1
|
Yuan J, Mi J, Zhao W, Zheng K, Zhou S, Chen J. Variant Properties of Tungsten Species over CeO 2 Induced by Different Lattice Planes for the Selective Catalytic Reduction of Nitric Oxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11537-11546. [PMID: 40310258 DOI: 10.1021/acs.langmuir.5c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Although ceria-based catalysts have been proven to be a promising alternative to conventional vanadyl catalysts for the selective catalytic reduction of NOx with NH3 (NH3-SCR), whether the interaction between tungsten (W) and CeO2 could be well established for enhancing SCR performance is still unclear. Herein, W/CeO2 catalysts with different CeO2 morphologies for SCR are fully investigated. Systematic characterization results confirmed that the crystalline WO3 phase was formed on W-loaded CeO2 nanocubes, nanospindles, and nanospheres. Intriguingly, the W/CeO2 nanorods exhibited exclusively polymeric tungstate species. This divergence originates from the distinct W-CeO2 interaction mediated by preferentially exposed {110} lattice planes, endowing the nanorod catalyst with stronger reducibility, more surface-active oxygen species, and acid sites. Consequently, the NH3-SCR activity followed the order W/CeO2 nanorods > W/CeO2 nanospindles > W/CeO2 nanocubes > W/CeO2 nanospheres. This work reveals the significant role of the CeO2 morphology in the dispersion and interaction of W species, which directly influences the NH3-SCR performance. The insight offers a valuable opportunity for the design of a more efficient SCR catalyst.
Collapse
Affiliation(s)
- Jin Yuan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Jinxing Mi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weitao Zhao
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Ke Zheng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Shaoqi Zhou
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Han L, Wang X, Wang F, Shen Y, Zhang H, Hu W, Gao M, Wu YA, Xie M, Chen J, Zhang D. Environmental Catalysis for NO x Reduction by Manipulating the Dynamic Coordination Environment of Active Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2306-2316. [PMID: 39846481 DOI: 10.1021/acs.est.4c11440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nowadays, it is challenging to achieve SO2-tolerant environmental catalysis for NOx reduction because of the thermodynamically favorable transformation of reactive sites to inactive sulfate species in the presence of SO2. Herein, we achieve enhanced low-temperature SO2-tolerant NOx reduction by manipulating the dynamic coordination environment of active sites. Engineered by coordination chemistry, SiO2-CeO2 composite oxides with a short-range ordered Ce-O-Si structure were elaborately constructed on a TiO2 support. A dynamic coordination environment of active sites is demonstrated from a Ce-O-Si local structure to a low-coordinated Ce-SO42- species in the presence of SO2. The low-coordinated Ce-SO42- species as new active sites maintain a high NO removal efficiency by preserving the good adsorption and activation capacity of NO and NH3 reactants. This work proposes a new notion to improve the SO2 resistance of catalysts by regulating the coordination environment of sulfated active sites, which is of significance for SO2-tolerant environmental catalysis in practical applications.
Collapse
Affiliation(s)
- Lupeng Han
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Fuli Wang
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Hengxiang Zhang
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Hu
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Min Gao
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Jianfu Chen
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Dengsong Zhang
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Yang S, Cheng S, Xu F, Liu X, Zhu X, Liu H, Liu F, Chen DZ, Sun C. Strikingly Facile Cleavage of N-H/N-O Bonds Induced by Surface Frustrated Lewis Pair on CeO 2(110) to Boost NO Reduction by NH 3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19027-19037. [PMID: 39387477 DOI: 10.1021/acs.est.4c05249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Ceria with surface solid frustrated Lewis pairs (FLPs), formed by regulating oxygen vacancies, demonstrate remarkable ability in activating small molecules. In this work, we extended the application of FLPs on CeO2(110) to the selective catalytic reduction of NO by NH3 (NH3-SCR), finding a notable enhancement in performance compared to ordinary CeO2(110). Additionally, an innovative approach involving H2 treatment was discovered to increase the number of FLPs, thereby further boosting the NH3-SCR efficiency. Typically, NH3-SCR on regular CeO2 follows the Eley-Rideal (E-R) mechanism. However, density functional theory (DFT) calculations revealed a significant reduction in the energy barriers for the activation of N-O and N-H bonds under the Langmuir-Hinshelwood (L-H) mechanism with FLPs present. This transition shifted the reaction mechanism from the E-R pathway on regular R-CeO2 to the L-H pathway on FLP-rich FR-CeO2, as corroborated by the experimental findings. The practical application of FLPs was realized by loading MoO3 onto FLP-rich FR-CeO2, leveraging the synergistic effects of acidic sites and FLPs. This study provides profound insights into how FLPs facilitate N-H/N-O bond activation in small molecules, such as NH3 and NO, offering a new paradigm for catalyst design based on catalytic mechanism research.
