1
|
Zhou Y, Dhas JA, Xia M, Suseela V, Kao HM, Asmussen RM, Bhattacharjee A, Creamer CA, Liu M, Wang JG, Zhu Z. Achieving Extra-High-Quality Images in ToF-SIMS Molecular Imaging of Insulating Samples Using a Low Current O 2+ Auxiliary Beam and Back Side Au Coating. Anal Chem 2025; 97:8755-8765. [PMID: 40239186 DOI: 10.1021/acs.analchem.4c05835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Molecular imaging enabled by ToF-SIMS has become increasingly desirable in many research fields in the last several decades. However, complex charging on highly insulating samples and at phase-separation boundaries may lead to dark edges and boundaries in ion images, presenting a big obstacle to obtaining high quality ion images, even with low energy electron charge compensation. Depositing a thin metal layer on the sample surface or using a combination of a low energy electron beam and a low energy Argon ion beam can be helpful. However, surface metal deposition may lead to serious contamination, and the extra low energy argon ion gun is not available in most ToF-SIMS instruments. In this work, we report that a combination of a low current O2+ ion beam and a low energy electron beam can be used to resolve complex charging conditions and yield extra-high-quality ion images. A sucrose thin film sample was used as a model system to show that molecular imaging with this approach can be very feasible due to minimal beam-induced damage. For highly insulating samples, back side Au coating can be further helpful when combined with a low current O2+ ion beam. A few representative real-world samples were examined to verify the effectiveness of our new method. Additionally, the principle of our new method was also discussed. Since an O2+ ion source is regularly available in most ToF-SIMS instruments, we believe our new method will be widely used in ToF-SIMS imaging and spectral analysis of various insulating samples.
Collapse
Affiliation(s)
- Yadong Zhou
- Shanghai Pudong Meteorological Bureau, 951 Jinxiu Road, Pudong District, Shanghai 200135, China
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
- Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China
| | - Jeffrey A Dhas
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mengxue Xia
- Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Vidya Suseela
- Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Hsin-Mei Kao
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - R Matthew Asmussen
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Courtney A Creamer
- Geology, Minerals, Energy and Geophysics Science Center, U.S. Geological Survey, Moffett Field, California 94035, United States
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
- Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China
| | - Jun-Gang Wang
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Zihua Zhu
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
2
|
Soultanidis V, Voudrias EA. Leaching and geochemical modeling of asbestos-cement waste and mine asbestos. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135988. [PMID: 39357356 DOI: 10.1016/j.jhazmat.2024.135988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Asbestos-Containing Materials (ACMs) were widely used in the construction sector but, due to their harmful health effects, many countries have banned their use. ACMs are classified as hazardous and, in contact with water, produce potentially harmful leachates. The objective of this work was to determine the leaching behavior of 20 elements from two asbestos-cement materials and mine asbestos samples across the entire pH range and varying liquid-to-solid ratios (column tests). The pH-dependence tests showed consistent leaching patterns across the three materials. Geochemical speciation model (LeachXS) predictions were successful in most cases of the batch experiments and were improved by adjusting iron oxides concentration for some elements. Model predictions were successful for fewer elements in the column experiments. Depending on the pH, element release was controlled by respective solid phase dissolution, sorption onto iron oxides and substitution in ettringite. Some leaching concentrations exceeded the EU limits for granular non-hazardous waste landfills. Considering the strongly alkaline nature of monolithic asbestos-cement waste undergoing carbonation, we propose all three materials to be disposed of in non-hazardous waste landfills, according to EU legislation. A case study concluded that geochemical modeling of ACMs leaching is a useful tool in estimating element release under various environmental conditions.
