1
|
Samavati Z, Goh PS, Fauzi Ismail A, Lau WJ, Samavati A, Ng BC, Sohaimi Abdullah M. Advancements in membrane technology for efficient POME treatment: A comprehensive review and future perspectives. J Environ Sci (China) 2025; 155:730-761. [PMID: 40246505 DOI: 10.1016/j.jes.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 04/19/2025]
Abstract
The treatment of POME related contamination is complicated due to its high organic contents and complex composition. Membrane technology is a prominent method for removing POME contaminants on account of its efficiency in removing suspended particles, organic substances, and contaminants from wastewater, leading to the production of high-quality treated effluent. It is crucial to achieve efficient POME treatment with minimum fouling through membrane advancement to ensure the sustainability for large-scale applications. This article comprehensively analyses the latest advancements in membrane technology for the treatment of POME. A wide range of membrane types including forward osmosis, microfiltration, ultrafiltration, nanofiltration, reverse osmosis, membrane bioreactor, photocatalytic membrane reactor, and their combinations is discussed in terms of the innovative design, treatment efficiencies and antifouling properties. The strategies for antifouling membranes such as self-healing and self-cleaning membranes are discussed. In addition to discussing the obstacles that impede the broad implementation of novel membrane technologies in POME treatment, the article concludes by delineating potential avenues for future research and policy considerations. The understanding and insights are expected to enhance the application of membrane-based methods in order to treat POME more efficiently; this will be instrumental in the reduction of environmental pollution.
Collapse
Affiliation(s)
- Zahra Samavati
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia.
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia.
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Alireza Samavati
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| |
Collapse
|
2
|
Wu J, Wang X, Fu Y, Yu Z, Meng F. Recruiting high-efficiency denitrifying consortia using Pseudomonas aeruginosa. WATER RESEARCH 2025; 277:123303. [PMID: 39983263 DOI: 10.1016/j.watres.2025.123303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Synthesizing the microbial community with a high denitrifying capacity is the key for achieving efficient removal of nitrogen species in wastewater treatment plants. Here, we integrated the evolutionary top-down enrichment and bottom-up bioaugmentation to construct a high-efficiency Pseudomonas-recruited denitrifying consortium (PRDC). A PRDC with a high specific denitrification rate of 109.49 ± 10.58 mg N/(g MLVSS·h) was enriched after 181 days of microbiota construction with pre-inoculation of Pseudomonas strain onto carriers. The 16S rRNA gene sequencing analysis suggested that the pre-inoculated Pseudomonas was quickly washed out and replaced by dominant denitrifying genera, such as Halomonas and Thauera, under different hydraulic retention times (HRTs). The pre-inoculated Pseudomonas can facilitate PRDC by providing public goods, but compromising its nutrient requirements. The dominant community assembly processes switched from homogeneous selection to ecological drift and dispersal limitation under shortened HRT. Furthermore, a shortened HRT facilitated the colonization of new immigrants and intensified their competition with the pre-existing dominant denitrifiers. The PRDC carriers achieved a 1.65-fold enhancement in sludge denitrification and reduced the corresponding chemical oxygen demand consumption at a carrier filling ratio of 30%. Overall, our study developed a novel technique using Pseudomonas aeruginosa as a trigger to enrich high-efficiency denitrifying consortia for wastewater treatment.
Collapse
Affiliation(s)
- Jiajie Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaolong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
3
|
Wang YX, Liu QY, Du JY, Sha HQ, Su J, Sun Y, Mao JY, He XS. Landfill depths alter microbial community structure and ecological assembly by affecting δ 13C and organic matter. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 203:114881. [PMID: 40367547 DOI: 10.1016/j.wasman.2025.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/09/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Microorganisms are crucial for the degradation of organic matter during landfill. However, the processes of microbial community assembly and ecological niche in landfill are poorly understood. Here, the mechanisms underlying microbial assembly in landfill were investigated based on neutral theory, niche distribution and network analysis. The results showed that moisture and potassium in the landfilled wastes increased with depth, while organic matter and δ13C were significantly higher in the middle layer than in the surface and bottom layers (P < 0.05). The richness and diversity of bacteria were significantly greater in the surface layer compared to the middle and bottom layers (P < 0.05), with moisture content, organic matter, total nitrogen and δ15N significantly influencing bacterial community composition. Deterministic processes over stochastic processes were pronounced in the surface layer, with the latter accounting only for 3.8 %. As landfill depth increased, variations in organic matter composition led to a greater influence of stochastic processes (52.7 %), while deterministic processes accounted for only 5.8 %. The niche breadth of abundant taxa was narrower than conditionally rare or abundant taxa, with their distribution primarily regulated by waste δ13C (P < 0.05), indicating greater environmental sensitivity. The niche overlap of microbial communities was lower in the surface layer, with the proportion of groups with high niche overlap being 2.69 times and 1.69 times higher in the middle and bottom layers. This study provided the first analysis of microbial niche dynamics across landfill depths, revealing critical interactions between δ13C driven organic matter availability and stochastic assembly processes.
Collapse
Affiliation(s)
- Yu-Xin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qing-Yu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jun-Yan Du
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, Guangxi, China
| | - Hao-Qun Sha
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yue Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing-Ying Mao
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, Guangxi, China
| | - Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Trinh HP, Lee SH, Nguyen TV, Park HD. Contribution of the microbial community to operational stability in an anammox reactor: Neutral theory and functional redundancy perspectives. BIORESOURCE TECHNOLOGY 2025; 419:132029. [PMID: 39740752 DOI: 10.1016/j.biortech.2024.132029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
A comprehensive understanding of microbial assembly is essential for achieving stable performance in biological wastewater treatment. Nevertheless, few studies have quantified these phenomena in detail, particularly in anammox-based processes. This study integrated mathematical and microbial approaches to analyze a 330-day anammox reactor with stable nitrogen removal efficiency (97 - 99%) despite changes in the high nitrogen loading rate, nitrogen concentration, and hydraulic retention time. A high value of functional redundancy (0.82) was obtained, with 84.6% of the microbial species following the neutral community model in stochastic processes, thus maintaining the stability of the dominant species and function in the microbial community. This study represents an initial attempt to quantify and evaluate the importance of functional redundancy in an anammox reactor. Based on these findings, engineering strategies have also been proposed to preserve high functional redundancy in stabilizing system performance under varying operating conditions.