Collapse
Affiliation(s)
- Shan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Siqing Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Fang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Xueqing Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Xuechen Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Hao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Fudong Liu
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Materials Science and Engineering (MSE) Program, University of California, Riverside, California 92521, United States
| | - De-Zhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Chuanzhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
4
|
Fang X, Qin T, Chen J, Ma Z, Liu X, Tang X. Atom Pairing Enhances Sulfur Resistance in Low-Temperature SCR via Upshifting the Lowest Unoccupied States of Cerium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12272-12280. [PMID: 38934332 DOI: 10.1021/acs.est.4c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Environmentally benign cerium-based catalysts are promising alternatives to toxic vanadium-based catalysts for controlling NOx emissions via selective catalytic reduction (SCR), but conventional cerium-based catalysts unavoidably suffer from SO2 poisoning in low-temperature SCR. We develop a strongly sulfur-resistant Ce1+1/TiO2 catalyst by spatially confining Ce atom pairs to different anchoring sites of anatase TiO2(001) surfaces. Experimental results combined with theoretical calculations demonstrate that strong electronic interactions between the paired Ce atoms upshift the lowest unoccupied states to an energy level higher than the highest occupied molecular orbital (HOMO) of SO2 so as to be catalytically inert in SO2 oxidation but slightly lower than HOMO of NH3 so that Ce1+1/TiO2 has desired ability toward NH3 activation required for SCR. Hence, Ce1+1/TiO2 shows higher SCR activity and excellent stability in the presence of SO2 at low temperatures with respect to supported single Ce atoms. This work provides a general strategy to develop sulfur-resistant catalysts by tuning the electronic states of active sites for low-temperature SCR, which has implications for practical applications with energy-saving requirements.
Collapse
Affiliation(s)
- Xue Fang
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tian Qin
- School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junxiao Chen
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhen Ma
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingfu Tang
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Liu Z, Xu H, Fan Y, Huang W, Yu F, Qu Z, Yan N. Asymmetric Coordination of Single-Atom Ru Sites Achieves Efficient N(sp 3)-H Dehydrogenation Catalysis for Ammonia Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10717-10728. [PMID: 38847549 DOI: 10.1021/acs.est.4c03294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Ruthenium single-atom catalysts have great potential in ammonia-selective catalytic oxidation (NH3-SCO); however, the stable sp3 hybrid orbital of NH3 molecules makes N(sp3)-H dissociation a challenge for conventional symmetrical metallic oxide catalysts. Herein, we propose a heterogeneous interface reverse atom capture strategy to construct Ru with unique asymmetric Ru1N2O1 coordination. Ru1N2O1/CeO2 exhibits intrinsic low-temperature conversion (T100 at 160 °C) compared to symmetric coordinated Ru-based (280 °C), Ir-based (220 °C), and Pt-based (200 °C) catalysts, and the TOF is 65.4 times that of Ag-based catalysts. The experimental and theoretical studies show that there is a strong d-p orbital interaction between Ru and N atoms, which not only enhances the adsorption of ammonia at the Ru1N2O1 position but also optimizes the electronic configuration of Ru. Furthermore, the affinity of Ru1N2O1/CeO2 to water is significantly weaker than that of conventional catalysts (the binding energy of the Pd3Au1 catalyst is -1.19 eV, but it is -0.39 eV for our material), so it has excellent water resistance. Finally, the N(sp3)-H activation of NH3 requires the assistance of surface reactive oxygen species, but we found that asymmetric Ru1N2O1 can directly activate the N(sp3)-H bond without the involvement of surface reactive oxygen species. This study provides a novel principle for the rational design of the proximal coordination of active sites to achieve its optimal catalytic activity in single-atom catalysis.