Collapse
Affiliation(s)
- Vangelis Soultanidis
- Department of Environmental Engineering, Democritus University of Thrace, GR-671 32 Xanthi, Greece.
| | - Evangelos A Voudrias
- Department of Environmental Engineering, Democritus University of Thrace, GR-671 32 Xanthi, Greece.
| |
Collapse
|
3
|
Ershadi A, Finkel M, Liu B, Cirpka OA, Grathwohl P. Ensemble surrogate modeling of advective-dispersive transport with intraparticle diffusion model for column-leaching test. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104423. [PMID: 39316945 DOI: 10.1016/j.jconhyd.2024.104423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Column-leaching tests are a common approach for assessing the leaching behavior and resulting environmental risks of contaminated soils and waste materials, which are frequently reused for various construction purposes. The observed breakthrough curves of the contaminants are influenced by the complex dynamics of solute transport and kinetic inter-phase mass transfer. Disentangling these interactions necessitates numerical models. However, inverse modeling and sensitivity analysis can be time-consuming, especially when sorption kinetics are explicitly described by intraparticle diffusion, which requires discretizing the domain both in the flow direction along the column axis and inside the grains. To circumvent the need for such computationally intensive models, we have developed two different ensemble surrogate models. These models employ two separate ensemble methods: random forest stacking and inverse-distance weighted interpolation. Each method is applied to base surrogate models that cover different parts of the parameter space. The base surrogate models use the method of Extremely randomized Trees (ExtraTrees). The defined parameter range is based on the German standard for column-leaching tests. To optimize the base surrogate models, we utilized adaptive-sampling methods based on three distinct infill criteria: maximizing the expected improvement, staying within a certain Mahalanobis distance to the best estimate (both for exploitation), and maximizing the standard deviation (for exploration). The ensemble surrogate model demonstrates excellent performance in emulating the behavior of the original numerical model, with a relative root mean squared error of 0.09. We applied our proposed ensemble surrogate model to estimate the complete posterior parameter distribution using Simulation-Based Inference, specifically Neural Posterior Estimation, to determine the full parameter distribution conditioned on copper-leaching data from two different soils. Samples drawn from the posterior distribution align perfectly with the observed data for both the surrogate and original models.
Collapse
Affiliation(s)
- Amirhossein Ershadi
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany.
| | - Michael Finkel
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Binlong Liu
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Olaf A Cirpka
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Peter Grathwohl
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Yang H, Deng H, Liang P, Ma X, Yin J, Jiang L, Chen Y, Shi S, Liu H, Ma X, Li Y, Xiong Y. Photocatalytic Reduction of Perrhenate and Pertechnetate in a Strongly Acidic Aqueous Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12237-12248. [PMID: 38934294 DOI: 10.1021/acs.est.4c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Pertechnetate (99TcO4-), a physiologically toxic radioactive anion, is of great concern due to its high mobility in environmental contamination remediation. Although the soluble oxyanion can be photoreduced to sparingly soluble TcO2·nH2O, its effective removal from a strongly acidic aqueous solution remains a challenge. Here, we found that low-crystalline nitrogen-doped titanium oxide (N-TiO2, 0.6 g L-1) could effectively uptake perrhenate (ReO4-, 10 mg L-1, a nonradioactive surrogate for TcO4-) with 50.8% during 360 min under simulated sunlight irradiation at pH 1.0, but P25 and anatase could not. The nitrogen active center formed by trace nitrogen doping in N-TiO2 can promote the separation and transfer of photogenerated carriers. The positive valence band value of N-TiO2 is slightly higher than those of P25 and anatase, which means that the photogenerated holes have a stronger oxidizability. These holes are involved in the formation of strong reducing •CO2- radicals from formic acid oxidation. The active radicals convert ReO4- to Re(VI), which is subsequently disproportionated to Re(IV) and Re(VII). Effective photocatalytic reduction/removal of Re(VII)/Tc(VII) is performed on the material, which may be considered a potential and convenient strategy for technetium decontamination and extraction in a strongly acidic aqueous solution.
