1
|
Sacchini S. Neurodegenerative Diseases: What Can Be Learned from Toothed Whales? Neurosci Bull 2025; 41:326-338. [PMID: 39485652 PMCID: PMC11794736 DOI: 10.1007/s12264-024-01310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/13/2024] [Indexed: 11/03/2024] Open
Abstract
Neurodegeneration involves a wide range of neuropathological alterations affecting the integrity, physiology, and architecture of neural cells. Many studies have demonstrated neurodegeneration in different animals. In the case of Alzheimer's disease (AD), spontaneous animal models should display two neurohistopathological hallmarks: the deposition of β-amyloid and the arrangement of neurofibrillary tangles. However, no natural animal models that fulfill these conditions have been reported and most research into AD has been performed using transgenic rodents. Recent studies have also demonstrated that toothed whales - homeothermic, long-lived, top predatory marine mammals - show neuropathological signs of AD-like pathology. The neuropathological hallmarks in these cetaceans could help to better understand their endangered health as well as neurodegenerative diseases in humans. This systematic review analyzes all the literature published to date on this trending topic and the proposed causes for neurodegeneration in these iconic marine mammals are approached in the context of One Health/Planetary Health and translational medicine.
Collapse
Affiliation(s)
- Simona Sacchini
- Department of Morphology, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de San Cristóbal, c/ Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
2
|
Mo J, Guo J, Iwata H, Diamond J, Qu C, Xiong J, Han J. What Approaches Should be Used to Prioritize Pharmaceuticals and Personal Care Products for Research on Environmental and Human Health Exposure and Effects? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:488-501. [PMID: 36377688 DOI: 10.1002/etc.5520] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are released from multiple anthropogenic sources and thus have a ubiquitous presence in the environment. The environmental exposure and potential effects of PPCPs on biota and humans has aroused concern within the scientific community and the public. Risk assessments are commonly conducted to evaluate the likelihood of chemicals including PPCPs that pose health threats to organisms inhabiting various environmental compartments and humans. Because thousands of PPCPs are currently used, it is impractical to assess the environmental risk of all of them due to data limitations; in addition, new PPCPs are continually being produced. Prioritization approaches, based either on exposure, hazard, or risk, provide a possible means by which those PPCPs that are likely to pose the greatest risk to the environment are identified, thereby enabling more effective allocation of resources in environmental monitoring programs in specific geographical locations and ecotoxicological investigations. In the present review, the importance and current knowledge concerning PPCP occurrence and risk are discussed and priorities for future research are proposed, in terms of PPCP exposure (e.g., optimization of exposure modeling in freshwater ecosystems and more monitoring of PPCPs in the marine environment) or hazard (e.g., differential risk of PPCPs to lower vs. higher trophic level species and risks to human health). Recommended research questions for the next 10 years are also provided, which can be answered by future studies on prioritization of PPCPs. Environ Toxicol Chem 2024;43:488-501. © 2022 SETAC.
Collapse
Affiliation(s)
- Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | | | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Jiuqiang Xiong
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Bjørneset J, Blévin P, Bjørnstad PM, Dalmo RA, Goksøyr A, Harju M, Limonta G, Panti C, Rikardsen AH, Sundaram AYM, Yadetie F, Routti H. Establishment of killer whale (Orcinus orca) primary fibroblast cell cultures and their transcriptomic responses to pollutant exposure. ENVIRONMENT INTERNATIONAL 2023; 174:107915. [PMID: 37031518 DOI: 10.1016/j.envint.2023.107915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Populations of killer whale (Orcinus orca) contain some of the most polluted animals on Earth. Yet, the knowledge on effects of chemical pollutants is limited in this species. Cell cultures and in vitro exposure experiments are pertinent tools to study effects of pollutants in free-ranging marine mammals. To investigate transcriptional responses to pollutants in killer whale cells, we collected skin biopsies of killer whales from the Northern Norwegian fjords and successfully established primary fibroblast cell cultures from the dermis of 4 out of 5 of them. Cells from the individual with the highest cell yield were exposed to three different concentrations of a mixture of persistent organic pollutants (POPs) that reflects the composition of the 10 most abundant POPs found in Norwegian killer whales (p,p'-DDE, trans-nonachlor, PCB52, 99, 101, 118, 138, 153, 180, 187). Transcriptional responses of 13 selected target genes were studied using digital droplet PCR, and whole transcriptome responses were investigated utilizing RNA sequencing. Among the target genes analysed, CYP1A1 was significantly downregulated in the cells exposed to medium (11.6 µM) and high (116 µM) concentrations of the pollutant mixture, while seven genes involved in endocrine functions showed a non-significant tendency to be upregulated at the highest exposure concentration. Bioinformatic analyses of RNA-seq data indicated that 13 and 43 genes were differentially expressed in the cells exposed to low and high concentrations of the mixture, respectively, in comparison to solvent control. Subsequent pathway and functional analyses of the differentially expressed genes indicated that the enriched pathways were mainly related to lipid metabolism, myogenesis and glucocorticoid receptor regulation. The current study results support previous correlative studies and provide cause-effect relationships, which is highly relevant for chemical and environmental management.