Collapse
Affiliation(s)
- Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yurui Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
Li G, Li G, Liao M, Liu W, Zhang H, Huang S, Huang T, Zhang S, Li Z, Peng H. Unlocking Mixed-Metal Oxides Active Centers via Acidity Regulation for K&SO 2 Poisoning Resistance: Self-Detoxification Mechanism of Zeolite-Confined deNO x Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10388-10397. [PMID: 38828512 DOI: 10.1021/acs.est.4c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) is an efficient NOx reduction strategy, while the denitrification (deNOx) catalysts suffer from serious deactivation due to the coexistence of multiple poisoning substances, such as alkali metal (e.g., K), SO2, etc., in industrial flue gases. It is essential to understand the interaction among various poisons and their effects on the deNOx process. Herein, the ZSM-5 zeolite-confined MnSmOx mixed (MnSmOx@ZSM-5) catalyst exhibited better deNOx performance after the poisoning of K, SO2, and/or K&SO2 than the MnSmOx and MnSmOx/ZSM-5 catalysts, the deNOx activity of which at high temperature (H-T) increased significantly (>90% NOx conversion in the range of 220-480 °C). It has been demonstrated that K would occupy both redox and acidic sites, which severely reduced the reactivity of MnSmOx/ZSM-5 catalysts. The most important, K element is preferentially deposited at -OH on the surface of ZSM-5 carrier due to the electrostatic attraction (-O-K). As for the K&SO2 poisoning catalyst, SO2 preferred to be combined with the surface-deposited K (-O-K-SO2ads) according to XPS and density functional theory (DFT) results, the poisoned active sites by K would be released. The K migration behavior was induced by SO2 over K-poisoned MnSmOx@ZSM-5 catalysts, and the balance of surface redox and acidic site was regulated, like a synergistic promoter, which led to K-poisoning buffering and activity recovery. This work contributes to the understanding of the self-detoxification interaction between alkali metals (e.g., K) and SO2 on deNOx catalysts and provides a novel strategy for the adaptive use of one poisoning substance to counter another for practical NOx reduction.
Collapse
Affiliation(s)
- Guobo Li
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Gang Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Meiyuan Liao
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Wenming Liu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Hongxiang Zhang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shan Huang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Ting Huang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shule Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center, Tianjin 300300, PR China
| | - Honggen Peng
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| |
Collapse
|
7
|
Chen W, Zheng J, Fang Y, Wang Y, Hu J, Zhu Y, Zhu X, Li W, Zhang Q, Pan C, Zhang B, Qiu X, Wang S, Cui S, Wang J, Wu J, Luo Z, Guo Y. Role of the In-Situ-Formed Surface (Pt-S-O)-Ti Active Structure in SO 2-Promoted C 3H 8 Combustion over a Pt/TiO 2 Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3041-3053. [PMID: 38291736 DOI: 10.1021/acs.est.3c08380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Typically, SO2 unavoidably deactivates catalysts in most heterogeneous catalytic oxidations. However, for Pt-based catalysts, SO2 exhibits an extraordinary boosting effect in propane catalytic oxidation, but the promotive mechanism remains contentious. In this study, an in situ-formed tactful (Pt-S-O)-Ti structure was concluded to be a key factor for Pt/TiO2 catalysts with a substantial SO2 tolerance ability. The experiments and theoretical calculations confirm that the high degree of hybridization and orbital coupling between Pt 5d and S 3p orbitals enable more charge transfer from Pt to S species, thus forming the (Pt-S-O)-Ti structure with the oxygen atom dissociated from the chemisorbed O2 adsorbed on oxygen vacancies. The active oxygen atom in the (Pt-S-O)-Ti active structure is a robust site for C3H8 adsorption, leading to a better C3H8 combustion performance. This work can provide insights into the rational design of chemical bonds for high SO2 tolerance catalysts, thereby improving economic and environmental benefits.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Juan Zheng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yarong Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yutao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jinpeng Hu
- Fujian Longxin 3D Array Technology Co., Ltd., Longyan 364000, P. R. China
| | - Yuhua Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiaoxiao Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weihao Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qian Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chuanqi Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Baojian Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiaofeng Qiu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Sibo Wang
- Fujian Longxin 3D Array Technology Co., Ltd., Longyan 364000, P. R. China
| | - Shuang Cui
- Division of Analysis, SINOPEC (Beijing) Research Institute of Chemical Industry, Co. Ltd., Beijing 100013, P. R. China
| | - Jinlong Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan 430082, P. R. China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Zhu Luo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan 430082, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan 430082, P. R. China