Collapse
Affiliation(s)
- Heng Yang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Hao Deng
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Pengliang Liang
- Key Laboratory of Nuclear Environmental Simulation and Evaluation Technology, China Institute for Radiation Protection, Taiyuan 030006, P. R. China
| | - XianJin Ma
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Jing Yin
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Long Jiang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yanyan Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Shuying Shi
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Huiqiang Liu
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Xue Ma
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuxiang Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Ying Xiong
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
5
|
Song B, Liu Z, Li C, Zhou S, Yang L, Chen Z, Song M. Mechanistic insights into the leaching and environmental safety of arsenic in ceramsite prepared from fly ash. CHEMOSPHERE 2023; 344:140292. [PMID: 37769917 DOI: 10.1016/j.chemosphere.2023.140292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Utilizing fly ash to prepare ceramsite is a promising way to immobilize heavy metals and recycle industrial solid waste. However, traditional preparation method of fly ash ceramsite has the disadvantages of large ignition loss. Therefore, the present study applied the pressure molding method to enhance solid content and improve the strength of ceramsite. The optimal preparation conditions of ceramsite were suggested as preheating at 450 °C for 25 min followed by sintering at 1050 °C for 30 min. Under such conditions, ceramsite with high compressive strength of 10.8 Mpa, bulk density of 878 kg m-3, and 1-h water absorption of 18.5% was fabricated, in compliance with Chinese standard (GB/T 1743.1-2010). The arsenic leaching concentration from the resulting product was considerably lower than Chinese standard (GB 5085.3-2007). Moreover, arsenic volatilization during ceramsite calcination was insignificant, and the vast majority of arsenic remained in resulting ceramsite. A geochemical speciation model developed for the multiple component system in ceramsite suggested that FeAsO4, Ca5(OH) (AsO4)3, and hydrous ferric oxide adsorption are the primary mechanisms retaining arsenic in ceramsite. Additionally, based on density functional theory calculations and biotoxicity test, the binding site of arsenic atom on mineral components and the environmental safety of ceramsite was determined and evaluated.
Collapse
Affiliation(s)
- Bing Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zequan Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Chengming Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Shiji Zhou
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Linjun Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhiliang Chen
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Min Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Nanjing, Jiangsu, 210036, China.
| |
Collapse
|
6
|
Ershadi A, Finkel M, Susset B, Grathwohl P. Applicability of machine learning models for the assessment of long-term pollutant leaching from solid waste materials. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:337-349. [PMID: 37699296 DOI: 10.1016/j.wasman.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Column leaching tests are a common approach for evaluating the leaching behavior of contaminated soil and waste materials, which are often reused for various construction purposes. Standardized up-flow column leaching tests typically require about 7 days of laboratory work to evaluate long-term leaching behavior accurately. To reduce testing time, we developed linear and ensemble models based on parametric and non-parametric Machine Learning (ML) techniques. These models predict leachate concentrations of relevant chemical compounds at different Liquid-to-Solid ratios (LS) based on measurements at lower LS values. The ML models were trained using 82 column leaching test samples for Construction and Demolition Waste materials collected in Germany during the last two decades. R-Squared values measuring models' performance are as follows: Sulfate = 0.94, Vanadium = 0.97, Chromium = 0.82, Copper = 0.92, group of 15 (US-EPA) PAHs = 0.98 (values averaged over predictive models for LS 2 and 4). Sensitivity analysis utilizing the Shapley Additive Explanation value indicates that in addition to the concentrations of the considered compound at LS<=1, electrical conductivity and pH are the most critical features of each model, while concentrations of other compounds also play a minor role.
Collapse
Affiliation(s)
- Amirhossein Ershadi
- Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany.
| | - Michael Finkel
- Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Bernd Susset
- Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Peter Grathwohl
- Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Liu Y, Molinari S, Dalconi MC, Valentini L, Bellotto MP, Ferrari G, Pellay R, Rilievo G, Vianello F, Salviulo G, Chen Q, Artioli G. Mechanistic insights into Pb and sulfates retention in ordinary Portland cement and aluminous cement: Assessing the contributions from binders and solid waste. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131849. [PMID: 37393826 DOI: 10.1016/j.jhazmat.2023.131849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
Identifying immobilization mechanisms of potentially toxic elements (PTEs) is of paramount importance in the field application of solidification/stabilization. Traditionally, demanding and extensive experiments are required to better access the underlying retention mechanisms, which are usually challenging to quantify and clarify precisely. Herein, we present a geochemical model with parametric fitting techniques to reveal the solidification/stabilization of Pb-rich pyrite ash through conventional (ordinary Portland cement) and alternative (calcium aluminate cement) binders. We found that ettringite and calcium silicate hydrates exhibit strong affinities for Pb at alkaline conditions. When the hydration products are unable to stabilize all the soluble Pb in the system, part of the soluble Pb may be immobilized as Pb(OH)2. At acidic and neutral conditions, hematite from pyrite ash and newly-formed ferrihydrite are the main controlling factors of Pb, coupled with anglesite and cerussite precipitation. Thus, this work provides a much-needed complement to this widely-applied solid waste remediation technique for the development of more sustainable mixture formulations.