Collapse
Affiliation(s)
- J Bjørneset
- UiT - The Arctic University of Norway, Tromsø, Norway; Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | - P Blévin
- Akvaplan-niva AS, Fram Centre, Tromsø, Norway
| | | | - R A Dalmo
- UiT - The Arctic University of Norway, Tromsø, Norway
| | - A Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - M Harju
- Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway
| | | | - C Panti
- University of Siena, Siena, Italy
| | - A H Rikardsen
- UiT - The Arctic University of Norway, Tromsø, Norway; Norwegian Institute for Nature Research, Tromsø, Norway
| | | | - F Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - H Routti
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway.
| |
Collapse
|
4
|
Methodology and Neuromarkers for Cetaceans’ Brains. Vet Sci 2022; 9:vetsci9020038. [PMID: 35202291 PMCID: PMC8879147 DOI: 10.3390/vetsci9020038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Cetacean brain sampling may be an arduous task due to the difficulty of collecting and histologically preparing such rare and large specimens. Thus, one of the main challenges of working with cetaceans’ brains is to establish a valid methodology for an optimal manipulation and fixation of the brain tissue, which allows the samples to be viable for neuroanatomical and neuropathological studies. With this in view, we validated a methodology in order to preserve the quality of such large brains (neuroanatomy/neuropathology) and at the same time to obtain fresh brain samples for toxicological, virological, and microbiological analysis (neuropathology). A fixation protocol adapted to brains, of equal or even three times the size of human brains, was studied and tested. Finally, we investigated the usefulness of a panel of 20 antibodies (neuromarkers) associated with the normal structure and function of the brain, pathogens, age-related, and/or functional variations. The sampling protocol and some of the 20 neuromarkers have been thought to explore neurodegenerative diseases in these long-lived animals. To conclude, many of the typical measures used to evaluate neuropathological changes do not tell us if meaningful cellular changes have occurred. Having a wide panel of antibodies and histochemical techniques available allows for delving into the specific behavior of the neuronal population of the brain nuclei and to get a “fingerprint” of their real status.
Collapse
|
5
|
Wang MY, Zhang LF, Wu D, Cai YQ, Huang DM, Tian LL, Fang CL, Shi YF. Simulation experiment on OH-PCB being ingested through daily diet: Accumulation, transformation and distribution of hydroxylated-2, 2', 4, 5, 5'-pentachlorobiphenyl (OH-PCB101) in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149891. [PMID: 34474296 DOI: 10.1016/j.scitotenv.2021.149891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 05/16/2023]
Abstract
Animals exposure to polychlorinated biphenyls (PCBs) may result in retention of hydroxylated PCBs (OH-PCBs). OH-PCBs can be accumulated in animals, including humans, through the transmission of food chain. However, there are few studies on the accumulation and metabolism of OH-PCBs exposed to the body through daily diet. Therefore, this study was conducted to investigate the fate of OH-PCBs after being ingested through dietary intake. By adding 3-OH-PCB101 and 4-OH-PCB101 to the edible tissue of crucian carp, which were used as raw materials to prepare mouse feed, with an exposure concentration of 2.5 μg/kg ww. The exposure experiment lasted for a total of 80 days. The blood, feces and 11 tissues of mice at different times were analyzed qualitatively and quantitatively. It was found that major OH-PCB101 were accumulated in intestine or excreted with feces. A small part was accumulated in heart, lung and spleen. For the first time that the conversion from OH-PCB101 to PCB101 in mice was discovered, which shows from another perspective that persistent organic pollutants are difficult to be completely degraded in the environment. 4-MeO-PCB101, 3-MeSO2-PCB101, and 4-MeSO2-PCB101 were also found in various tissues. The results of this study show that after OH-PCBs accumulated in animals re-enter the organism through the food chain, they can be metabolized again and may be reversely transformed into the parent compounds. The present research shed new light on simulating the metabolic transformation process of OH-PCBs exposed to mammals through ingestion of fish. Available data show that second-generation persistent organic pollutants in the environment still need to be continuously concerned.
Collapse
Affiliation(s)
- Meng-Yuan Wang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Long-Fei Zhang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Di Wu
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - You-Qiong Cai
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Dong-Mei Huang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Liang-Liang Tian
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Chang-Ling Fang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Yong-Fu Shi
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China.
| |
Collapse
|