1
|
Lei T, Xiang W, Zhao B, Hou C, Ge M, Wang W. Advances in analysis of atmospheric ultrafine particles and application in air quality, climate, and health research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175045. [PMID: 39067589 DOI: 10.1016/j.scitotenv.2024.175045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
There is growing interest in the contribution of ultrafine particles to air quality, climate, and human health. Ultrafine particles are of central significance for the influence of radiative forcing of climate change by involving in the formation of clouds and precipitation. Moreover, exposure to ultrafine particles can enhance the disease burden. The determination of those effects of ultrafine particles strongly depends on their chemical composition and physicochemical properties. This review focuses on the advanced techniques for the characterization of chemical composition and physicochemical properties of ultrafine particles in the past five years. The current analytical methodologies are broadly classified into electron and X-ray microscopy, optical spectroscopy and microscopy, electrical mobility, and mass spectrometry, and then described and discussed its operation principle, advantages, and limitations. Besides measurements, application of the state-of-the-art techniques is briefly reviewed to help us to promote a better understanding of atmospheric ultrafine particles relevant to air quality, climate, and health.
Collapse
Affiliation(s)
- Ting Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Xiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bin Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunyan Hou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Zhai J, Shao S, Yang X, Zeng Y, Fu TM, Zhu L, Shen H, Ye J, Wang C, Tao S. Chemically Resolved Respiratory Deposition of Ultrafine Particles Characterized by Number Concentration in the Urban Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16507-16516. [PMID: 39223479 DOI: 10.1021/acs.est.4c03279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ultrafine particles (UFPs) dominate the atmospheric particles in number concentration, impacting human health and climate change. However, existing studies primarily rely on mass-based approaches, leading to a restricted understanding of the number-based and chemically resolved health effects of atmospheric UFPs. In this study, we utilized a high-mass-resolution single-particle aerosol mass spectrometer to investigate the online chemical composition and number size distribution of ultrafine, fine, and coarse particles during the summertime in urban Shenzhen, China. Human respiratory deposition dose assessments of particles with varying chemical compositions were further conducted by a respiratory deposition model. The results showed that during our observation, particles containing elemental carbon (EC) were the dominant components in UFPs (0.05-0.1 μm). Compared to fine and coarse particles, UFPs can deposit more deeply into the respiratory tract with a daily dose of ∼2.08 ± 0.67 billion particles. Among the deposited UFPs, EC-cluster particles constituted ∼85.7% in number fraction, accounting for a daily number dose of ∼1.78 billion particles, which poses a greater impact on human health. Simultaneously, we found discrepancies in the chemically resolved particle depositions among number-, surface area-, and mass-based approaches, emphasizing the importance of an appropriate metric for particle health-risk evaluation.
Collapse
Affiliation(s)
- Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Shi Shao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Shu Tao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| |
Collapse
|
3
|
Wang C, Liu J, He M, Xu J, Liao H. Investigating the filtration performance and service life of vehicle cabin air filters in China. ENVIRONMENT INTERNATIONAL 2024; 190:108939. [PMID: 39116555 DOI: 10.1016/j.envint.2024.108939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
To protect occupants in vehicle cabin environments from the health risks of high concentrations of particulate matter (PM), it is important to install vehicle cabin air filter (VCAF) to eliminate PM. In this study, we investigated the filtration performance of 22 VCAFs. Results showed that the minimum average filtration efficiency was 56.1 % for particles with a diameter of 0.1-0.3 μm, a pressure drop of 33.2-250 Pa at air velocity of 2.5 m/s, and the dust-holding capacity ranged from 5.8 to 19.4 g. In addition, as the filter area increased from 0.23 m2 to 0.50 m2, the filtration efficiency for particles with a diameter of 0.1-0.3 μm increased from 56.7 % to 77.5 %, the pressure drop decreased from 96.1 to 62.5 Pa, and the dust holding capacity increased 2.7 times. Furthermore, we compared the service life of VCAF from 31 major Chinese cities and found that the service life varied greatly from maximum of 1730 h for Haikou to minimum of 352 h for Shijiazhuang. Considering occupant health risks, Beijing requires that VCAFs have PM2.5 filtration efficiency at least 88.1 %, and Liaoning requires minimum of 97.5 %. Hence, choosing the appropriate VCAF based on the atmospheric environment of different cities deserves our attention.