Collapse
Affiliation(s)
- Yikai Liu
- Department of Geosciences and CIRCe Centre, University of Padua, via G. Gradenigo 6, 35129 Padua, Italy
| | - Simone Molinari
- Department of Geosciences and CIRCe Centre, University of Padua, via G. Gradenigo 6, 35129 Padua, Italy.
| | - Maria Chiara Dalconi
- Department of Geosciences and CIRCe Centre, University of Padua, via G. Gradenigo 6, 35129 Padua, Italy
| | - Luca Valentini
- Department of Geosciences and CIRCe Centre, University of Padua, via G. Gradenigo 6, 35129 Padua, Italy
| | | | | | | | - Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Gabriella Salviulo
- Department of Geosciences and CIRCe Centre, University of Padua, via G. Gradenigo 6, 35129 Padua, Italy
| | - Qiusong Chen
- Sinosteel Maanshan General Institute of Mining Research Co., Ltd., Maanshan 24300, China; School of Resources and Safety Engineering, Central South University, Lushan South Road 932, 410083 Hunan, China
| | - Gilberto Artioli
- Department of Geosciences and CIRCe Centre, University of Padua, via G. Gradenigo 6, 35129 Padua, Italy
| |
Collapse
|
8
|
Chen Z, Zhang P, Brown KG, van der Sloot HA, Meeussen JCL, Garrabrants AC, Wang X, Delapp RC, Kosson DS. Impact of oxidation and carbonation on the release rates of iodine, selenium, technetium, and nitrogen from a cementitious waste form. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131004. [PMID: 36821900 DOI: 10.1016/j.jhazmat.2023.131004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Evaluation of the long-term retention mechanisms and potential release rates for the primary constituents of potential concern (COPCs) (i.e., Tc, I, Se, and nitrate) is necessary to determine if Cast Stone, a radioactive waste form, can meet performance objectives under near-surface disposal scenarios. Herein, a mineral and parameter set accounting for the solubility of I and Se in Cast Stone was developed based on pH-dependent and monolithic diffusion leaching test results, to extend a geochemical speciation model previously developed. The impact of oxidation and carbonation as environmental aging processes on the retention properties of Cast Stone for primary COPCs was systematically estimated. Physically, the effective diffusion coefficients of 4 COPCs in Cast Stone were increased after carbonation and/or oxidation, reflecting an increase in permeability to diffusion. Chemically, i) pH & pe conditions in the original Cast Stone were favorable for the stabilization of Tc, but not for I, Se, and N; ii) oxidation (with/without carbonation) of Cast Stone changed the pe & pH conditions to be detrimental for Tc stabilization; and iii) carbonation (with/without oxidation) of Cast Stone modified the pH & pe conditions to be beneficial for the stabilization of I (in system with Ag added) and Se.