| |
Collapse
|
8
|
Zhang H, Lian Z, Lin C, Zhu Y, Shan W, He H. Insight into the mechanisms of activity promotion and SO 2 resistance over Fe-doped Ce-W oxide catalyst for NO x reduction. J Colloid Interface Sci 2023; 652:923-935. [PMID: 37634365 DOI: 10.1016/j.jcis.2023.08.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Ceria-based catalysts for the selective catalytic reduction of NOx with NH3 (NH3-SCR) are always subject to deactivation by sulfur poisoning. In this study, Fe-doped Ce-W mixed oxides, which were synthesized by the co-precipitation method, improved the SCR activity and SO2 durability at low temperatures of undoped Ce-W oxides. The improved low-temperature activity was mainly due to the enhancement of redox properties at low temperatures and more active oxygen species, together with the adsorption and activation of more abundant NOx species, facilitating the "fast SCR" reaction. In the presence of SO2, doping with Fe species effectively prevented sulfate deposition on the CeW catalyst, due to the interaction between Fe, Ce, and W species inducing electron transfer among different metal sites and altering the electron distribution. The competitive adsorption behavior between NO and SO2 was changed by Fe doping, in which the adsorption and oxidation of SO2 were restrained. Besides, the elevated NO oxidation accelerated the decomposition of ammonium bisulfate, causing the SCR reaction to not be greatly suppressed. Hence, Fe-doped Ce-W oxides catalysts showed excellent sulfur resistance. This study provides an in-depth understanding of efficient Ce-based catalysts for SO2-tolerance strategies.
Collapse
Affiliation(s)
- Hui Zhang
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Lian
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Chunxi Lin
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhu
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
9
|
Fan Y, Zhang J, Yang L, Lu M, Ying T, Deng B, Dai W, Luo X, Zou J, Luo S. Enhancing SO2-shielding effect and Lewis acid sites for high efficiency in low-temperature SCR of NO with NH3: Reinforced electron-deficient extent of Fe3+ enabled by Ti4+ in Fe2O3. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Chen Z, Wang M, Ren S, Li X, Chen L, Li J, Yang J, Liu Q. Unveiling the effect of Al2O3 on PbCl2 resistance over Mn-Ce/AC catalyst for low-temperature NH3-SCR of NO. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Zhang P, Wang P, Impeng S, Lan T, Liu X, Zhang D. Unique Compensation Effects of Heavy Metals and Phosphorus Copoisoning over NO x Reduction Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12553-12562. [PMID: 35960931 DOI: 10.1021/acs.est.2c02255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selective catalytic reduction (SCR) of NOx from the flue gas is still a grand challenge due to the easy deactivation of catalysts. The copoisoning mechanisms and multipoisoning-resistant strategies for SCR catalysts in the coexistence of heavy metals and phosphorus are barely explored. Herein, we unexpectedly found unique compensation effects of heavy metals and phosphorus copoisoning over NOx reduction catalysts and the introduction of heavy metals results in a dramatic recovery of NOx reduction activity for the P-poisoned CeO2/TiO2 catalysts. P preferentially combines with Ce as a phosphate species to reduce the redox capacity and inhibit NO adsorption. Heavy metals preferentially reduced the Brønsted acid sites of the catalyst and inhibited NH3 adsorption. It has been demonstrated that heavy metal phosphate species generated over the copoisoned catalyst, which boosted the activation of NH3 and NO, subsequently bringing about more active nitrate species to relieve the severe impact by phosphorus and maintain the NOx reduction over CeO2/TiO2 catalysts. The heavy metals and P copoisoned catalysts also possessed more acidic sites, redox sites, and surface adsorbed oxygen species, which thus contributed to the highly efficient NOx reduction. This work elaborates the unique compensation effects of heavy metals and phosphorus copoisoning over CeO2/TiO2 catalysts for NOx reduction and provides a perspective for further designing multipoisoning-resistant CeO2-based catalysts to efficiently control NOx emissions in stationary sources.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Sarawoot Impeng
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Tianwei Lan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
12
|
Jia L, Liu J, Huang D, Zhao J, Zhang J, Li K, Li Z, Zhu W, Zhao Z, Liu J. Interface Engineering of a Bifunctional Cu-SSZ-13@CZO Core–Shell Catalyst for Boosting Potassium Ion and SO 2 Tolerance. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lingfeng Jia
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| | - Jixing Liu
- School of Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin 300300, P. R. China
| | - Deqi Huang
- College of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, P. R. China
| | - Jingchen Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| | - Jianning Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| | - Kaixiang Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin 300300, P. R. China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin 300300, P. R. China
| | - Wenshuai Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
- School of Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| |