Collapse
Affiliation(s)
- Chenhua Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Junjie Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
| | - Mingtong He
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jing Xu
- Tianjin Zhongtian Environmental Technology Co., Ltd., Tianjin, China
| | - Huipeng Liao
- Guangdong Biaodian Nonwovens Technology Co., Ltd., Guangzhou, China
| |
Collapse
|
4
|
Ning C, Gao Y, Sun S, Yang H, Tang W, Wang D. Size-Resolved Molecular Characterization of Water-Soluble Organic Matter in Atmospheric Particulate Matter from Northern China. ENVIRONMENTAL RESEARCH 2024; 258:119436. [PMID: 38897433 DOI: 10.1016/j.envres.2024.119436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Atmospheric particulate matter (PM) affects visibility, climate, biogeochemical cycles and human health. Water-soluble organic matter (WSOM) is an important component of PM. In this study, PM samples with size-resolved measurements at aerodynamic cut-point diameters (Dp) of 0.01-18μm were collected in the rural area of Baoding and the urban area of Dalian, Northern China. Non-targeted analysis was adopted for the characterization of the molecule constitutes of WSOM in different sized particles using Fourier transform-ion cyclotron resonance mass spectrometry. Regardless of the location, the composition of WSOM in Aitken mode particles (aerodynamic diameter < 0.05 μm) was similar. The WSOM in accumulation mode particles (0.05-2 μm) in Baoding was predominantly composed of CHO compounds (84.9%), which were mainly recognized as lignins and lipids species. However, S-containing compounds (64.2%), especially protein and carbohydrates species, accounted for most of the WSOM in the accumulation mode particles in Dalian. The CHO compounds (67.6%-79.7%) contributed the most to the WSOM in coarse mode particles (> 2 μm) from both sites. Potential sources analysis indicated the WSOM in Baoding were mainly derived from biomass burning and oxidation reactions, while the WSOM in Dalian arose from coal combustion, oxidation reactions, and regional transport.
Collapse
Affiliation(s)
- Cuiping Ning
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Yuan Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shuai Sun
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China.
| | - Haiming Yang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Wei Tang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Dan Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| |
Collapse
|
5
|
Li Y, Li X, Cai R, Yan C, Zheng G, Li Y, Chen Y, Zhang Y, Guo Y, Hua C, Kerminen VM, Liu Y, Kulmala M, Hao J, Smith JN, Jiang J. The Significant Role of New Particle Composition and Morphology on the HNO 3-Driven Growth of Particles down to Sub-10 nm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5442-5452. [PMID: 38478878 DOI: 10.1021/acs.est.3c09454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
New particle formation and growth greatly influence air quality and the global climate. Recent CERN Cosmics Leaving OUtdoor Droplets (CLOUD) chamber experiments proposed that in cold urban atmospheres with highly supersaturated HNO3 and NH3, newly formed sub-10 nm nanoparticles can grow rapidly (up to 1000 nm h-1). Here, we present direct observational evidence that in winter Beijing with persistent highly supersaturated HNO3 and NH3, nitrate contributed less than ∼14% of the 8-40 nm nanoparticle composition, and overall growth rates were only ∼0.8-5 nm h-1. To explain the observed growth rates and particulate nitrate fraction, the effective mass accommodation coefficient of HNO3 (αHNO3) on the nanoparticles in urban Beijing needs to be 2-4 orders of magnitude lower than those in the CLOUD chamber. We propose that the inefficient uptake of HNO3 on nanoparticles is mainly due to the much higher particulate organic fraction and lower relative humidity in urban Beijing. To quantitatively reproduce the observed growth, we show that an inhomogeneous "inorganic core-organic shell" nanoparticle morphology might exist for nanoparticles in Beijing. This study emphasized that growth for nanoparticles down to sub-10 nm was largely influenced by their composition, which was previously ignored and should be considered in future studies on nanoparticle growth.
