently and threaten ecosystems and human health. Solid-phase microextraction allows direct alkane extraction from environmental matrices to improve the limit of detection but is unable to measure alkanes on site. A biological-phase microextraction and biosensing (BPME-BS) device was developed by immobilising an alkane chemotactic Acinetobacter bioreporter ADPWH_alk in agarose gel to achieve online alkane quantification with the aid of a photomultiplier. The BPME-BS device had a high enrichment factor (average 7.07) and a satisfactory limit of detection (0.075 mg/L) for alkanes. The quantification range was 0.1-100 mg/L, comparable to a gas chromatography flame ionisation detector and better than a bioreporter without immobilisation. ADPWH_alk cells in the BPME-BS device maintained good sensitivity under a wide range of environmental conditions, including pH (4.0-9.0), temperature (20-40 °C), and salinity (0.0-3.0%), and its response remained stable within 30 days at 4 °C. In a 7-day continual measurement, the BPME-BS device successfully visualised the dynamic concentration of alkanes, and a 7-day field test successfully captured an oil spill event, helping in source apportionment and on-scene law enforcement. Our work proved that the BPME-BS device is a powerful tool for online alkane measurement, showing substantial potential for fast detection and rapid response to oil spills on site and in situ.
Collapse
Affiliation(s)
- Odafe Ejenavi
- Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK
| | - Tingting Teng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China; College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Wenxin Huang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China; College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China; College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China; College of New Energy and Environment, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
4
|
Cao S, Zhan G, Wei K, Zhou B, Zhang H, Gao T, Zhang L. Raman spectroscopic and microscopic monitoring of on-site and in-situ remediation dynamics in petroleum contaminated soil and groundwater. WATER RESEARCH 2023; 233:119777. [PMID: 36868118 DOI: 10.1016/j.watres.2023.119777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The mechanistic study of soil and groundwater remediation in petroleum contaminated lands significantly demands rapid qualitative and quantitative identification of petroleum substances. However, most traditional detection methods cannot provide the on-site or in-situ information of petroleum compositions and contents simultaneously even with multi-spot sampling and complex sample preparation. In this work, we developed a strategy for the on-site detection of petroleum compositions and in-situ monitoring of petroleum contents in soil and groundwater using dual-excitation Raman spectroscopy and microscopy. The detection time was 0.5 h for the Extraction-Raman spectroscopy method and one minute for the Fiber-Raman spectroscopy method. The limit of detection was 94 ppm for the soil samples and 0.46 ppm for the groundwater samples. Meanwhile, the petroleum changes at the soil-groundwater interface were successfully observed by Raman microscopy during the in-situ chemical oxidation remediation processes. The results revealed that hydrogen peroxide oxidation released petroleum from the interior to the surface of soil particles and then to groundwater during the remediation process, while persulfate oxidation only degraded petroleum on the soil surface and in groundwater. This Raman spectroscopic and microscopic method can shed light on the petroleum degradation mechanism in contaminated lands, and facilitate the selection of suitable soil and groundwater remediation plans.
Collapse
Affiliation(s)
- Shiyu Cao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guangming Zhan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Wei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China
| | - Biao Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hao Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Wu S, Li H, Zhang D, Zhang H. Simultaneous determination of heavy metal concentrations and toxicities by diffusive gradient in thin films containing Acinetobacter whole-cell bioreporters (Bio-DGT). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121050. [PMID: 36632971 DOI: 10.1016/j.envpol.2023.121050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Heavy metal contaminations may cause severe toxic impacts to ecological systems and human health. Measurements of metals' bioavailable concentrations and toxicities simultaneously and in-situ in environments can advance the understanding of their hazardous effects. The diffusive gradients in thin-films (DGT) is an in-situ technique can measure metal speciation and labile concentrations, but cannot yet provide the direct toxicity information. The whole-cell bioreporter Acinetobacter baylyi ADPWH_recA was successfully incorporated into the DGT device to develop a novel technique, Bio-DGT, for assessing the toxicity of metals at the same time of measuring their labile concentrations. The bioassay used in Bio-DGT can sense the mixture toxicity from multiple contaminants and the DGT can assist in identifying which toxicants may be causing the toxicity. Cadmium was used as the model metal to test the performance of Bio-DGT in waters and soils. The masses of Cd accumulated in Bio-DGT increased linearly and theoretically with time for 7 days deployment, indicating little influences from bioreporter cells on DGT performance. A positive relationship between bioluminescent signals towards Cd demonstrated the sensitive and active bioreporters' response. The sensitive of Bio-DGT, indicated by Cd concentrations causing the response, is 0.01 mg/L. The stable response from Bio-DGT under various conditions (pH 4-8, ionic strengths 0.01-0.5 M) and 30 days storage time suggest the applicability of the technique in real environments. The deployment of Bio-DGT in contaminated soils demonstrated that Cd toxicity was regulated by labile concentration, showing its potential application for the risk assessment of heavy metal contaminations, and its further feasibility in using Bio-DGT for measuring integration of multiple contaminants' effects and simultaneously determine the main toxicity driver(s).
