1
|
Wang C, Zhu Z, Huang X, Wang X, Zhang L, Peng Y, Wan R, Han L, Li L, Qin X, Li H, Chen J. Recent Advances in Developing Optical and Electrochemical Sensors for Monitoring Thiram and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23024-23038. [PMID: 39396199 DOI: 10.1021/acs.jafc.4c06107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Thiram, as one widely used dithiocarbamate pesticide, has been considered seriously detrimental to food safety and human health because of poor efficiency, nonstandard/superfluous usage, and lack of a targeting effect. Developing high-performance sensors for thirams is strongly needed. With the rapid development of chemistry, biology, and materials science, many sensors have been constructed for thiram with high sensitivity and selectivity. Regarding the energy form of the signal, recognition mode, and detection principle, recent advances in the design and construction of optical and electrochemical sensors for thiram are summarized in this review, including colorimetric, luminescent, chemiluminescent, and electrochemical sensors. The advantages and disadvantages of the sensors for thiram including sensitivity, ability to avoid interference, recognition mechanism, signal output mode, and practicability are clarified in detail. Furthermore, the challenges faced, effective restrictions, and next direction of development are proposed for achieving more sensitive and selective analysis of thiram with less interference. We desire that this review will supply a solid theoretical basis and inspiration to generate innovative thinking for achieving new progress on thiram assays and the commercialization of the developed sensors in the future.
Collapse
Affiliation(s)
- Chenfei Wang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Zihan Zhu
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Xinda Huang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Xuan Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Li Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Yue Peng
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Rongyan Wan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Lirong Han
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Linsen Li
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Xinhong Qin
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Haiyin Li
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Jianling Chen
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| |
Collapse
|
2
|
Pan Z, Fu L, Li XX, Li J, Li X, Peng Y, Fu X. Research on the effect of environmental regulation to the green water resource efficiency in China-based on the perspectives of high pressure and low suction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6678-6693. [PMID: 38157181 DOI: 10.1007/s11356-023-31462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Environmental regulation with spatial spillover effect is an important way to accelerate the transformation and upgrading of modern water resources structure, and then achieve sustainable development of China's water resources. How does environmental regulation affect the GWRE to alleviate or solve China's water shortage? In this paper, the GWRE is measured based on panel data from 31 provinces in China from 2000-2020, and the impact of high pressure (low suction) and heterogeneity on GWRE by environmental regulations is explored. The results revealed that the high pressure of environmental regulation significantly promoted the improvement of GWRE, but the improvement effect of low suction power was not significant. Similar conclusions are drawn under the tests of population size-economic distance and population size-technology distance. The high pressure of market-type and autonomous-type environmental regulation has a significant effect on GWRE, while the improvement effect of command-type environmental regulation is weak. The high pressure of environmental regulation in the eastern, central, western, and northeastern regions has a decreasing effect on GWRE. It is recommended to break the principle of GDP performance appraisal, establish and improve the "green performance" evaluation system, adopt regional differentiated environmental regulation policies, and establish a modern green water resources industrial structure system.
Collapse
Affiliation(s)
- Zhongwen Pan
- School of Economics, Hunan University of Finance and Economics, Changsha, 410205, Hunan, People's Republic of China.
| | - Liping Fu
- School of Economics, Hunan University of Finance and Economics, Changsha, 410205, Hunan, People's Republic of China
| | - Xiao Xiang Li
- Beibu Gulf Economic Research Center, Zhanjiang University of Science and Technology, Zhanjiang, 524094, Sichuan Guangdong, People's Republic of China
| | - Jingrong Li
- School of Business Administration, Southwestern University of Finance and Economics, Chengdu, 611100, Sichuan, People's Republic of China
| | - Xinyang Li
- School of Economics, Hunan University of Finance and Economics, Changsha, 410205, Hunan, People's Republic of China
| | - Ying Peng
- School of Economics, Hunan University of Finance and Economics, Changsha, 410205, Hunan, People's Republic of China
| | - Xinlin Fu
- School of Economics, Hunan University of Finance and Economics, Changsha, 410205, Hunan, People's Republic of China
| |
Collapse
|
3
|
Lin F, Lin S, Zhang Z, Lin W, Rensing C, Xie D. GF14f gene is negatively associated with yield and grain chalkiness under rice ratooning. FRONTIERS IN PLANT SCIENCE 2023; 14:1112146. [PMID: 36875569 PMCID: PMC9976807 DOI: 10.3389/fpls.2023.1112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Ratoon rice cropping has been shown to provide new insights into overcoming the current challenges of rice production in southern China. However, the potential mechanisms impacting yield and grain quality under rice ratooning remain unclear. METHODS In this study, changes in yield performance and distinct improvements in grain chalkiness in ratoon rice were thoroughly investigated, using physiological, molecular and transcriptomic analysis. RESULTS Rice ratooning induced an extensive carbon reserve remobilization in combination with an impact on grain filling, starch biosynthesis, and ultimately, an optimization in starch composition and structure in the endosperm. Furthermore, these variations were shown to be associated with a protein-coding gene: GF14f (encoding GF14f isoform of 14-3-3 proteins) and such gene negatively impacts oxidative and environmental resistance in ratoon rice. CONCLUSION Our findings suggested that this genetic regulation by GF14f gene was the main cause leading to changes in rice yield and grain chalkiness improvement of ratoon rice, irrespective of seasonal or environmental effects. A further significance was to see how yield performance and grain quality of ratoon rice were able to be achieved at higher levels via suppression of GF14f.