Collapse
Affiliation(s)
- Yuyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Xiaoxiao Li
- School of Resources and Environmental Sciences, Wuhan University, 430072 Wuhan, China
| | - Runlong Cai
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, 210023 Nanjing, China
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Guangjie Zheng
- Minerva Research Group, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Yiran Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Yijing Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Yusheng Zhang
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yishuo Guo
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Chenjie Hua
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Veli-Matti Kerminen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - James N Smith
- Chemistry Department, University of California, Irvine, California 92697, United States
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
6
|
Perraud V, Roundtree K, Morris PM, Smith JN, Finlayson-Pitts BJ. Implications for new particle formation in air of the use of monoethanolamine in carbon capture and storage. Phys Chem Chem Phys 2024; 26:9005-9020. [PMID: 38440810 DOI: 10.1039/d4cp00316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Alkanolamines are currently being deployed in carbon capture and storage (CCS) technology worldwide, and atmospheric emissions have been found to coincide with locations exhibiting elevated concentrations of methanesulfonic acid (MSA). It is thus critical to understand the fate and potential atmospheric reactions of these chemicals. This study reports the characterization of sub-10 nm nanoparticles produced through the acid-base reaction between gas phase monoethanolamine (MEA) and MSA, a product of organosulfur compound oxidation in air, using a flow reactor under dry and humid (up to ∼60% RH) conditions. Number size distribution measurements show that MEA is even more efficient than methylamine in forming nanoparticles on reaction with MSA. This is attributed to the fact that the MEA structure contains both an -NH2 and an -OH group that facilitate hydrogen bonding within the clusters, in addition to the electrostatic interactions. Due to this already strong H-bond network, water has a relatively small influence on new particle formation (NPF) and growth in this system, in contrast to MSA reactions with alkylamines. Acid/base molar ratios of unity for 4-12 nm particles were measured using thermal desorption chemical ionization mass spectrometry. The data indicate that reaction of MEA with MSA may dominate NPF under some atmospheric conditions. Thus, the unique characteristics of alkanolamines in NPF must be taken into account for accurate predictions of impacts of CCS on visibility, health and climate.
Collapse
Affiliation(s)
- Véronique Perraud
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - Kanuri Roundtree
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - Patricia M Morris
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - James N Smith
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | | |
Collapse
|
7
|
Vo LHT, Yoneda M, Nghiem TD, Sekiguchi K, Fujitani Y, Vu DN, Nguyen THT. Characterisation of polycyclic aromatic hydrocarbons associated with indoor PM 0.1 and PM 2.5 in Hanoi and implications for health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123138. [PMID: 38097160 DOI: 10.1016/j.envpol.2023.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) associated with indoor PM pose a high risk to human health because of their toxicity. A total of 160 daily samples of indoor PM2.5 and PM0.1 were collected in Hanoi and analysed for 15 PAHs. In general, the concentrations of carcinogenic PAHs (car-PAHs) accounted for 21% ± 2%, 19.1% ± 2%, and 26% ± 3% of the concentrations of 15 PAHs in PM2.5, PM0.1-2.5, and PM0.1, respectively. Higher percentages of car-PAHs were found in smaller fractions (PM0.1), which can be easily deposited deep in the pulmonary regions of the human respiratory tract. The concentrations of 15 PAHs were higher in winter than in summer. The most abundant PAH species were naphthalene and phenanthrene, accounting for 11%-21% and 19%-23%, respectively. The PAH content in PM0.1 was almost twice as high as those in PM2.5 and PM0.1-2.5. Principal component analysis found that vehicle emissions and the combustion of biomass and coal were the main outdoor sources of PAHs, whereas indoor sources included cooking activities, the combustion of incense, scented candles, and domestic uses in houses. According to the results, 60%-90% of the PM0.1-bound BaP(eq) was deposited in the alveoli region, whereas 63%-75% of the PM2.5-bound BaP(eq) was deposited in head airways (HA), implying that most of the particles deposited in the HA region were PM0.1-2.5. The contributions of dibenz[a,h]anthracene and benzo[a]pyrene were dominant and contributed from 36% to 51% and 31%-50%, respectively, to the carcinogenic potential, whereas benzo[a]pyrene contributed from 30% to 49% to the mutagenic potential for both size fractions. The incremental lifetime cancer risk, simulated by Monte Carlo simulation, was within the limits set by the US EPA, indicating an acceptable risk for the occupants. These results provide an additional scientific basis for protecting human health from exposure to indoor PAHs.