Collapse
Affiliation(s)
- Hoang Phuc Trinh
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Thi Vinh Nguyen
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
5
|
Fan F, Li M, Dou J, Zhang J, Li D, Meng F, Dong Y. Functional characteristics and mechanisms of microbial community succession and assembly in a long-term moving bed biofilm reactor treating real municipal wastewater. ENVIRONMENTAL RESEARCH 2025; 267:120602. [PMID: 39674248 DOI: 10.1016/j.envres.2024.120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Moving bed biofilm reactor (MBBR) technology with diverse merits is efficient in treating various waste streams whereas their microbial functional properties and ecology still need in-depth investigation, especially in real wastewater treatment systems. Herein, a well-controlled MBBR treating municipal wastewater was established to investigate the long-term system performance and the underlying principles of community succession and assembly. The system successfully achieved ammonium, TN, and chemical oxygen demand (COD) removal of 96.7 ± 2.2%, 75.2 ± 3.6%, and 90.3 ± 3.8%, respectively, under simplified operation and low energy consumption. The effluent TN concentrations achieved 6.2 ± 1.6 mg-N/L despite the influent fluctuations. Diverse functional denitrifiers, such as Denitratisoma, Thermomonas, and Flavobacterium, and the anammox bacteria Candidatus Brocadia successfully enriched in anoxic chamber biofilms. The nitrifiers Nitrosomonas (∼0.73%) and Nitrospira (∼14.0%) exhibited appreciable nitrification capacity in specialized aerobic chambers. Ecological null model and network analysis revealed that microbial community assembly was mainly regulated by niche-based deterministic processes and air diffusion in the aerobic chamber resulted in more intense and complex bacterial interactions. Environmental filters including influent substrate and operating conditions (e.g., reactor configuration, DO, and temperature) greatly shaped the microbial community structure and affected carbon and nitrogen metabolism. The positive ecological roles of influent microflora and functional redundancy in biofilm communities were believed to facilitate functional stability. The anammox process coupled with partial denitrification in a specialized chamber demonstrated positive application implications. These findings provided valuable perspectives in deciphering the microbiological and ecological mechanisms, functional properties, and application potentials of MBBR.
Collapse
Affiliation(s)
- Fuqiang Fan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai, 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Mingtao Li
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai, 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jiaqi Zhang
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Danyi Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yue Dong
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai, 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
6
|
Wang F, Zhang Z, Zhang YT, Zhang M, Huang Y, Zhang X, Wu Q, Kong W, Jiang D, Mu J. DNA and RNA sequencing reveal the role of rare bacterial taxa in constructed wetlands: Insights into community activities, ecological functions, and assembly processes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117336. [PMID: 39546866 DOI: 10.1016/j.ecoenv.2024.117336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Microorganisms are essential for the functioning of constructed wetlands (CWs), yet the role of rare bacterial taxa in CWs remains poorly understood. In this study, the community structure, metabolic activities, ecological functions, and assembly processes of abundant and rare bacterial taxa in CWs were examined using DNA and RNA high-throughput sequencing. Our results revealed that Gammaproteobacteria, Alphaproteobacteria, Bacteroidia, and Actinobacteria exhibited high diversity and sequence abundance. Retention in CWs generally reduced the metabolic activities of bacterial communities, with intermediate and rare taxa showing significantly lower activity compared to those in the influent. Despite their low abundance, functional groups involved in nitrogen and phosphorus removal exhibited high metabolic activities, highlighting their crucial role in these processes. Co-occurrence network analysis showed that non-rare taxa interacted more frequently with rare taxa than with conspecifics, and that keystone species included comparable numbers of both abundant and rare species. These highlight the importance of rare taxa in ecological functions and maintaining the stability of bacterial community structure in CWs. The assembly of bacterial communities was driven by both deterministic and stochastic processes, with stochastic processes predominantly shaping the rare taxa and deterministic processes primarily influencing the abundant taxa. Overall, this study provides novel insights into bacterial community structure, metabolic activity, and assembly processes in CWs, particularly the ecological roles of rare taxa.
Collapse
Affiliation(s)
- Feipeng Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Zhi Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yu Ting Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Mingdong Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yaling Huang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Xiaoyun Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Qi Wu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weimao Kong
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Degang Jiang
- Island Research Center, Ministry of Natural Resources, Pingtan 350400, China.
| | - Jingli Mu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
7
|
Wang L, Lu W, Song Y, Liu S, Fu YV. Using machine learning to identify environmental factors that collectively determine microbial community structure of activated sludge. ENVIRONMENTAL RESEARCH 2024; 260:119635. [PMID: 39025351 DOI: 10.1016/j.envres.2024.119635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Activated sludge (AS) microbial communities are influenced by various environmental variables. However, a comprehensive analysis of how these variables jointly and nonlinearly shape the AS microbial community remains challenging. In this study, we employed advanced machine learning techniques to elucidate the collective effects of environmental variables on the structure and function of AS microbial communities. Applying Dirichlet multinomial mixtures analysis to 311 global AS samples, we identified four distinct microbial community types (AS-types), each characterized by unique microbial compositions and metabolic profiles. We used 14 classical linear and nonlinear machine learning methods to select a baseline model. The extremely randomized trees demonstrated optimal performance in learning the relationship between environmental factors and AS types (with an accuracy of 71.43%). Feature selection identified critical environmental factors and their importance rankings, including latitude (Lat), longitude (Long), precipitation during sampling (Precip), solids retention time (SRT), effluent total nitrogen (Effluent TN), average temperature during sampling month (Avg Temp), mixed liquor temperature (Mixed Temp), influent biochemical oxygen demand (Influent BOD), and annual precipitation (Annual Precip). Significantly, Lat, Long, Precip, Avg Temp, and Annual Precip, influenced metabolic variations among AS types. These findings emphasize the pivotal role of environmental variables in shaping microbial community structures and enhancing metabolic pathways within activated sludge. Our study encourages the application of machine learning techniques to design artificial activated sludge microbial communities for specific environmental purposes.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weilai Lu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Wang YC, Lv YH, Wang C, Deng Y, Lin YT, Jiang GY, Hu XR, Crittenden JC. Stochastic processes shape microbial community assembly in biofilters: Hidden role of rare taxa. BIORESOURCE TECHNOLOGY 2024; 402:130838. [PMID: 38740312 DOI: 10.1016/j.biortech.2024.130838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Stochastic and deterministic processes are the major themes governing microbial community assembly; however, their roles in bioreactors are poorly understood. Herein, the mechanisms underlying microbial assembly and the effect of rare taxa were studied in biofilters. Phylogenetic tree analysis revealed differences in microbial communities at various stages. Null model analysis showed that stochastic processes shaped the community assembly, and deterministic processes emerged only in the inoculated activated sludge after domestication. This finding indicates the dominant role of stochastic factors (biofilm formation, accumulation, and aging). The Sloan neutral model corroborated the advantages of stochastic processes and mainly attributed these advantages to rare taxa. Cooccurrence networks revealed the importance of rare taxa, which accounted for more than 85% of the keystones. Overall, these results provide good foundations for understanding community assembly, especially the role of rare taxa, and offer theoretical support for future community design and reactor regulation.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Xu-Rui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
9
|
Cheng H, Monjed MK, Myshkevych Y, Wang T, Hong PY. Accounting for the microbial assembly of each process in wastewater treatment plants (WWTPs): study of four WWTPs receiving similar influent streams. Appl Environ Microbiol 2024; 90:e0225323. [PMID: 38440988 PMCID: PMC11022531 DOI: 10.1128/aem.02253-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
We evaluated a unique model in which four full-scale wastewater treatment plants (WWTPs) with the same treatment schematic and fed with similar influent wastewater were tracked over an 8-month period to determine whether the community assembly would differ in the activated sludge (AS) and sand filtration (SF) stages. For each WWTP, AS and SF achieved an average of 1-log10 (90%) and <0.02-log10 (5%) reduction of total cells, respectively. Despite the removal of cells, both AS and SF had a higher alpha and beta diversity compared to the influent microbial community. Using the Sloan neutral model, it was observed that AS and SF were individually dominated by different assembly processes. Specifically, microorganisms from influent to AS were predominantly determined by the selective niche process for all WWTPs, while the microbial community in the SF was relatively favored by a stochastic, random migration process, except two WWTPs. AS also contributed more to the final effluent microbial community compared with the SF. Given that each WWTP operates the AS independently and that there is a niche selection process driven mainly by the chemical oxygen demand concentration, operational taxonomic units unique to each of the WWTPs were also identified. The findings from this study indicate that each WWTP has its distinct microbial signature and could be used for source-tracking purposes.IMPORTANCEThis study provided a novel concept that microorganisms follow a niche assembly in the activated sludge (AS) tank and that the AS contributed more than the sand filtration process toward the final microbial signature that is unique to each treatment plant. This observation highlights the importance of understanding the microbial community selected by the AS stage, which could contribute toward source-tracking the effluent from different wastewater treatment plants.