Collapse
Affiliation(s)
- Zhiliang Chen
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Peng Zhang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States; Shanghai Shaanxi Coal Hi-tech Research Institute Co., Ltd., Shanghai 201613, China
| | - Kevin G Brown
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Hans A van der Sloot
- Hans van der Sloot Consultancy, Glenn Millerhof 29, 1628 TS Hoorn, the Netherlands
| | | | - Andrew C Garrabrants
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Xinyue Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Rossane C Delapp
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - David S Kosson
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|
9
|
Singh BK, Mahzan NS, Abdul Rashid NS, Isa SA, Hafeez MA, Saslow S, Wang G, Mo C, Um W. Design and Application of Materials for Sequestration and Immobilization of 99Tc. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6776-6798. [PMID: 37071722 DOI: 10.1021/acs.est.3c00129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
99Technetium (99Tc) is a hazardous radionuclide that poses a serious environmental threat. The wide variation and complex chemistries of liquid nuclear waste streams containing 99Tc often create unique, site specific challenges when sequestering and immobilizing the waste in a matrix suitable for long-term storage and disposal. Therefore, an effective management plan for 99Tc containing liquid radioactive wastes (such as storage (tanks) and decommissioned wastes) will likely require a variety of suitable materials/matrixes capable of adapting to and addressing these challenges. In this review, we discuss and highlight the key developments for effective removal and immobilization of 99Tc liquid waste in inorganic waste forms. Specifically, we review the synthesis, characterization, and application of materials for the targeted removal of 99Tc from (simulated) waste solutions under various experimental conditions. These materials include (i) layered double hydroxides (LDHs), (ii) metal-organic frameworks (MOFs), (iii) ion-exchange resins (IERs) as well as cationic organic polymers (COPs), (iv) surface modified natural clay materials (SMCMs), and (v) graphene-based materials (GBMs). Second, we discuss some of the major and recent developments toward 99Tc immobilization in (i) glass, (ii) cement, and (iii) iron mineral waste forms. Finally, we present future challenges that need to be addressed for the design, synthesis, and selection of suitable matrixes for the efficient sequestration and immobilization of 99Tc from targeted wastes. The purpose of this review is to inspire research on the design and application of various suitable materials/matrixes for selective removal of 99Tc present globally in different radioactive wastes and its immobilization in stable/durable waste forms.
Collapse
Affiliation(s)
- Bhupendra Kumar Singh
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
- Nuclear Environmental Technology Institute (NETI), Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Nurul Syiffa Mahzan
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Nur Shahidah Abdul Rashid
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Samiratu Atibun Isa
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Muhammad Aamir Hafeez
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Sarah Saslow
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Guohui Wang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Changki Mo
- Washington State University Tri-Cities, Richland, Washington 99354, United States
| | - Wooyong Um
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
- Division of Environmental Sciences and Engineering (DESE), Pohang University of Science and Technology (POSTECH), 77 Chongam-ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
- Nuclear Environmental Technology Institute (NETI), Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 790-784, Republic of Korea
| |
Collapse
|
10
|
Shiner ME, Harnik Y, Klein-BenDavid O, Bar-Nes G, Peled A, Teutsch N, Boukobza E. Strontium interaction with unblended and Low-pH cementitious wasteforms: pH-dependent leaching experiments and geochemical modelling. PROGRESS IN NUCLEAR ENERGY 2023. [DOI: 10.1016/j.pnucene.2023.104634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Chen Z, Zhang P, Brown KG, van der Sloot HA, Meeussen JCL, Garrabrants AC, Delapp RC, Um W, Kosson DS. Evaluating the impact of drying on leaching from a solidified/stabilized waste using a monolithic diffusion model. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 165:27-39. [PMID: 37080015 DOI: 10.1016/j.wasman.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
The release rates of constituents of potential concern from solidified/stabilized cementitious waste forms are potentially impacted by drying, which, however, is not well understood. This study aimed to identify the impacts of drying on subsequent leaching from Cast Stone as an example of a solidified cementitious waste form. The release fluxes of constituents from monoliths after aging under 100, 68, 40, and 15 % relative humidity for 16, 32, and 48 weeks, respectively, were derived from mass transfer tank leaching tests following EPA Method 1315. A monolithic diffusion model was calibrated based on the leaching test results to simulate the leaching of major and redox-sensitive constituents from monoliths after drying. The reduction in physical retention of constituents (tortuosity-factor) in the unsaturated zone was identified as the primary impact from drying on subsequent leaching. Fluxes of both major (i.e., OH-, Na, K, Ca, Si, and Al) and redox-sensitive constituents (i.e., Tc, Cr, Fe, and S) from monoliths during leaching were well described by the model. The drying-induced reduction of tortuosity-factor and concomitant changes in porewater pH and redox conditions can significantly change the subsequent release fluxes of pH- and redox- sensitive constituents.