Collapse
Affiliation(s)
- Shuang Wu
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Hanbing Li
- Department of Environmental Science, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| |
Collapse
|
6
|
Wang W, Rahman A, Kang S, Vikesland PJ. Investigation of the Influence of Stress on Label-Free Bacterial Surface-Enhanced Raman Spectra. Anal Chem 2023; 95:3675-3683. [PMID: 36757218 DOI: 10.1021/acs.analchem.2c04636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Label-free surface-enhanced Raman spectroscopy (SERS) has been proposed as a promising bacterial detection technique. However, the quality of the collected bacterial spectra can be affected by the time between sample acquisition and the SERS measurement. This study evaluated how storage stress stimuli influence the label-free SERS spectra of Pseudomonas syringae samples stored in phosphate buffered saline. The results indicate that when faced with nutrient limitations and changes in osmatic pressure, samples at room temperature (25 °C) exhibit more significant spectral changes than those stored at cold temperature (4 °C). At higher temperatures, bacterial communities secrete extracellular biomolecules that induce programmed cell death and result in increases in the supernatant SERS signals. Surviving cells consume cellular components to support their metabolism, thus leading to measurable declines in cell SERS intensity. Two-dimensional correlation spectroscopy analysis suggests that cellular component signatures decline sequentially in the following order: proteins, nucleic acids, and lipids. Extracellular nucleic acids, proteins, and carbohydrates are secreted in turn. After subtracting the SERS changes resulting from storage, we evaluated bacterial response to viral infection. P. syringae SERS profile changes enable accurate bacteriophage Phi6 quantification over the range of 104-1010 PFU/mL. The results indicate that storage conditions impact bacterial label-free SERS signals and that such influences need to be accounted for and if possible avoided when detecting bacteria or evaluating bacterial response to stress stimuli.
Collapse
Affiliation(s)
- Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.,Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Asifur Rahman
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.,Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Seju Kang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.,Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.,Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
Ganesan M, Mani R, Sai S, Kasivelu G, Awasthi MK, Rajagopal R, Wan Azelee NI, Selvi PK, Chang SW, Ravindran B. Bioremediation by oil degrading marine bacteria: An overview of supplements and pathways in key processes. CHEMOSPHERE 2022; 303:134956. [PMID: 35588873 DOI: 10.1016/j.chemosphere.2022.134956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Oil spillage is one of the most common pollutants which brings greater economic loss and damage to the environment. The intensity and amount of the damage may vary depending on factors such as the type of oil, the location of the spill, and the climatic parameters in the area. As for any pollution management, the guidelines are Reduce, Re-use, Recover and Disposal. Amongst the other remediation processes, Bioremediation is amongst the most significant environmentally friendly and cost-effective approaches for marine biological restoration because it allows complex petroleum hydrocarbons in spilt oil to decompose completely into harmless compounds. Mainly, the necessity and essence of bioremediation were talked about. This review discussed the bacteria identified which are capable of degrading various oil related pollutants and their components. Also, it covered the various media components used for screening and growing the oil degrading bacteria and the pathways that are associated with oil degradation. This article also reviewed the recent research carried out related to the oil degrading bacteria.
Collapse
Affiliation(s)
- Mirunalini Ganesan
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ravi Mani
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sakthinarenderan Sai
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, PR China.