Collapse
Affiliation(s)
- Hong Cheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
- Environmental Science and Engineering, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohammad K. Monjed
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yevhen Myshkevych
- Environmental Science and Engineering, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tiannyu Wang
- Water Desalination and Reuse Center, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pei-Ying Hong
- Environmental Science and Engineering, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Water Desalination and Reuse Center, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
10
|
Deng C, Chen T, Qiu Z, Zhou H, Li B, Zhang Y, Xu X, Lian C, Qiao X, Yu K. A mixed blessing of influent leachate microbes in downstream biotreatment systems of a full-scale landfill leachate treatment plant. WATER RESEARCH 2024; 253:121310. [PMID: 38368734 DOI: 10.1016/j.watres.2024.121310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
In landfill leachate treatment plants (LLTPs), the microbiome plays a pivotal role in the decomposition of organic compounds, reduction in nutrient levels, and elimination of toxins. However, the effects of microbes in landfill leachate influents on downstream treatment systems remain poorly understood. To address this knowledge gap, we collected 23 metagenomic and 12 metatranscriptomic samples from landfill leachate and activated sludge from various treatment units in a full-scale LLTP. We successfully recovered 1,152 non-redundant metagenome-assembled genomes (MAGs), encompassing a wide taxonomic range, including 48 phyla, 95 classes, 166 orders, 247 families, 238 genera, and 1,152 species. More diverse microbes were observed in the influent leachate than in the downstream biotreatment systems, among which, an unprecedented ∼30 % of microbes with transcriptional expression migrated from the influent to the biological treatment units. Network analysis revealed that 399 shared MAGs across the four units exhibited high node centrality and degree, thus supporting enhanced interactions and increased stability of microbial communities. Functional reconstruction and genome characterization of MAGs indicated that these shared MAGs possessed greater capabilities for carbon, nitrogen, sulfur, and arsenic metabolism compared to non-shared MAGs. We further identified a novel species of Zixibacteria in the leachate influent with discrete lineages from those in other environments that accounted for up to 17 % of the abundance of the shared microbial community and exhibited notable metabolic versatility. Meanwhile, we presented groundbreaking evidence of the involvement of Zixibacteria-encoded genes in the production of harmful gas emissions, such as N2O and H2S, at the transcriptional level, thus suggesting that influent microbes may pose safety risks to downstream treatment systems. In summary, this study revealed the complex impact of the influent microbiome on LLTP and emphasizes the need to consider these microbial characteristics when designing treatment technologies and strategies for landfill leachate management.
Collapse
Affiliation(s)
- Chunfang Deng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Tianyi Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hong Zhou
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810000, China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuanyan Zhang
- Jiangxi Academy of Eco-Environmental Sciences & Planning, Nanchang 330029, PR China
| | - Xuming Xu
- Institute of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Chunang Lian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
11
|
Wu X, Yu Z, Yuan S, Tawfik A, Meng F. An ecological explanation for carbon source-associated denitrification performance in wastewater treatment plants. WATER RESEARCH 2023; 247:120762. [PMID: 39492355 DOI: 10.1016/j.watres.2023.120762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
The underlying mechanism associated with the roles of dosed carbon source in denitrification performance remains largely unknown. In this study, three denitrifying consortia (DNC) were constructed via evolutionary top-down enrichment method with well-defined conditions and specific carbon sources (acetate, glucose and their mixture). The reactor operation shows that nearly complete nitrate removal was achieved; however, the glucose feeding resulted in much higher concentrations of biomass and non-settable flocs. The 16S rRNA sequencing suggests that the bacterial diversity of the acetate-fed DNC was significantly higher than those of acetate/glucose-fed and glucose-fed DNCs. The dentrifying population in the acetate-fed DNC was dominated by Propionivibrio (16.1 %) and Thauera (3.4 %); whereas those of acetate/glucose- and glucose-fed DNCs were dominated by Pleomorphomonas (21.5 % and 26.3 %, respectively). Interestingly, the supernatant of acetate-fed DNC contained a high abundance of genera Thauera (averaged at 85.1 %), indicating the free-living nature of Thauera. Both PICURSt2 analysis of 16S rRNA sequencing and metagenomic analysis indicate that the acetate-fed DNC contained higher abundances of denitrifying genes; the acetate/glucose-fed and glucose-fed DNCs, in comparison, enriched genes related to glucose transportation and metabolism. Additionally, the acetate-fed DNC had better network stability than other two groups. This study adds important knowledge regarding the ecological traits of DNC, providing important clues for rational addition of carbon sources in wastewater treatment plants.