Collapse
Affiliation(s)
- Zhiliang Chen
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Peng Zhang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States; Shanghai Shaanxi Coal Hi-tech Research Institute Co., Ltd., Shanghai 201613, China
| | - Kevin G Brown
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Hans A van der Sloot
- Hans van der Sloot Consultancy, Glenn Millerhof 29, 1628 TS Hoorn, the Netherlands
| | | | - Andrew C Garrabrants
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Rossane C Delapp
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Wooyong Um
- Pacific Northwest National Lab., Richland, WA, United States; Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - David S Kosson
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|
12
|
Wang X, van der Sloot HA, Brown KG, Garrabrants AC, Chen Z, Hensel B, Kosson DS. Application and uncertainty of a geochemical speciation model for predicting oxyanion leaching from coal fly ash under different controlling mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129518. [PMID: 35999720 DOI: 10.1016/j.jhazmat.2022.129518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Three primary mechanisms (adsorption to iron oxides or analogous surfaces, co-precipitation with Ca, and substitution in ettringite) controlling oxyanion retention in coal fly ashes (CFAs) were identified by differentiating the leaching behavior of As, B, Cr, Mo, Se, and V from 30 CFAs. Fidelity evaluation of geochemical speciation modeling focused on six reference CFAs representing a range of CFA compositions, whereby different leaching-controlling mechanisms of oxyanions were systematically considered. For three reference CFAs with low Ca and S content, calibration of adsorption reactions for the diffuse double-layer model for hydrous ferric oxides improved the simultaneous prediction of oxyanion leaching, which reduced uncertainties in Se and V predictions caused by nonideal adsorption surfaces and competitive adsorption effects. For two reference CFAs with intermediate Ca content, the solubility constants for Ca-arsenates from literature and postulated phases of B, Cr, Se, and V were used to describe co-precipitation of oxyanions with Ca-bearing minerals under alkaline conditions. For the reference CFA with high Ca and S content, an ettringite solid solution was used to capture the simultaneous retention of all oxyanions at pH> 9.5. Overall, the simultaneous leaching predictions of oxyanions from a wide range of CFAs were improved by calibration of adsorption reactions and controlling solid phases.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Hans A van der Sloot
- Hans van der Sloot Consultancy, Glenn Millerhof 29, 1628 TS Hoorn, the Netherlands
| | - Kevin G Brown
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Andrew C Garrabrants
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Zhiliang Chen
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Bruce Hensel
- Electric Power Research Institute (EPRI), 3420 Hillview Avenue, Palo Alto, CA 94304, United States
| | - David S Kosson
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|
13
|
Wang Q, Li JS, Xue Q, Poon CS. Immobilization and recycling of contaminated marine sediments in cement-based materials incorporating iron-biochar composites. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128971. [PMID: 35472547 DOI: 10.1016/j.jhazmat.2022.128971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Sustainable stabilization/solidification (S/S) incorporating biochar for hazardous wastes has attracted increasing attention. In this study, contaminated marine sediments were remediated and recycled as useful materials via cement-based S/S process incorporating iron-biochar composites derived from incinerated sewage sludge ash (ISSA) and peanut shell. Results showed that incorporation of 20% iron-biochar composites notably increased the Cr immobilization (52.8% vs 92.1-99.7%), while attained similar As (70%) and Cu (95%) immobilization efficiencies compared to the control group (CK) prepared with plain cement as the binder based on the Toxicity Characteristic Leaching Procedure. S/S products with the addition of ISSA derived iron-biochar composite had a mechanical strength of 5.0 MPa, which was significantly higher than its counterparts derived from pure iron oxide or pristine biochar (< 4.5 MPa). Microstructural and spectroscopic characterizations and chemical leaching experiments demonstrated that reduction of Cr(VI) to Cr(III) followed by formation of Cr-Fe precipitates by zero valent iron in iron-biochar composites contributed to the enhanced immobilization efficacy of Cr(VI) compared to CK. Overall, these results demonstrated the potential of applying ISSA and peanut shell derived iron-biochar composites as additives in the cement-based S/S treatment for contaminated sediments.
Collapse
Affiliation(s)
- Qiming Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jiang-Shan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong.