Collapse
|
13
|
Molybdenum oxide as an efficient promoter to enhance the NH3-SCR performance of CeO2-SiO2 catalyst for NO removal. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Xiao G, Guo Z, Lin B, Fu M, Ye D, Hu Y. Cu-VWT Catalysts for Synergistic Elimination of NO x and Volatile Organic Compounds from Coal-Fired Flue Gas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10095-10104. [PMID: 35766897 DOI: 10.1021/acs.est.2c02083] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A dual-function catalyst, designated as Cu5-VWT, has been constructed for the synergistic removal of NOx and volatile organic compounds under complex coal-fired flue gas conditions. The removal of toluene, propylene, dichloromethane, and naphthalene all exceeded 99% (350 °C), and the catalyst could effectively block the generation of polycyclic aromatic hydrocarbons. Mechanistic studies have shown that Cu sites on the Cu5-VWT catalyst facilitate catalytic oxidation, while V sites facilitate NOx reduction. Thus, toluene oxidation and NOx reduction can proceed simultaneously. The removal of total hydrocarbons and nonmethane total hydrocarbons from 1200 m3·h-1 real coal-fired flue gas by a monolithic catalyst were determined as 92 and 96%, respectively, much higher than those of 54 and 72% over a commercial VWT catalyst, indicating great promise for industrial application.
Collapse
Affiliation(s)
- Gaofei Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ziyang Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Beilong Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, P. R. China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, P. R. China
| | - Yun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, P. R. China
| |
Collapse
|
15
|
Lian Z, Liu L, Lin C, Shan W, He H. Hydrothermal Aging Treatment Activates V 2O 5/TiO 2 Catalysts for NO x Abatement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9744-9750. [PMID: 35704790 DOI: 10.1021/acs.est.2c02395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thermal stability is crucial for the practical application of deNOx catalysts. Vanadia-based catalysts are widely applied for the selective catalytic reduction of NOx with NH3 (NH3-SCR). Generally, hydrothermal aging at high temperatures induces the deactivation of deNOx catalysts. However, in this work, a remarkable increase in low- and medium-temperature NH3-SCR activity was observed for a V2O5/TiO2 catalyst after hydrothermal aging treatment, especially at 750 °C for 16 h. After the vanadia-based catalyst was hydrothermally treated at 750 °C, the specific surface area decreased and the surface VOx density and surface V ratio increased significantly. Therefore, the aged catalyst presented more abundant polymeric vanadyl species than the fresh one. Furthermore, the redox capability was improved markedly after hydrothermal treatment due to the strong interaction of vanadia and titania, contributing to the NH3-SCR reaction. 750 °C is the optimal temperature to activate the V2O5/TiO2 catalyst, improving the SCR performance significantly. This study provides an in-depth understanding of vanadia-based catalysts for practical applications.
Collapse
Affiliation(s)
- Zhihua Lian
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Long Liu
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chunxi Lin
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Zhang H, Xia L, Li Y, Tang J, Wang L, Zhong S. Defect-rich Fe-doped CeO2 nanosheets as effective oxygen evolution electrocatalysts. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Jin Q, Xu M, Lu Y, Yang B, Ji W, Xue Z, Dai Y, Wang Y, Shen Y, Xu H. Simultaneous catalytic removal of NO, mercury and chlorobenzene over WCeMnOx/TiO2-ZrO2: Performance study of microscopic morphology and phase composition. CHEMOSPHERE 2022; 295:133794. [PMID: 35124088 DOI: 10.1016/j.chemosphere.2022.133794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/06/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen oxides, mercury and chlorobenzene are important air pollutants emitted by waste incineration and other industries. Coordinated control of multiple pollutants has become an important technology for air pollution control. Through solid-phase structure control, the catalytic performance of the WCeMnOx/TiO2-ZrO2 catalyst for simultaneous catalytic removal of NO, mercury and simultaneous removal of NO and chlorobenzene were improved. MnWO4 improved the solid acidity of the catalyst and improved the catalytic activity at high temperature. The formation of Ce0·75Zr0·25O2, Ce2WO6, Ce2Zr2O7 and Ce2Ti2O7 improved the catalytic activity at low temperature. The presence of TiOSO4 would affect the valence of metal ions and the reduction of chemisorbed oxygen, thereby reducing the catalytic activity at low temperature. Within the same size range of nanoparticles, cyclic nanoparticles exposed more active sites due to their hollow structure, and their catalytic performance was better than spherical nanoparticles. The thickness of the circular nanoparticles of WCM/TZ-14 catalyst was about 14 nm, and the diameter was about 40 nm Ce0.75Zr0.25O2 and MnWO4 were also present in the phase composition. Therefore, it exhibited the best performance for simultaneous catalytic removal of NO, mercury and simultaneous removal of NO and chlorobenzene. The coincidence temperature window was 347-516 °C. Finally, WCM/TZ-14 catalyst followed both E-R and L-H mechanisms in the NH3-SCR reaction.