Collapse
Affiliation(s)
- Le-Ha T Vo
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, 100000, Viet Nam
| | - Minoru Yoneda
- Department of Environmental Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Trung-Dung Nghiem
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, 100000, Viet Nam.
| | - Kazuhiko Sekiguchi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama, 338- 8570, Japan
| | - Yuji Fujitani
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Duc Nam Vu
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Viet Nam
| | - Thu-Hien T Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, 100000, Viet Nam
| |
Collapse
|
8
|
Abdillah SFI, Wang YF. Ambient ultrafine particle (PM 0.1): Sources, characteristics, measurements and exposure implications on human health. ENVIRONMENTAL RESEARCH 2023; 218:115061. [PMID: 36525995 DOI: 10.1016/j.envres.2022.115061] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The problem of ultrafine particles (UFPs; PM0.1) has been prevalent since the past decades. In addition to become easily inhaled by human respiratory system due to their ultrafine diameter (<100 nm), ambient UFPs possess various physicochemical properties which make it more toxic. These properties vary based on the emission source profile. The current development of UFPs studies is hindered by the problem of expensive instruments and the inexistence of standardized measurement method. This review provides detailed insights on ambient UFPs sources, physicochemical properties, measurements, and estimation models development. Implications on health impacts due to short-term and long-term exposure of ambient UFPs are also presented alongside the development progress of potentially low-cost UFPs sensors which can be used for future UFPs studies references. Current challenge and future outlook of ambient UFPs research are also discussed in this review. Based on the review results, ambient UFPs may originate from primary and secondary sources which include anthropogenic and natural activities. In addition to that, it is confirmed from various chemical content analysis that UFPs carry heavy metals, PAHs, BCs which are toxic in its nature. Measurement of ambient UFPs may be performed through stationary and mobile methods for environmental profiling and exposure assessment purposes. UFPs PNC estimation model (LUR) developed from measurement data could be deployed to support future epidemiological study of ambient UFPs. Low-cost sensors such as bipolar ion and ionization sensor from common smoke detector device may be further developed as affordable instrument to monitor ambient UFPs. Recent studies indicate that short-term exposure of UFPs can be associated with HRV change and increased cardiopulmonary effects. On the other hand, long-term UFPs exposure have positive association with COPD, CVD, CHF, pre-term birth, asthma, and also acute myocardial infarction cases.
Collapse
Affiliation(s)
- Sultan F I Abdillah
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| |
Collapse
|
9
|
Peng C, Deng C, Lei T, Zheng J, Zhao J, Wang D, Wu Z, Wang L, Chen Y, Liu M, Jiang J, Ye A, Ge M, Wang W. Measurement of atmospheric nanoparticles: Bridging the gap between gas-phase molecules and larger particles. J Environ Sci (China) 2023; 123:183-202. [PMID: 36521983 DOI: 10.1016/j.jes.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/17/2023]
Abstract
Atmospheric nanoparticles are crucial components contributing to fine particulate matter (PM2.5), and therefore have significant effects on visibility, climate, and human health. Due to the unique role of atmospheric nanoparticles during the evolution process from gas-phase molecules to larger particles, a number of sophisticated experimental techniques have been developed and employed for online monitoring and characterization of the physical and chemical properties of atmospheric nanoparticles, helping us to better understand the formation and growth of new particles. In this paper, we firstly review these state-of-the-art techniques for investigating the formation and growth of atmospheric nanoparticles (e.g., the gas-phase precursor species, molecular clusters, physicochemical properties, and chemical composition). Secondly, we present findings from recent field studies on the formation and growth of atmospheric nanoparticles, utilizing several advanced techniques. Furthermore, perspectives are proposed for technique development and improvements in measuring atmospheric nanoparticles.