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
14
|
Zhang P, Chen Z, Brown KG, Garrabrants AC, Delapp R, Meeussen JCL, van der Sloot HA, Kosson DS. Impact of carbonation on leaching of constituents from a cementitious waste form for treatment of low activity waste at the DOE Hanford site. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:431-444. [PMID: 35461054 DOI: 10.1016/j.wasman.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Carbonation can be a major aging process during disposal of alkaline cementitious waste forms and can impact constituent leaching by changes in material alkalinity, pore structure, and controlling mineral phases. The effect of carbonation on the leaching of major and trace constituents from Cast Stone, a cementitious waste form developed to treat high salt content low activity waste, was studied through a combination of leaching experiments and reactive transport simulations. Diffusive transport of constituents in the waste form was evaluated using reactive transport modeling of diffusion-controlled leaching test results and a geochemical speciation model derived from pH-dependent leaching. Comparisons between Cast Stone materials aged under nitrogen, air, and 2% carbon dioxide in nitrogen showed that carbonation impacts solubility, physical retention and observed diffusivity of major and trace constituents. Carbonation under 2% CO2 decreased the diffusion-controlled leaching of chromium by two orders of magnitude. Modeling results suggest that carbonation may also decrease solubility of technetium while changes to microstructure by carbonation increases effective diffusivity of constituents in Cast Stone.
Collapse
Affiliation(s)
- Peng Zhang
- Civil and Environmental Engineering, Vanderbilt University, Station B-351831, Nashville, TN 37235, USA
| | - Zhiliang Chen
- Civil and Environmental Engineering, Vanderbilt University, Station B-351831, Nashville, TN 37235, USA
| | - Kevin G Brown
- Civil and Environmental Engineering, Vanderbilt University, Station B-351831, Nashville, TN 37235, USA
| | - Andrew C Garrabrants
- Civil and Environmental Engineering, Vanderbilt University, Station B-351831, Nashville, TN 37235, USA
| | - Rossane Delapp
- Civil and Environmental Engineering, Vanderbilt University, Station B-351831, Nashville, TN 37235, USA
| | | | - Hans A van der Sloot
- Hans van der Sloot Consultancy, Glenn Millerhof 29, 1628 TS Hoorn, the Netherlands
| | - David S Kosson
- Civil and Environmental Engineering, Vanderbilt University, Station B-351831, Nashville, TN 37235, USA.
| |
Collapse
|
15
|
Wang X, Garrabrants AC, Chen Z, van der Sloot HA, Brown KG, Qiu Q, Delapp RC, Hensel B, Kosson DS. The influence of redox conditions on aqueous-solid partitioning of arsenic and selenium in a closed coal ash impoundment. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128255. [PMID: 35042166 DOI: 10.1016/j.jhazmat.2022.128255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
A closed coal ash impoundment case study characterized the effects of field redox conditions on arsenic and selenium partitioning through monitoring of porewater and subsurface gas in conjunction with geochemical speciation modeling. When disposed coal ash materials and porewater were recovered for testing, oxidation led to lower arsenic and higher selenium concentrations in leaching test extracts compared to porewater measurements. Multiple lines of evidence suggest multiple mechanisms of arsenic retention are plausible and the concurrent presence of several redox processes and conditions (e.g., methanogenesis, sulfate reduction, and Fe(III)-reduction) controlled by spatial gradients and dis-equilibrium. Geochemical speciation modeling indicated that, under reducing field conditions, selenium was immobilized through the formation of insoluble precipitates Se(0) or FeSe while arsenic partitioning was affected by a progression of reactions including changes in arsenic speciation, reduction in adsorption due to dissolution and recrystallization of hydrous ferric oxides, and precipitation of arsenic sulfide minerals.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Andrew C Garrabrants
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Zhiliang Chen
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Hans A van der Sloot
- Hans van der Sloot Consultancy, Glenn Millerhof 29, 1628 TS Hoorn, The Netherlands
| | - Kevin G Brown
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Qili Qiu
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Rossane C Delapp
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Bruce Hensel
- Electric Power Research Institute (EPRI), 3420 Hillview Avenue, Palo Alto, CA 94304, United States
| | - David S Kosson
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|
16
|