Collapse
Affiliation(s)
- Qijie Jin
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 210009, PR China; College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Mutao Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 210009, PR China
| | - Yao Lu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 210009, PR China
| | - Bo Yang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Wenyu Ji
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 210009, PR China
| | - Zhiwei Xue
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Yi Dai
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 210009, PR China
| | - Yan Wang
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yuesong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Haitao Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| |
Collapse
|
18
|
Si Z, Shen Y, He J, Yan T, Zhang J, Deng J, Zhang D. SO 2-Induced Alkali Resistance of FeVO 4/TiO 2 Catalysts for NO x Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:605-613. [PMID: 34935391 DOI: 10.1021/acs.est.1c05686] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective catalytic reduction of nitrogen oxides with ammonia (NH3-SCR) is an efficient NOx abatement strategy, but deNOx catalysts suffer from serious deactivation due to the coexistence of multiple poisoning substances such as K, SO2, etc. in the flue gas. It is essential to understand the interaction among various poisons and their effects on NOx abatement. Here, we unexpectedly identified the K migration behavior induced by SO2 over K-poisoned FeVO4/TiO2 catalysts, which led to alkali-poisoning buffering and activity recovery. It has been demonstrated that the K would occupy both redox and acidic sites, which severely reduced the reactivity of FeVO4/TiO2 catalysts. After the sulfuration of the K-poisoned catalyst, SO2 preferred to be combined with the surface K2O, lengthened the K-OFe and K-OV, and thus released the active sites poisoned by K2O, thereby preserving an increase in the activity. As a result, for the K-poisoned catalyst, the conversion of NOx increased from 21 to 97% at 270 °C after the sulfuration process. This work contributes to the understanding of the specific interaction between alkali metals and SO2 on deNOx catalysts and provides a novel strategy for the adaptive use of one poisoning substance to counter another for practical NOx reduction.
Collapse
Affiliation(s)
- Zhiping Si
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiebing He
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiang Deng
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
19
|
Yuan J, Mi J, Yin R, Yan T, Liu H, Chen X, Liu J, Si W, Peng Y, Chen J, Li J. Identification of Intrinsic Active Sites for the Selective Catalytic Reduction of Nitric Oxide on Metal-Free Carbon Catalysts via Selective Passivation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - JinXing Mi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Rongqiang Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Tao Yan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Hao Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaoping Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Jun Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
20
|
Lu X, Dang Y, Li M, Zhu C, Liu F, Tang W, Weng J, Ruan M, Suib SL, Gao PX. Synergistic promotion of transition metal ion-exchange in TiO 2 nanoarray-based monolithic catalysts for the selective catalytic reduction of NO x with NH 3. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00996j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The improved performance of the multi-component Cu–Ce–Mn/TNA catalysts over the mono-metallic catalysts demonstrated the synergistic promotion of multi-transition-metal-doped nanoarray catalysts for efficient NO abatement.