Collapse
Affiliation(s)
- Chao Peng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenjuan Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ting Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Zheng
- School of Environment Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jun Zhao
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Dongbin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Yan Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyuan Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Anpei Ye
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Wang C, Liu Y, Huang T, Feng Y, Wang Z, Lu R, Jiang S. Sulfuric acid-dimethylamine particle formation enhanced by functional organic acids: an integrated experimental and theoretical study. Phys Chem Chem Phys 2022; 24:23540-23550. [PMID: 36129069 DOI: 10.1039/d2cp01671k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atmospheric new particle formation (NPF), which has been observed globally in clean and polluted environments, is an important source of boundary-layer aerosol particles and cloud condensation nuclei, but the fundamental mechanisms leading to multi-component aerosol formation have not been well understood. Here, we use experiments and quantum chemical calculations to better understand the involvement of carboxylic acids in initial NPF from gas phase mixtures of carboxylic acid, sulfuric acid (SA), dimethylamine, and water. A turbulent flow tube coupled to an ultrafine condensation particle counter with particle size magnifier has been set up to measure NPF. Experimental results show that pyruvic acid (PA), succinic acid (SUA), and malic acid (MA) can enhance sulfuric acid-dimethylamine nucleation in the order PA < SUA < MA with a greater enhancement observed at lower SA concentrations. Computational results indicate that the carboxylic and hydroxyl groups are related to the enhancement. This experiment-theory study shows the formation of multi-component aerosol particles and the role of the organic functional group, which may aid in understanding the role of organics in aerosol nucleation and growth in polluted areas, and help to choose organic molecules of specific structures for simulation.
Collapse
Affiliation(s)
- Chunyu Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China. .,School of Chemistry and Material Engineering, Chaohu University, Hefei, Anhui, 238024, China
| | - Yirong Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Yajuan Feng
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Zhongquan Wang
- Department of Physics, Huainan Normal University, Huainan, Anhui, 232001, China
| | - Runqi Lu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Shuai Jiang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
11
|
Wang L, Liang D, Liu J, Du L, Vejerano E, Zhang X. Unexpected catalytic influence of atmospheric pollutants on the formation of environmentally persistent free radicals. CHEMOSPHERE 2022; 303:134854. [PMID: 35533943 DOI: 10.1016/j.chemosphere.2022.134854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Environmentally persistent free radicals (EPFRs) have been recognized as harmful and persistent environmental pollutants. In polluted regions, many acidic and basic atmospheric pollutants, which are present at high concentrations, may influence the extent of the formation of EPFRs. In the present paper, density functional theory (DFT) and ab-initio molecular dynamics (AIMD) calculations were performed to investigate the formation mechanisms of EPFRs with the influence of the acidic pollutants sulfuric acid (SA), nitric acid (NA), organic acid (OA), and the basic pollutants, ammonia (A), dimethylamine (DMA) on α-Al2O3 (0001) surface. Results indicate that both acidic and basic pollutants can enhance the formation of EPFRs by acting as "bridge" or "semi-bridge" roles by proceeding via a barrierless process. Acidic pollutants enhance the formation of EPFRs by first transferring its hydrogen atom to the α-Al2O3 surface and subsequently reacting with phenol to form an EPFR. In contrast, basic pollutants enhance the formation of EPFRs by first abstracting a hydrogen atom from phenol to form a phenoxy EPFR and eventually interacting with the α-Al2O3 surface. These new mechanistic insights will inform in understanding the abundant EPFRs in polluted regions with high mass concentrations of acidic and basic pollutants.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Danli Liang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China; Key Laboratory of National Land Space Planning and Disaster Emergency Management of Inner Mongolia, School of Resources, Environment and Architectural Engineering, Chifeng University, Chifeng, 024000, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Eric Vejerano
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
12
|