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Nur Izyan Wan Azelee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia
| | - P K Selvi
- Central Pollution Control Board, Nisarga Bhawan, Shivanagar, Bengaluru, India
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India.
| |
Collapse
|
8
|
Tang Z, Song X, Xu M, Yao J, Ali M, Wang Q, Zeng J, Ding X, Wang C, Zhang Z, Liu X. Effects of co-occurrence of PFASs and chlorinated aliphatic hydrocarbons on microbial communities in groundwater: A field study. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128969. [PMID: 35472535 DOI: 10.1016/j.jhazmat.2022.128969] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
The effects of per- and polyfluoroalkyl substances (PFASs) and chlorinated aliphatic hydrocarbons (CAHs) co-contamination on the microbial community in the field have not been studied. In this study, we evaluated the presence of PFASs and CAHs in groundwater collected from a fluorochemical plant (FCP), and carried out Illumina MiSeq sequencing to understand the impact of mixed PFASs and CAHs on the indigenous microbial community. The sum concentrations of 20 PFASs in FCP groundwater ranged from 2.05 to 317.40 μg/L, and the highest PFOA concentration was observed in the deep aquifer (60 m below ground surface), co-contaminated by dense non-aqueous-phase liquid (DNAPL). The existence of PFASs and CAHs co-contamination in groundwater resulted in a considerable decrease in the diversity of microbial communities, while the abundance of metabolisms associated with contaminants biodegradation has increased significantly compared to the background wells. Furthermore, Acinetobacter, Pseudomonas and Arthrobacter were the dominant genera in PFASs and CAHs co-contaminated groundwater. The presence of high concentrations of PFASs and CAHs has been positively associated with the genus of Citreitalea. Finally, geochemical parameters, such as ORP, sulfate and nitrate were the key factors to shape up the structure of the microbial community and sources to rich the abundance of the potential functional bacteria.
Collapse
Affiliation(s)
- Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Minmin Xu
- Shandong Academy of Environmental Sciences Co., LTD, Jinan 250013, China
| | - Jin Yao
- Zhongke Hualu Soil Remediation Engineering Co., LTD, Dezhou 253500, China
| | - Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyan Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congjun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
9
|
Wang W, Rahman A, Huang Q, Vikesland PJ. Surface-enhanced Raman spectroscopy enabled evaluation of bacterial inactivation. WATER RESEARCH 2022; 220:118668. [PMID: 35689895 DOI: 10.1016/j.watres.2022.118668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
An improved understanding of bacterial inactivation mechanisms will provide useful insights for infectious disease control and prevention. We evaluated bacterial response to several inactivation methods using surface-enhanced Raman spectroscopy (SERS). The results indicate that changes in the SERS signal are highly related to cellular disruption and that cellular changes arising after cell inactivation cannot be ignored. The membrane integrity of heat and the combination of UV254 and free chlorine (UV254/chlorine) treated Pseudomonas syringae (P. syringae) cells were severely disrupted, leading to significantly increased peak intensities. Conversely, ethanol treated bacteria exhibited intact cell morphologies and the SERS spectra remained virtually unchanged. On the basis of time dependent SERS signals, we extracted dominant SERS patterns. Peaks related to nucleic acids accounted for the main changes observed during heat, UV254, and UV254/chlorine treatment, likely due to their outward diffusion from the cell cytoplasm. For free chlorine treated P. syringae, carbohydrates and proteins on the cell membrane were denatured or lost, resulting in a decrease in related peak intensities. The nucleobases were likely oxidized when treated with UV254 and chlorine, thus leading to shifts in the related peaks. The generality of the method was verified using two additional bacterial strains: Escherichia coli and Bacillus subtilis as well as in different water matrices. The results suggest that SERS spectral analysis is a promising means to examine bacterial stress response at the molecular level and has applicability in diverse environmental implementations.
Collapse
Affiliation(s)
- Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA; Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, USA
| | - Asifur Rahman
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA; Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, USA
| | - Qishen Huang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA; Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, USA
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA; Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, USA.
| |
Collapse
|
10
|
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: Structure and metabolisms. CHEMOSPHERE 2022; 286:131752. [PMID: 34426136 DOI: 10.1016/j.chemosphere.2021.131752] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.