Collapse
Affiliation(s)
- Xueshen Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, 12622, Dokki, Cairo, Egypt; Department of Environmental Science, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China.
| |
Collapse
|
12
|
Xu R, Cui H, Fan F, Zhang M, Yuan S, Wang D, Gan Z, Yu Z, Wang C, Meng F. Combination of Sequencing Batch Operation and A/O Process to Achieve Partial Mainstream Anammox: Pilot-Scale Demonstration and Microbial Ecological Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13887-13900. [PMID: 37667485 DOI: 10.1021/acs.est.3c03022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In this study, sequencing batch operation was successfully combined with a pilot-scale anaerobic biofilm-modified anaerobic/aerobic membrane bioreactor to achieve anaerobic ammonium oxidation (anammox) without inoculation of anammox aggregates for municipal wastewater treatment. Both total nitrogen and phosphorus removal efficiencies of the reactor reached up to 80% in the 250-day operation, with effluent concentrations of 4.95 mg-N/L and 0.48 mg-P/L. In situ enrichment of anammox bacteria with a maximum relative abundance of 7.86% was observed in the anaerobic biofilm, contributing to 18.81% of nitrogen removal, with denitrification being the primary removal pathway (38.41%). Denitrifying phosphorus removal (DPR) (40.54%) and aerobic phosphorus uptake (48.40%) played comparable roles in phosphorus removal. Metagenomic sequencing results showed that the biofilm contained significantly lower abundances of NO-reducing functional genes than the bulk sludge (p < 0.01), favoring anammox catabolism in the former. Interactions between the anammox bacteria and flanking community were dominated by cooperation behaviors (e.g., nitrite supply, amino acids/vitamins exchange) in the anaerobic biofilm community network. Moreover, the hydrolytic/fermentative bacteria and endogenous heterotrophic bacteria (Dechloromonas, Candidatus competibacter) were substantially enriched under sequencing batch operation, which could alleviate the inhibition of anammox bacteria by complex organics. Overall, this study provides a feasible and promising strategy for substantially enriching anammox bacteria and achieving partial mainstream anammox as well as DPR.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hongcan Cui
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhihao Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
13
|
Ma Y, Rui D, Dong H, Zhang X, Ye L. Large-scale comparative analysis reveals different bacterial community structures in full- and lab-scale wastewater treatment bioreactors. WATER RESEARCH 2023; 242:120222. [PMID: 37331228 DOI: 10.1016/j.watres.2023.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
The activated sludge process is widely used for biological wastewater treatment due to its low cost and high efficiency. Although numerous lab-scale bioreactor experiments have been conducted to investigate the microorganism performance and mechanisms in activated sludge, understanding the bacterial community differences between full- and lab-scale bioreactors has remained elusive. In this study, we investigated the bacterial communities in 966 activated sludge samples obtained from various bioreactors, including both full- and lab-scale ones, from 95 previous studies. Our findings reveal significant differences in the bacterial communities between full- and lab-scale bioreactors, with thousands of bacterial genera exclusive to each scale. We also identified 12 genera that are frequently abundant in full-scale bioreactors but rarely observed in lab-scale reactors. By using a machine-learning method, organic matter and temperature were determined as the primary factors affecting microbial communities in full- and lab-scale bioreactors. Additionally, transient bacterial species from other environments may also contribute to the observed bacterial community differences. Furthermore, the bacterial community differences between full- and lab-scale bioreactors were verified by comparing the results of lab-scale bioreactor experiments to full-scale bioreactor sampling. Overall, this study sheds light on the bacteria overlooked in lab-scale studies and deepens our understanding of the differences in bacterial communities between full- and lab-scale bioreactors.
Collapse
Affiliation(s)
- Yanyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Dongni Rui
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Haonan Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Fu Y, Xu R, Yang B, Wu Y, Xia L, Tawfik A, Meng F. Mediation of Bacterial Interactions via a Novel Membrane-Based Segregator to Enhance Biological Nitrogen Removal. Appl Environ Microbiol 2023; 89:e0070923. [PMID: 37404187 PMCID: PMC10370321 DOI: 10.1128/aem.00709-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
The regulation of microbial subpopulations in wastewater treatment plants (WWTPs) with desired functions can guarantee nutrient removal. In nature, "good fences make good neighbors," which can be applied to engineering microbial consortia. Herein, a membrane-based segregator (MBSR) was proposed, where porous membranes not only promote the diffusion of metabolic products but also isolate incompatible microbes. The MBSR was integrated with an anoxic/aerobic membrane bioreactor (i.e., an experimental MBR). The long-term operation showed that the experimental MBR exhibited higher nitrogen removal (10.45 ± 2.73 mg/L total nitrogen) than the control MBR (21.68 ± 4.23 mg/L) in the effluent. The MBSR resulted in much lower oxygen reduction potential in the anoxic tank of the experimental MBR (-82.00 mV) compared to that of the control MBR (83.25 mV). The lower oxygen reduction potential can inevitably aid in the occurrence of denitrification. The 16S rRNA sequencing showed that the MBSR significantly enriched acidogenic consortia, which yielded considerable volatile fatty acids by fermenting the added carbon sources and allowed efficient transfer of these small molecules to the denitrifying community. Moreover, the sludge communities of the experimental MBR harbored a higher abundance of denitrifying bacteria than those of the control MBR. Metagenomic analysis further corroborated these sequencing results. The spatially structured microbial communities in the experimental MBR system demonstrate the practicability of the MBSR, achieving nitrogen removal efficiency superior to that of mixed populations. Our study provides an engineering method for modulating the assembly and metabolic division of labor of subpopulations in WWTPs. IMPORTANCE This study provides an innovative and applicable method for regulating subpopulations (activated sludge and acidogenic consortia), which contributes to the precise control of the metabolic division of labor in biological wastewater treatment processes.
Collapse
Affiliation(s)
- Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Boyi Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Yingxin Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Lichao Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Dokki, Cairo, Egypt
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
15
|
Yuan S, Guo S, Tan Y, Li M, Lu Y, Xu R, Tawfik A, Zhou Z, Chen J, Liu W, Meng F. Deciphering community assembly and succession in sequencing batch moving bed biofilm reactor: Differentiation between attached and suspended communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162448. [PMID: 36828058 DOI: 10.1016/j.scitotenv.2023.162448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Elucidating community assembly and succession is crucial to understanding the ecosystem functioning. Herein, the ecological processes underpinning community assembly and succession were studied to uncover the respective ecological functions of attached biofilms and suspended biomass in a sequencing batch moving bed biofilm reactor. Compared with suspended biomass, attached biofilms presented higher relative abundances of Nitrospira (2.94 %) and Nitrosomonas (1.25 %), and contributed to 66.89 ± 11.37 % and 68.11 ± 12.72 % of nitrification and denitrification activities, respectively. The microbial source tracking result demonstrated that early formation of suspended biomass was dominated by the seeding effect of detached biofilms in the start-up period (days 0-30), while self-growth of previous suspended biomass was eventually outcompeted the seeding effect when the reactor stabilized (days 31-120). Null model and ecological network analysis further suggested distinctive ecological processes underpinning the differentiation between attached and suspended communities in the same reactor. Specifically, in the start-up period, positive interactions facilitated early formation of attached (73.84 %) and suspended communities (59.41 %), while homogenous selection (88.89 %) and homogenizing dispersal (65.71 %) governed assembly of attached and suspended communities, respectively. When the reactor stabilized, attached and suspended communities showed low composition turnover as reflected by dominant homogenizing dispersal, while they presented distinctive trends of interspecies interactions. This study sheds light on discrepant ecological processes governing community differentiation of attached biofilms and suspended biomass, which would provide ecological insights into the regulation of hybrid ecosystems.