Collapse
Affiliation(s)
- Feifan Lin
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sheng Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Physiology and Molecular Ecology, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Zhixing Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Physiology and Molecular Ecology, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Physiology and Molecular Ecology, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Daoxin Xie
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Sun H, Sun Y, Jin M, Ripp SA, Sayler GS, Zhuang J. Domestic plant food loss and waste in the United States: Environmental footprints and mitigation strategies. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:202-207. [PMID: 35850005 DOI: 10.1016/j.wasman.2022.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The United States (U.S.) aims to reduce half of food loss and waste (FLW) by 2030. To achieve this goal, the public, academic, and political attentions on FLW have been increasing, and a series of actions have been implemented. However, the actions lack consideration on the categorical priority of FLW mitigation in relation to environmental footprints. In this article, we compare the FLW of three main plant food categories (i.e., grains, vegetables, and fruits) and their water and carbon footprints during 1970-2017. The vegetable FLW doubled during the period, reaching 3.39 × 1010 kg in 2017, which was 5- and 2-fold higher than the FLW of grains and fruits, respectively. The FLW of vegetables, grains, and fruits contributed 29%, 47%, and 24% to the total blue water wasted through FLW. The total carbon dioxide emissions generated by plant FLW were contributed by vegetables with 50%, grains with 31%, and fruits with 19%. Canonical correspondence analysis indicates that vegetable FLW had a higher positive correlation with urbanization, household incomes, gross domestic product, and high-income population than grain FLW, whereas fruit FLW was not influenced by these socioeconomic factors. Therefore, we suggest that the FLW mitigation should be prioritized on vegetables. Specific strategies include local food sourcing, shortening food miles, building food belts, and developing controlled-environment agriculture. Our data-based comparisons provide valuable insights into food policy improvement for achieving the 2030 reduction goal of the U.S., but the insights could be improved by considering the influences of foods imported from other nations.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Yanchen Sun
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN 37996, USA
| | - Mingzhou Jin
- Department of Industrial and Systems Engineering, The University of Tennessee, Knoxville, TN 37996, USA
| | - Steven A Ripp
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Gary S Sayler
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Jie Zhuang
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA; Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA; Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
5
|
Yu X, Yuan S, Tao X, Huang J, Yang G, Deng Z, Xu L, Zheng C, Peng S. Comparisons between main and ratoon crops in resource use efficiencies, environmental impacts, and economic profits of rice ratooning system in central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149246. [PMID: 34358744 DOI: 10.1016/j.scitotenv.2021.149246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Rice production in China is constrained by excessive water consumption, labor shortage, large environmental footprint, and low economic profit. Rice ratooning is a promising practice to increase famers' profit with higher resource use efficiency and less environmental impact compared with other rice cropping systems. However, there is limited information on the differences in energy use efficiency, water and labor productivity, environmental footprint, and economic return between main crop (MC) and ratoon crop (RC) in this cropping system. This study was conducted to compare the system performance between the two crops of ratoon rice using on-farm survey data. Average grain yield was 8.40 and 4.55 t ha-1 for MC and RC, respectively. Although RC produced 45.9% lower grain yield, it had 57.3% less total energy input and 71.0% lower total production cost than MC, which resulted in a significantly higher energy use efficiency, net energy ratio, net economic return and benefit-to-cost ratio. Lower total energy input and production cost of RC was mainly attributed to the reduction in fertilizer application and labor input, respectively compared with MC. In addition, both labor and water productivity of RC was significantly higher than those of MC. Furthermore, the global warming potential (GWP) and yield-scaled GWP of RC was 59.3% and 23.4% lower than those of MC, respectively, due to lower agronomic inputs and GHGs emissions. Overall, our results suggested that RC had higher resource use efficiency, better economic performance, and less environment impact compared with MC.
Collapse
Affiliation(s)
- Xing Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shen Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Tao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiada Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guodong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhiming Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Le Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chang Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|