Fujii Yamagata A, Saslow SA, Neeway JJ, Varga T, Reno LR, Zhu Z, Rod KA, Johnson BR, Silverstein JA, Westsik JH, Smith GL, Asmussen RM. The behavior of iodine in stabilized granular activated carbon and silver mordenite in cementitious waste forms. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 244-245:106824. [PMID: 35121278 DOI: 10.1016/j.jenvrad.2022.106824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Both granular activated carbon (GAC) and silver mordenite (AgM) are utilized for the removal of contaminants and radionuclides (e.g., radioiodine) from off-gas streams in nuclear fuel reprocessing and high temperature immobilization of nuclear waste. Following their service lifetimes, the GAC and AgM contain an inventory of contaminants and radionuclides and require stabilization in a matrix for disposal. GAC and AgM are referred to as solid secondary waste (SSW) materials. Cementitious waste forms can be used as the stabilization matrix for SSW, however, for successful stabilization, the inclusion of GAC and AgM should not negatively impact the physical behavior of the cementitious waste form or increase release of the contaminants/radionuclides compared to the baseline case without stabilization. The present work focuses on evaluation of cement formulations, with and without slag, for the stabilization of iodine-loaded GAC or AgM. The results showed that both a slag-containing and slag-free formulations were able to stabilize GAC and AgM, up to 30 vol%, without deleterious impacts on the bulk physical properties of the encapsulating matrix. When monolithic samples of the GAC or AgM containing cement formulations were subjected to leach tests, it was observed that iodide leached from the SSW) had limited sorption to either of the cement matrices. Nonetheless, the iodine can interact with the SSW materials themselves. Specifically, iodine retention within monolithic samples containing the iodine-loaded GAC or AgM was improved for AgM containing waste forms while no improvement was observed for the GAC containing waste forms. The improvement for the AgM containing waste forms was likely due to an enrichment of Ag at the interface between the AgM particles and the cement matrix that can impede iodine migration out from the waste form. The results are significant in highlighting the potential for long-term retention of iodine in specific cementitious waste forms.
Collapse
Affiliation(s)
| | - Sarah A Saslow
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - James J Neeway
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Tamas Varga
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Loren R Reno
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Zihua Zhu
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Kenton A Rod
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | | | - Joshua A Silverstein
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Joseph H Westsik
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Gary L Smith
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - R Matthew Asmussen
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA.
| |
Collapse
|
17
|
Liu B, Finkel M, Grathwohl P. Mass Transfer Principles in Column Percolation Tests: Initial Conditions and Tailing in Heterogeneous Materials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4708. [PMID: 34443230 PMCID: PMC8398455 DOI: 10.3390/ma14164708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Initial conditions (pre-equilibrium or after the first flooding of the column), mass transfer mechanisms and sample composition (heterogeneity) have a strong impact on leaching of less and strongly sorbing compounds in column percolation tests. Mechanistic models as used in this study provide the necessary insight to understand the complexity of column leaching tests especially when heterogeneous samples are concerned. By means of numerical experiments, we illustrate the initial concentration distribution inside the column after the first flooding and how this impacts leaching concentrations. Steep concentration gradients close to the outlet of the column have to be expected for small distribution coefficients (Kd<1 L kg-1) and longitudinal dispersion leads to smaller initial concentrations than expected under equilibrium conditions. In order to elucidate the impact of different mass transfer mechanisms, film diffusion across an external aqueous boundary layer (first order kinetics, FD) and intraparticle pore diffusion (IPD) are considered. The results show that IPD results in slow desorption kinetics due to retarded transport within the tortuous intragranular pores. Non-linear sorption has not much of an effect if compared to Kd values calculated for the appropriate concentration range (e.g., the initial equilibrium concentration). Sample heterogeneity in terms of grain size and different fractions of sorptive particles in the sample have a strong impact on leaching curves. A small fraction (<1%) of strongly sorbing particles (high Kd) carrying the contaminant may lead to very slow desorption rates (because of less surface area)-especially if mass release is limited by IPD-and thus non-equilibrium. In contrast, mixtures of less sorbing fine material ("labile" contamination with low Kd), with a small fraction of coarse particles carrying the contaminant leads to leaching close to or at equilibrium showing a step-wise concentration decline in the column effluent.
Collapse
Affiliation(s)
| | | | - Peter Grathwohl
- Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany; (B.L.); (M.F.)
| |
Collapse
|