Collapse
Affiliation(s)
- Xingxu Lu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Yanliu Dang
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Meilin Li
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Chunxiang Zhu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Fangyuan Liu
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Wenxiang Tang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Junfei Weng
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Mingyue Ruan
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Steven L. Suib
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Pu-Xian Gao
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
21
|
Liu J, Shi X, Lv Z, Yu Y, He H. Ceria–tungsten–tin oxide catalysts with superior regeneration capacity after sulfur poisoning for NH 3-SCR process. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00036a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined study on the anti-sintering ability, SO2-poisoning mechanism and thermal regeneration property of CeWSnOx catalysts for NH3-SCR reaction.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoyan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Lv
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
22
|
Liu J, Cheng H, Zheng H, Zhang L, Liu B, Song W, Liu J, Zhu W, Li H, Zhao Z. Insight into the Potassium Poisoning Effect for Selective Catalytic Reduction of NOx with NH3 over Fe/Beta. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jixing Liu
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Huifang Cheng
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Huiling Zheng
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
| | - Lu Zhang
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Huaming Li
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People’s Republic of China
| |
Collapse
|
23
|
Zhang P, Wang P, Chen A, Han L, Yan T, Zhang J, Zhang D. Alkali-Resistant Catalytic Reduction of NO x by Using Ce-O-B Alkali-Capture Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11970-11978. [PMID: 34488354 DOI: 10.1021/acs.est.1c02882] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reducing the poisoning effect arising from alkali metals over catalysts for selective catalytic reduction (SCR) of NOx by NH3 is still an urgent issue to be solved. Herein, alkali-resistant NOx reduction over B-doped CeO2/TiO2 catalysts (Ce-B/TiO2) with Ce-O-B alkali-capture sites was originally demonstrated. It was noted that boron was confirmed to be doped into the lattice of CeO2 to form the Ce-O-B structure. In this way, more active Ce(III) species and oxygen vacancies were generated from B-doped CeO2, thus accelerating the redox cycle and enhancing the adsorption/activation of NO. Gratifyingly, the created Ce-O-B sites as alkali-capture sites could be effectively combined with K and release the poisoned Ce active sites, which maintained efficient NH3 and NO adsorption/activation over K poisoned Ce-B/TiO2. This work paves a way for designing highly efficient and alkali-resistant SCR catalysts in both academic and industrial fields.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Aling Chen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Lupeng Han
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Tingting Yan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Jianping Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
24
|
Status and development for detection and control of ammonium bisulfate as a by-product of SCR denitrification. Sci Rep 2021; 11:10457. [PMID: 34001981 PMCID: PMC8129103 DOI: 10.1038/s41598-021-90040-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/05/2021] [Indexed: 11/08/2022] Open
Abstract
When denitrification technology using NH3 or urea as the reducing agent is applied to remove NOx from the flue gas, ammonium bisulfate (ABS) by-product will also be generated in the flue gas. ABS has an impact on catalyst life span, denitrification efficiency etc., air preheater and its downstream thermal equipment also have a significant negative impact due to its plugging and corrosion. The requirement for NOx removal efficiency is improved by ultra-low emissions in China. However, wide-load denitrification makes the flue gas composition and temperature changing more complicated. Increasing ammonia injection can improve the NOx removal effect, but too much ammonia injection will lead to the formation of ABS and the increase of deposition risk, the contradiction between these two aspects is amplified by ultra-low emissions and wide-load denitrification in many plants. Coordinating NOx control and reducing the impact of ABS on equipment are issues that the industry needs to solve urgently. In recent years, extensive research on ABS had been carried out deeply, consequently, there has been a relatively in-deepth knowledge foundation for ABS formation, formation temperature, deposition temperature, dew point temperature, decomposition behavior, etc., but the existing researches are insufficient to support the problem of ABS under full load denitrification completely resolved. Therefore, some analysis and detection methods related to ABS are reviewed in this paper, and the impact of ABS on SCR, air preheater and other equipment and the existing research results on reducing the impact of ABS are summarized also. It is hoped that this review will provide a reference for the industry to solve the problems of ABS that hinder wide-load denitrification and affect ultra-low emissions.
Collapse
|
25
|
Jin Q, Lu Y, Ji W, Yang B, Xu M, Xue Z, Dai Y, Xu H. Selective catalytic reduction of NO over W–Zr-O x/TiO 2: performance study of hierarchical pore structure. RSC Adv 2021; 11:33361-33371. [PMID: 35497562 PMCID: PMC9042316 DOI: 10.1039/d1ra05801k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022] Open
Abstract
A series of W–Zr-Ox/TiO2 catalysts with hierarchical pore structure were prepared and used for selective catalytic reduction of NO by NH3.
Collapse
Affiliation(s)
- Qijie Jin
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Yao Lu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Wenyu Ji
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Bo Yang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Mutao Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Zhiwei Xue
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Yi Dai
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Haitao Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| |
Collapse
|