Li X, Li Y, Cai R, Yan C, Qiao X, Guo Y, Deng C, Yin R, Chen Y, Li Y, Yao L, Sarnela N, Zhang Y, Petäjä T, Bianchi F, Liu Y, Kulmala M, Hao J, Smith JN, Jiang J. Insufficient Condensable Organic Vapors Lead to Slow Growth of New Particles in an Urban Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9936-9946. [PMID: 35749221 DOI: 10.1021/acs.est.2c01566] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atmospheric new particle formation significantly affects global climate and air quality after newly formed particles grow above ∼50 nm. In polluted urban atmospheres with 1-3 orders of magnitude higher new particle formation rates than those in clean atmospheres, particle growth rates are comparable or even lower for reasons that were previously unclear. Here, we address the slow growth in urban Beijing with advanced measurements of the size-resolved molecular composition of nanoparticles using the thermal desorption chemical ionization mass spectrometer and the gas precursors using the nitrate CI-APi-ToF. A particle growth model combining condensational growth and particle-phase acid-base chemistry was developed to explore the growth mechanisms. The composition of 8-40 nm particles during new particle formation events in urban Beijing is dominated by organics (∼80%) and sulfate (∼13%), and the remainder is from base compounds, nitrate, and chloride. With the increase in particle sizes, the fraction of sulfate decreases, while that of the slow-desorbed organics, organic acids, and nitrate increases. The simulated size-resolved composition and growth rates are consistent with the measured results in most cases, and they both indicate that the condensational growth of organic vapors and H2SO4 is the major growth pathway and the particle-phase acid-base reactions play a minor role. In comparison to the high concentrations of gaseous sulfuric acid and amines that cause high formation rates, the concentration of condensable organic vapors is comparably lower under the high NOx levels, while those of the relatively high-volatility nitrogen-containing oxidation products are higher. The insufficient condensable organic vapors lead to slow growth, which further causes low survival of the newly formed particles in urban environments. Thus, the low growth rates, to some extent, counteract the impact of the high formation rates on air quality and global climate in urban environments.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Yuyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Runlong Cai
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Xiaohui Qiao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Yishuo Guo
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Chenjuan Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Rujing Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Yijing Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Yiran Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Lei Yao
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Nina Sarnela
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Yusheng Zhang
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - James N Smith
- Chemistry Department, University of California, Irvine, California 92697, United Sates
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
13
|
Wang W, Chen Y, Li L, Zhou L, Du X, Liu M, Ge M. Chemical composition of different size ultrafine particulate matter measured by nanoparticle chemical ionization mass spectrometer. J Environ Sci (China) 2022; 114:434-443. [PMID: 35459506 DOI: 10.1016/j.jes.2021.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 06/14/2023]
Abstract
New particle formation (NPF) is the primary source of nanoparticles and contributes a large number of concentrations of cloud condensation nuclei. In recent years, field campaigns and laboratory experiments have been conducted to promote cognition of the mechanism for NPF and its following growth processes. The chemical composition measurement of nanoparticles could help deepen understanding of the initial step of particulate matter formation. In this work, we developed a nanoparticle chemical ionization mass spectrometer to measure nanoparticles' chemical compositions during their initial growth stage. Meanwhile, a non-radioactive ion source was designed for aerosol charging and chemical ionization. Time of flight mass spectrometer coupled with integrated aerosol size selection and collection module would guarantee the picogram level detection limit and high-resolution ability to measure the matrix of ambient samples. The performance of this equipment was overall evaluated, including the transmission efficiency and collection efficiency of custom-built nano differential mobility analyzer, chemical ionization efficiency, and mass resolution of the mass spectrometer. The high sensitivity measurement of ammonium sulfate and methylammonium sulfate aerosols with diameters ranging from 10 to 25 nm could guarantee the application of this instrument in the ambient measurement.