Collapse
Affiliation(s)
- Lucélia Cabral
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elias Hideo Teramoto
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Chang Hung Kiang
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara Durães Sette
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
11
|
Li H, Yang Y, Zhang D, Li Y, Zhang H, Luo J, Jones KC. Evaluating the simulated toxicities of metal mixtures and hydrocarbons using the alkane degrading bioreporter Acinetobacter baylyi ADPWH_recA. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126471. [PMID: 34216972 DOI: 10.1016/j.jhazmat.2021.126471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Oil spillages lead to the formation of hydrocarbon and metal mixtures possessing effects on alkane-degrading bacteria that are responsible for the bioremediation of oil-contaminated soils and waters. Studies of bacterial responses to the mixture of petroleum and metal can inform appropriate strategies for bioremediation. We employed a luminescent bioreporter Acinetobacter baylyi ADPWH_recA with alkane degradation capability to evaluate the combined effects from heavy metals (Cd, Pb and Cu) and alkanes (dodecane, tetradecane, hexadecane and octadecane). Bioluminescent ratios of ADPWH_recA in single Cd or Pb treatments ranged from 0.25 to 1.98, indicating both genotoxicity and cytotoxicity of these two metals, while ratios < 1.0 postexposure to Cu showed its cytotoxic impacts on ADPWH_recA bioreporter. Metal mixtures exhibited enhanced antagonistic effects (Ti>4.0) determined by the Toxic Unit model. With 100 mg/L alkane, the morbidity of ADPWH-recA reduced to < 20%, showing the inhibition of alkanes on Cd toxicity. Exposed to the metal mixture containing 10 mg/L Cu, the weak binding affinity of Cu with alkanes contributed to a high morbidity of > 85% in ADPWH_recA cells. This study provides a new way to understand the toxicity of mixture contaminants, which can help to optimize treatment efficiencies of bacterial remediation for oil contamination.
Collapse
Affiliation(s)
- Hanbing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; Key Laboratory of Beijing on Regional Air Pollution Control, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100086, China
| | - Yanying Li
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Kevin C Jones
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
12
|
Zhang D, Zhang X, Ma R, Deng S, Wang X, Wang X, Zhang X, Huang X, Liu Y, Li G, Qu J, Zhu Y, Li J. Ultra-fast and onsite interrogation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in waters via surface enhanced Raman scattering (SERS). WATER RESEARCH 2021; 200:117243. [PMID: 34029872 PMCID: PMC8116665 DOI: 10.1016/j.watres.2021.117243] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/26/2021] [Accepted: 05/08/2021] [Indexed: 05/18/2023]
Abstract
The outbreak of coronavirus infectious disease-2019 (COVID-19) pneumonia challenges the rapid interrogation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human and environmental samples. In this study, we developed an assay using surface enhanced Raman scattering (SERS) coupled with multivariate analysis to detect SARS-CoV-2 in an ultra-fast manner without any pretreatment (e.g., RNA extraction). Using silver-nanorod SERS array functionalized with cellular receptor angiotensin-converting enzyme 2 (ACE2), we obtained strong SERS signals of ACE2 at 1032, 1051, 1089, 1189, 1447 and 1527 cm-1. The recognition and binding of receptor binding domain (RBD) of SARS-CoV-2 spike protein on SERS assay significantly quenched the spectral intensities of most peaks and exhibited a shift from 1189 to 1182 cm-1. On-site tests on 23 water samples with a portable Raman spectrometer proved its accuracy and easy-operation for spot detection of SARS-CoV-2 to evaluate disinfection performance, explore viral survival in environmental media, assess viral decay in wastewater treatment plant and track SARS-CoV-2 in pipe network. Our findings raise a state-of-the-art spectroscopic tool to screen and interrogate viruses with RBD for human cell entry, proving its feasibility and potential as an ultra-fast detection tool for wastewater-based epidemiology.
Collapse
Affiliation(s)
- Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, P.R. China.
| | - Xiaoling Zhang
- Suzhou Yiqing Environmental Science and Technology LTD., Suzhou 215163, P.R. China
| | - Rui Ma
- Suzhou Yiqing Environmental Science and Technology LTD., Suzhou 215163, P.R. China; Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou 215163, P.R. China
| | - Songqiang Deng
- Suzhou Yiqing Environmental Science and Technology LTD., Suzhou 215163, P.R. China; Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou 215163, P.R. China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, P.R. China
| | - Xinquan Wang
- School of Life Science, Tsinghua University, Beijing 100084, P.R. China
| | - Xian Zhang
- School of Environment, Tsinghua University, Beijing 100084, P.R. China
| | - Xia Huang
- School of Environment, Tsinghua University, Beijing 100084, P.R. China
| | - Yi Liu
- School of Environment, Tsinghua University, Beijing 100084, P.R. China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, P.R. China
| | - Jiuhui Qu
- School of Environment, Tsinghua University, Beijing 100084, P.R. China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Yu Zhu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou 215123, P.R. China
| | - Junyi Li
- Suzhou Yiqing Environmental Science and Technology LTD., Suzhou 215163, P.R. China.
| |
Collapse
|