Collapse
Affiliation(s)
- Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Sixian Guo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Yongtao Tan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Mengdi Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Yi Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, 12622, Dokki, Cairo, Egypt
| | - Zanmin Zhou
- Zhuhai Urban Drainage Co., Ltd., Zhuhai 519000, China
| | - Jincan Chen
- Zhuhai Urban Drainage Co., Ltd., Zhuhai 519000, China
| | - Wanli Liu
- Zhuhai Water Environment Holdings Group Ltd., Zhuhai 519000, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China.
| |
Collapse
|
16
|
Xu R, Zhang W, Fu Y, Fan F, Zhou Z, Chen J, Liu W, Meng F. The positive roles of influent species immigration in mitigating membrane fouling in membrane bioreactors treating municipal wastewater. WATER RESEARCH 2023; 235:119907. [PMID: 37001232 DOI: 10.1016/j.watres.2023.119907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The influence of influent species immigration (ISI) on membrane fouling behaviors of membrane bioreactors (MBRs) treating municipal wastewater remains elusive, leading to an incomprehensive understanding of fouling ecology in MBRs. To address this issue, two anoxic/aerobic MBRs, which were fed with raw (named MBR-C) and sterilized (MBR-E) municipal wastewater, were operated. Compared with the MBR-E, the average fouling rate of the MBR-C was lowered by 30% over the long-term operation. In addition, the MBR-E sludge had significantly higher unified membrane fouling index and biofilm formation potential than the MBR-C sludge. Considerably larger flocs size and lower soluble microbial products (SMP) concentrations were observed in the MBR-C than in the MBR-E. Moreover, the 16S rRNA gene sequencing results showed that highly diverse and abundant populations responsible for floc-forming, hydrolysis/fermentation and SMP degradation readily inhabited the influent, shaping a unique microbial niche. Based on species mass balance-based assessment, most of these populations were nongrowing and their relative abundances were higher in the MBR-C than in the MBR-E. This suggested an important contribution of the ISI on the assemblage of these bacteria, thus supporting the increased flocs size and lowered SMP concentrations in the MBR-C. Moreover, the SMP-degrading related bacteria and functional pathways played a more crucial role in the MBR-C ecosystem as revealed by the bacterial co-occurrence network and Picrust2 analysis. Taken together, this study reveals the positive role of ISI in fouling mitigation and highlights the necessity for incorporating influent wastewater communities for fouling control in MBR plants.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Wentian Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
| | - Zanmin Zhou
- Zhuhai Urban Drainage Co., Ltd., Zhuhai, 519000, China
| | - Jincan Chen
- Zhuhai Urban Drainage Co., Ltd., Zhuhai, 519000, China
| | - Wanli Liu
- Zhuhai Water Environment Holdings Group Ltd., Zhuhai, 519000, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China.
| |
Collapse
|
17
|
Zhou H, Yin H, Guo Z, Zhu M, Qi X, Dang Z. Methanol promotes the biodegradation of 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB 180) by the microbial consortium QY2: Metabolic pathways, toxicity evaluation and community response. CHEMOSPHERE 2023; 322:138206. [PMID: 36828105 DOI: 10.1016/j.chemosphere.2023.138206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/24/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
As one of the most frequently detected PCB congeners in human adipose tissue, 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB 180) has attracted much attention. However, PCB 180 is difficult to be directly utilized by microorganisms due to its hydrophobicity and obstinacy. Herein, methanol (5 mM) as a co-metabolic carbon source significantly stimulated the degradation performance of microbial consortium QY2 for PCB 180 (51.9% higher than that without methanol addition). Six metabolic products including low-chlorinated PCBs and chlorobenzoic acid were identified during co-metabolic degradation, denoting that PCB 180 was metabolized via dechlorination, hydroxylation and ring-opening pathways. The oxidative stress and apoptosis induced by PCB 180 were dose-dependent, but the addition of methanol effectively promoted the tolerance of consortium QY2 to resist unfavorable environmental stress. Additionally, the significant reduction of intracellular reactive oxygen species (ROS) and enhancement of cell viability during methanol co-metabolic degradation proved that the degradation was a detoxification process. The microbial community and network analyses suggested that the potential PCB 180 degrading bacteria in the community (e.g., Achromobacter, Cupriavidus, Methylobacterium and Sphingomonas) and functional abundance of metabolic pathways were selectively enriched by methanol, and the synergies among species whose richness increased after methanol addition might dominate the degradation process. These findings provide new insights into the biodegradation of PCB 180 by microbial consortium.