Collapse
Affiliation(s)
- Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yan Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xubing Du
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Mingyuan Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Yin R, Yan C, Cai R, Li X, Shen J, Lu Y, Schobesberger S, Fu Y, Deng C, Wang L, Liu Y, Zheng J, Xie H, Bianchi F, Worsnop DR, Kulmala M, Jiang J. Acid-Base Clusters during Atmospheric New Particle Formation in Urban Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10994-11005. [PMID: 34338506 DOI: 10.1021/acs.est.1c02701] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Molecular clustering is the initial step of atmospheric new particle formation (NPF) that generates numerous secondary particles. Using two online mass spectrometers with and without a chemical ionization inlet, we characterized the neutral clusters and the naturally charged ion clusters during NPF periods in urban Beijing. In ion clusters, we observed pure sulfuric acid (SA) clusters, SA-amine clusters, SA-ammonia (NH3) clusters, and SA-amine-NH3 clusters. However, only SA clusters and SA-amine clusters were observed in the neutral form. Meanwhile, oxygenated organic molecule (OOM) clusters charged by a nitrate ion and a bisulfate ion were observed in ion clusters. Acid-base clusters correlate well with the occurrence of sub-3 nm particles, whereas OOM clusters do not. Moreover, with the increasing cluster size, amine fractions in ion acid-base clusters decrease, while NH3 fractions increase. This variation results from the reduced stability differences between SA-amine clusters and SA-NH3 clusters, which is supported by both quantum chemistry calculations and chamber experiments. The lower average number of dimethylamine (DMA) molecules in atmospheric ion clusters than the saturated value from controlled SA-DMA nucleation experiments suggests that there is insufficient DMA in urban Beijing to fully stabilize large SA clusters, and therefore, other basic molecules such as NH3 play an important role.
Collapse
Affiliation(s)
- Rujing Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chao Yan
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100084, China
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Runlong Cai
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Xiaoxiao Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiewen Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yiqun Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | | | - Yueyun Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chenjuan Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100084, China
| | - Jun Zheng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hongbin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Federico Bianchi
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100084, China
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Douglas R Worsnop
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Aerodyne Research Inc, Billerica, Massachusetts 01821, United States
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100084, China
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Indoor and Outdoor Nanoparticle Concentrations in an Urban Background Area in Northern Sweden: The NanoOffice Study. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, nanoparticles (NPs) have received much attention due to their very small size, high penetration capacity, and high toxicity. In urban environments, combustion-formed nanoparticles (CFNPs) dominate in particle number concentrations (PNCs), and exposure to those particles constitutes a risk to human health. Even though fine particles (<2.5 µm) are regularly monitored, information on NP concentrations, both indoors and outdoors, is still limited. In the NanoOffice study, concentrations of nanoparticles (10–300 nm) were measured both indoors and outdoors with a 5-min time resolution at twelve office buildings in Umeå. Measurements were taken during a one-week period in the heating season and a one-week period in the non-heating season. The measuring equipment SMPS 3938 was used for indoor measurements, and DISCmini was used for outdoor measurements. The NP concentrations were highest in offices close to a bus terminal and lowest in offices near a park. In addition, a temporal effect appeared, usually with higher concentrations of nanoparticles found during daytime in the urban background area, whereas considerably lower nanoparticle concentrations were often present during nighttime. Infiltration of nanoparticles from the outdoor air into the indoor air was also common. However, the indoor/outdoor ratios (I/O ratios) of NPs showed large variations between buildings, seasons, and time periods, with I/O ratios in the range of 0.06 to 0.59. The reasons for high indoor infiltration rates could be NP emissions from adjacent outdoor sources. We could also see particle growth since the indoor NPs were, on average, almost twice as large as the NPs measured outdoors. Despite relatively low concentrations of NPs in the urban background air during nighttime, they could rise to very high daytime concentrations due to local sources, and those particles also infiltrated the indoor air.
Collapse
|