Collapse
Affiliation(s)
- Heyang Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| | - Zhanyu Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xin Qi
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
| |
Collapse
|
18
|
Wu T, Zhong L, Pang JW, Ren NQ, Ding J, Yang SS. Effect of Fe3+ on the nutrient removal performance and microbial community in a biofilm system. Front Microbiol 2023; 14:1140404. [PMID: 37089551 PMCID: PMC10117941 DOI: 10.3389/fmicb.2023.1140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
In this study, the influence of Fe3+ on N removal, microbial assembly, and species interactions in a biofilm system was determined. The results showed that maximum efficiencies of ammonia nitrogen (NH4+-N), total nitrogen (TN), phosphorus (P), and chemical oxygen demand (COD) removal were achieved using 10 mg/L Fe3+, reaching values of 100, 78.85, 100, and 95.8%, respectively, whereas at concentrations of 15 and 30 mg/L Fe3+ suppressed the removal of NH4+-N, TN, and COD. In terms of absolute abundance, the expression of bacterial amoA, narG, nirK, and napA was maximal in the presence of 10 mg/L Fe3+ (9.18 × 105, 8.58 × 108, 1.09 × 108, and 1.07 × 109 copies/g dry weight, respectively). Irrespective of Fe3+ concentrations, the P removal efficiency remained at almost 100%. Candidatus_Competibacter (10.26–23.32%) was identified as the most abundant bacterial genus within the system. Determinism (50%) and stochasticity (50%) contributed equally to microbial community assembly. Co-occurrence network analysis revealed that in the presence of Fe3+, 60.94% of OTUs in the biofilm system exhibited positive interactions, whereas 39.06% exhibited negative interactions. Within the OTU-based co-occurrence network, fourteen species were identified as key microbes. The stability of the system was found to be predominantly shaped by microbial cooperation, complemented by competition for resources or niche incompatibility. The results of this study suggested that during chemical P removal in wastewater treatment plants using biofilm methods, the concentration of supplemental Fe3+ should be maintained at 10 mg/L, which would not only contribute to P elimination, but also enhance N and COD removal.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
- *Correspondence: Jie Ding,
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
- Shan-Shan Yang,
| |
Collapse
|
19
|
Yang Y, Wang J, Chen M, Li N, Yan J, Wang X. Self-forming electroactive dynamic membrane for enhancing the decolorization of methyl orange by weak electrical stimulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160897. [PMID: 36521609 DOI: 10.1016/j.scitotenv.2022.160897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
An electroactive dynamic membrane (EADM), which enabled simultaneous solid-liquid separation and contaminants removal, has been developed by electrostimulation using domestic wastewater as inoculum. Results showed that both the control dynamic membrane (CDM), without electrical stimulation, and the EADM systems exhibited stable removal performance with chemical oxygen demand (COD), and a robustness in responding to a fluctuating organic load. With the introduction of a weak electrical field, the EADM transmembrane pressure (TMP) was significantly reduced (0.02 kPa/d) compared with the control (0.20 kPa/d). In the treatment of methyl orange (MO), the EADM system achieved a decolorization efficiency of 85.87 %, much higher than the control dynamic membrane (CDM) system (58.84 %), which can be attributed to electrical stimulation and H2 production on cathode. Microbial analysis has established that electrostimulation enriched the electroactive bacteria in the dynamic biofilm, and shaped the microbial structure, with improved contaminant removal. The results of this study highlight the potential of regulating the microbial community and creating a beneficial biofilm as a dynamic layer to facilitate contaminant removal.
Collapse
Affiliation(s)
- Yang Yang
- College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jinning Wang
- College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Mei Chen
- College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Jiaguo Yan
- Division of Oilfield Chemicals, China Oilfield Services Limited, No. 1581, Haichuan Road, Binhai New District, Tianjin, China
| | - Xin Wang
- College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
20
|
Cui H, Xu R, Yu Z, Meng F. Phylogenetic group-based assembly and co-occurrence pattern of the microbial community in full-scale wastewater treatment plants during the Chinese spring festival. CHEMOSPHERE 2023; 316:137775. [PMID: 36621691 DOI: 10.1016/j.chemosphere.2023.137775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The quality and quantity of domestic sewage discharge vary significantly during the Chinese Spring Festival due to the huge population shift. The dynamics of microbial community traits during the Spring Festival, particularly the phylogenetic group-based assembly and co-occurrence patterns, are however little understood. Here, influent and activated sludge samples from 2 full-scale wastewater treatment plants were collected bi-daily throughout a 20-day Spring Festival period and subjected to high-throughput Illumina-MiSeq sequencing. The findings revealed that the microbial communities in the activated sludge displayed a comparatively stable pattern, and that the influent communities experienced significant temporal fluctuations in terms of diversity and composition. The characterization by "Infer Community Assembly Mechanisms by Phylogenetic-bin based null model" demonstrated that for Competibacter glycogen-accumulating organisms, the assembly mechanism shifted from deterministic process (HoS = 69.5%) before the Spring Festival to stochastic process (DR = 65.9%) after the Spring Festival. The network analysis revealed that the network structure of sludge communities was more stable before the Spring Festival than that after the Spring Festival. Additionally, sludge communities had no keystone species in common with the influent before the Spring Festival, while the sludge and influent communities shared two keystone taxa after the Spring Festival (Sebaldella and Candidatus Competibacter). This study would deepen our understanding of the microbial ecology in biological wastewater treatment systems, which also aids in managing wastewater treatment plants.
Collapse
Affiliation(s)
- Hongcan Cui
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China.
| |
Collapse
|
21
|
Song J, Li M, Wang C, Fan Y, Li Y, Wang Y, Zhang W, Li H, Wang H. Enhanced treatment of landfill leachate by biochar-based aerobic denitrifying bacteria functional microbial materials: Preparation and performance. Front Microbiol 2023; 14:1139650. [PMID: 36846797 PMCID: PMC9945275 DOI: 10.3389/fmicb.2023.1139650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Objective In this work, polyvinyl alcohol (PVA) and sodium alginate (SA) were used as entrapped carriers and Artemisia argyi stem biochar (ABC) was used as an absorption carrier to immobilize aerobic denitrifying bacteria screened from landfill leachate, thus a new carbon-based functional microbial material (PVA/SA/ABC@BS) was successfully prepared. Methods The structure and characteristics of the new material were revealed by using a scanning electron microscope and Fourier transform infrared spectroscopy, and the performance of the material for treating landfill leachate under different working conditions was studied. Results ABC had abundant pore structures and that the surface contained many oxygen-containing functional groups, carboxyl groups, and amide groups, etc. and it had good absorbing performance and strong acid and alkali buffering capacity, which was beneficial to the adhesion and proliferation of microorganisms. After adding ABC as a composite carrier, the damage rate of immobilized particles was decreased by 1.2%, and the acid stability, alkaline stability, and mass transfer performance were increased by 9.00, 7.00, and 56%, respectively. When the dosage of PVA/SA/ABC@BS was 0.017g/ml, the removal rates of nitrate nitrogen (NO3 --N) and ammonia nitrogen (NH4 +-N) were the highest, which were 98.7 and 59.4%, respectively. When the pH values were 11, 7, 1, and 9, the removal rates of chemical oxygen demand (COD), NO3 --N, nitrite nitrogen (NO2 --N) and NH4 +-N reached the maximum values, which were 14.39, 98.38, 75.87, and 79.31%, respectively. After PVA/SA/ABC@BS was reused in 5 batches, the removal rates of NO3 --N all reached 95.50%. Conclusion PVA, SA and ABC have excellent reusability for immobilization of microorganisms and degradation of nitrate nitrogen. This study can provide some guidance for the great application potential of immobilized gel spheres in the treatment of high concentration organic wastewater.
Collapse
Affiliation(s)
- Jianyang Song
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China,School of Civil Engineering, Nanyang Institute of Technology, Nanyang, China,School of Civil Engineering, Wuhan University, Wuhan, China,*Correspondence: Jianyang Song, ✉
| | - Minghui Li
- School of Civil Engineering, Nanyang Institute of Technology, Nanyang, China,College of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Chunyan Wang
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Yujie Fan
- School of Civil Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Yuan Li
- School of Civil Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Yongkun Wang
- School of Civil Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Wenxiao Zhang
- School of Civil Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Pan Z, Zeng B, Yu G, Lin H, Hu L, Teng J, Zhang H, Yang L. Molecular insights into impacts of EDTMPA on membrane fouling caused by transparent exopolymer particles (TEP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158650. [PMID: 36089022 DOI: 10.1016/j.scitotenv.2022.158650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
While ethylenediamine tetramethylenephosphonic acid (EDTMPA) has been emerged as a stronger chelating agent than ethylene diamine tetraacetic acid (EDTA) for fouling mitigation, and transparent exopolymer particles (TEP) is a major foulant in membrane-based water treatment process, effects of EDTMPA on TEP fouling and the underlying mechanism have been not yet studied. In this study, Flory-Huggins lattice theory was combined with density functional theory (DFT) technology to explore this subject at molecular level. Filtration experiments showed a unimodal pattern of specific filtration resistance (SFR) of TEP sample with Ca2+ concentration in range of 0-3 mM. For the TEP sample with the peak SFR value at 1.5 mM Ca2+, continuous addition of EDTMPA (from 0 to 100 mg·L-1) resulted in a sustained decrease in SFR. Energy dispersive spectroscopy (EDS) mapping characterization showed the continuing decline of calcium content in the TEP layer with increase of EDTMPA addition, indicating that EDTMPA successfully captured Ca2+ from alginate‑calcium ligation (TEP), and then disintegrated the TEP structure. DFT simulation showed that Ca2+ preferentially coordinated with the terminal carboxyl groups of alginate chains to form a coordination configuration that is conducive to stretch the three-dimensional polymer network. Such a network corresponded to an extremely high SFR according to Flory-Huggins theory. EDTMPA addition caused disintegration of the coordination configuration of Ca2+ binding to terminal carboxyl groups, which further resulted in collapse and flocculation of TEP gel network structure, thus leading to a continuous SFR decrease. This work provided deep thermodynamic insights into effects of EDTMPA on TEP-associated fouling at molecular level, facilitating to better understanding and mitigation of membrane fouling.
Collapse
Affiliation(s)
- Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Genying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Lijiang Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Lining Yang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
23
|
Wu X, Wang C, Wang D, Huang YX, Yuan S, Meng F. Simultaneous methanogenesis and denitrification coupled with nitrifying biofilm for high-strength wastewater treatment: Performance and microbial mechanisms. WATER RESEARCH 2022; 225:119163. [PMID: 36206686 DOI: 10.1016/j.watres.2022.119163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
A combined system consisting of an upflow blanket filter (UBF) and a moving-bed biofilm reactor (MBBR) was developed for the simultaneous removal of organic matters and ammonia from high-strength wastewater. With a constant COD of approximately 2000 mg/L and ammonium nitrogen in a series of concentrations (e.g., 50, 200 and 400 mg/L in stages I to III) of the influent wastewater, the removal efficiencies of COD, ammonium nitrogen and total nitrogen reached 96.10%-98.19%, 100%, and 79.12%-82.15%, respectively. With the increase of influent ammonia nitrogen concentration, the specific methanogenic activity of the UBF granules decreased significantly, while the specific denitrification rates of the UBF granules and specific nitrification rates of the MBBR biofilms increased significantly. Microbial community analysis showed that Methanobacterium and Methanosaeta were the dominant methanogens in the UBF granules, while Candidatus Competibacter, Thauera and Acinetobacter were identified as dominant denitrifiers. In addition, nitrifiers were enriched in MBBR biofilms at 11.33% and 13.87% of the average abundance of Nitrosomonas and Nitrospira, respectively, at stage III (influent ammonium at 400 mg/L, COD/NH4+-N = 5). The ecological network analysis, including full-networks and sub-networks, indicated that the interactions between methanogens and denitrifiers in the UBF granules were strong when the influent ammonium concentration reached 400 mg/L. No intensive interactions were observed among the functional bacteria in the MBBR biofilms over the entire operation. Overall, this study provides a new strategy for the application and construction of efficient biological processes to achieve simultaneous removal of organic matter and nitrogen for high-strength wastewater treatment.
Collapse
Affiliation(s)
- Xueshen Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Yu-Xi Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China.
| |
Collapse
|
24
|
Wu T, Ding J, Yang SS, Zhong L, Liu BF, Xie GJ, Yang F, Pang JW, Ren NQ. A novel cross-flow honeycomb bionic carrier promotes simultaneous nitrification, denitrification and phosphorus removal in IFAS system: Performance, mechanism and keystone species. WATER RESEARCH 2022; 225:119132. [PMID: 36155005 DOI: 10.1016/j.watres.2022.119132] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Simultaneously achieving efficient nitrogen (N) and phosphorus (P) removal without adding external carbon source is vital for carbon-neutral wastewater treatment. In this study, a novel cross-flow honeycomb bionic microbial carrier (CF) was developed to improve the efficiency of simultaneous nitrification, denitrification, and P removal (SNDPR) in an integrated fixed-film activated sludge (IFAS) system. A parallel laboratory-scale sequencing batch reactor with the commercialized microbial carriers (CM) (CM-IFAS) was performed as the comparative system for over 233 d The results demonstrated that CF-IFAS exhibited a more consistent N removal efficiency and better performance than CM-IFAS. In the CF-IFAS, the highest N and P removal efficiencies were 95.40% and 100%, respectively. Typical cycle analysis revealed that nitrate was primarily removed by the denitrifying glycogen-accumulating organisms in the CF-IFAS and by denitrifying phosphate-accumulating organisms in the CM-IFAS. The neutral community model showed that the microbial community assembly in both the reactors was driven by deterministic selection rather than stochastic factors. Compared to those in CM-IFAS, the microorganisms in CF-IFAS were more closely related to each other and had more keystone species: norank_f_norank_o_norank_c_OM190, SM1A02, Defluviicoccus, norank_f_ Saprospiraceae, and norank_f_Rhodocyclaceae. The absolute contents of the genes associated with N removal (bacterial amoA, archaeal amoA, NarG, NapA, NirS, and NirK) were higher in CF-IFAS than in CM-IFAS; the N cycle activity was also stronger in the CF-IFAS. Overall, the microecological environment differed between both systems. This study provides novel insights into the potential of bionic carriers to improve SNDPR performance by shaping microbial communities, thereby providing scientific guidance for practical engineering.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR. China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR. China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR. China.
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR. China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR. China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR. China
| | - Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150008, PR. China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, Beijing 100089, PR. China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR. China
| |
Collapse
|
25
|
Pan Z, Zeng B, Yu G, Teng J, Zhang H, Shen L, Yang L, Lin H. Mechanistic insights into Ca-alginate gel-associated membrane fouling affected by ethylene diamine tetraacetic acid (EDTA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156912. [PMID: 35753486 DOI: 10.1016/j.scitotenv.2022.156912] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
While transparent exopolymer particles (TEP) is a major foulant, and ethylene diamine tetraacetic acid (EDTA) is a strong chelating agent frequently used for fouling mitigation in membrane-based water treatment processes, little has been known about TEP-associated membrane fouling affected by EDTA. This work was performed to investigate roles of EDTA addition in TEP (Ca-alginate gel was used as a TEP model) associated fouling. It was interestingly found that, TEP had rather high specific filtration resistance (SFR) of 2.49 × 1015 m-1·kg-1, and SFR of TEP solution firstly decreased and then increased rapidly with EDTA concentration increase (0-1 mM). A series of characterizations suggested that EDTA took roles in SFR of TEP solution by means of changing TEP microstructure. The rather high SFR of TEP layer can be attributed to the big chemical potential gap during filtration described by the extended Flory-Huggins lattice theory. Initial EDTA addition disintegrated TEP structure by EDTA chelating calcium in TEP, inducing reduced SFR. Continuous EDTA addition decreased solution pH, resulting into no effective chelating and accumulation of EDTA on membrane surface, increasing SFR. It was suggested that factors increasing homogeneity of TEP gel will increase SFR, and vice versa. This study revealed the thermodynamic mechanism of TEP fouling behaviors affected by EDTA, and also demonstrated the importance of EDTA dosage and pH adjustment for TEP-associated fouling control.
Collapse
Affiliation(s)
- Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Genying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiaheng Teng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Lining Yang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
26
|
La-doped activated carbon as high-efficiency phosphorus adsorbent: DFT exploration of the adsorption mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Wang C, Lin Q, Yao Y, Xu R, Wu X, Meng F. Achieving simultaneous nitrification, denitrification, and phosphorus removal in pilot-scale flow-through biofilm reactor with low dissolved oxygen concentrations: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2022; 358:127373. [PMID: 35623607 DOI: 10.1016/j.biortech.2022.127373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
In this pilot-scale study, a flow-through biofilm reactor (FTBR) was investigated for municipal wastewater treatment. The removal efficiencies for ammonium, total nitrogen, total phosphorus, and chemical oxygen demand were 87.2 ± 17.9%, 61.1 ± 13.9%, 83.5 ± 11.9%, and 92.6 ± 1.7%, respectively, at low dissolved oxygen concentrations (averaged at 0.59 mg/L), indicating the feasibility and robustness of the FTBR for a simultaneous nitrification, denitrification, and phosphorous removal (SNDPR) process. The co-occurrence network of bacteria in the dynamic biofilm was complex, with equivalent bacterial cooperation and competition. Nevertheless, the bacterial interactions in the suspended sludge were mainly cooperative. The presence of dynamic biofilms increased bacterial diversity by creating niche differentiation, which enriched keystone species closely related to nutrient removal. Overall, this study provides a novel FTBR-based SNDPR process and reveals the ecological mechanisms responsible for nutrient removal.
Collapse
Affiliation(s)
- Chao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Qining Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Yuanyuan Yao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Xueshen Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China.
| |
Collapse
|
28
|
Xu R, Fu Y, Xu Y, Zheng X, Huang YX, Meng F. Comparing biotransformation of extracellular polymeric substances (EPS) under aerobic and anoxic conditions: Reactivities, components, and bacterial responses. CHEMOSPHERE 2022; 296:133996. [PMID: 35181431 DOI: 10.1016/j.chemosphere.2022.133996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/17/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to better understand the transformation behaviors of extracellular polymeric substances (EPS) and their roles in regulating bacterial community in biological wastewater treatment processes. Herein, well-controlled bioassays under aerobic and anoxic conditions were performed to investigate degradation dynamics, composition variations, and bacterial response during EPS transformation. Reactivity continuum modeling showed that organic pools of EPS had continuous reactivity distributions, and most labile organic fraction with a degrading rate >0.1 h-1 was substantially higher under aerobic (20.47%) than anoxic (2.02%) condition. Rapid degradation of protein-like substances in the initial degradation stage was accompanied by the humification process, as revealed by UV absorption spectroscopy, fluorescence spectroscopy, and size exclusion chromatography with continuous organic carbon detection analysis. The 16S rRNA gene sequencing results showed that the selection effect of EPS in controlling abundant populations during their transformation, e.g., Acinetobacter was enriched, and Candidatus Competibacter was washed out relative to the source community. Furthermore, taxonomic normalized stochasticity ratio-based null model and bacterial ecological network analysis indicated higher relative importance of deterministic process in shaping the EPS-degrading communities under aerobic than anoxic condition, likely explaining the faster EPS biotransformation under aerobic condition. Intriguingly, the keystone populations driving EPS metabolism showed the environmental filtering characteristics (e.g., capable of degrading refractory and aromatic compounds or adapting to harsh environments) and cooperative interactions with the co-occurring species under both conditions. This work is expected to reveal the fates and roles of EPS in wastewater treatment plants extensively.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Yubo Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Shaanxi, 710048, PR China
| | - Yu-Xi Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China.
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| |
Collapse
|
29
|
Mei R, Liu WT. Meta-Omics-Supervised Characterization of Respiration Activities Associated with Microbial Immigrants in Anaerobic Sludge Digesters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6689-6698. [PMID: 35510767 DOI: 10.1021/acs.est.2c01029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immigration has been recently recognized as an important ecological process that affects the microbial community structure in diverse ecosystems. However, the fate of microbial immigrants in the new environment and their involvement in the local biochemical network remain unclear. In this study, we performed meta-omics-supervised characterization of immigrants' activities in anaerobic sludge digesters. Metagenomic analyses revealed that immigrants from the feed sludge accounted for the majority of populations capable of anaerobic respiration in a digester. Electron acceptors that were predicted to be respired, including nitrate, nitrite, sulfate, and elemental sulfur, were added to digester sludge in batch tests. Consumption of up to 91% of the added electron acceptors was observed within the experiment period. 16S rRNA sequencing detected populations that were stimulated by the electron acceptors, largely overlapping with respiration-capable immigrants identified by metagenomic analysis. Metatranscriptomic analysis of the batch tests provided additional evidence for upregulated expression of respiration genes and concomitant suppressed expression of methanogenesis. Anaerobic respiration activity was further evaluated in full-scale digesters in nine wastewater treatment plants. Although nitrate and sulfate respiration were ubiquitous, the expression level of respiration genes was generally 2-3 orders of magnitude lower than the expression of methanogenesis in most digesters, suggesting marginal ecological roles by immigrants in full-scale digester ecosystems.
Collapse
Affiliation(s)
- Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|