1
|
Mulyana MR, Aristiawan Y, Linggabinangkit C, Samodro RA, Prasetia H, Fauziyyah N, Iswara NJP, Ega AV, Prihhapso Y. Urban air pollutant mapping and tracing using multi-points in situ measurements combined with clustering and trajectory analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:474. [PMID: 40138060 DOI: 10.1007/s10661-025-13927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Air pollution poses significant risks, particularly in developing countries where rapid urbanization exacerbates pollutant emissions. These pollutants impact local populations and contribute to global air quality challenges through long-range transport. Despite numerous studies, comprehensive data on pollutant characteristic in urban areas remain limited by the availability of air quality monitoring stations in emerging urban regions, especially at developing countries. This study addresses these gaps by employing a novel approach that combines multi-points in situ air quality measurements with clustering and back trajectory analysis to map and trace pollution sources across diverse urban environments. The use of low-cost and mid-cost portable instruments allows for resource-efficient data collection, enhancing the ability to identify pollution hotspots without requiring extensive infrastructure. The analysis revealed two distinct pollutant clusters: aerosol pollutants dominated in residential areas, while gaseous pollutants were more prevalent near traffic-heavy and construction areas. Although low-cost sensors have limited capabilities and should not be used for regulatory purposes, this methodology provides a scalable complementary addition to regular air quality monitoring and offers valuable insights into pollution source attribution, particularly in developing countries where resources for environmental monitoring are limited.
Collapse
Affiliation(s)
- Muhammad Rizky Mulyana
- Research Centre for Testing Technology and Standards, National Research and Innovation Agency (BRIN), South Tangerang, 15314, Indonesia.
| | - Yosi Aristiawan
- Research Centre for Chemistry, National Research and Innovation Agency (BRIN), South Tangerang, 15314, Indonesia
| | | | - Rudi Anggoro Samodro
- Research Centre for Testing Technology and Standards, National Research and Innovation Agency (BRIN), South Tangerang, 15314, Indonesia
| | - Hafiizh Prasetia
- Research Centre for Chemistry, National Research and Innovation Agency (BRIN), South Tangerang, 15314, Indonesia
| | - Nidaa Fauziyyah
- PT. Nafas Aplikasi Indonesia, Infiniti Office, Jakarta, 12210, Indonesia
| | | | - Adindra Vickar Ega
- Research Centre for Testing Technology and Standards, National Research and Innovation Agency (BRIN), South Tangerang, 15314, Indonesia
| | - Yonan Prihhapso
- Research Centre for Testing Technology and Standards, National Research and Innovation Agency (BRIN), South Tangerang, 15314, Indonesia
| |
Collapse
|
2
|
Anand A, Touré N, Bahino J, Gnamien S, Hughes AF, Arku RE, Tawiah VO, Asfaw A, Mamo T, Hasheminassab S, Bililign S, Moschos V, Westervelt DM, Presto AA. Low-Cost Hourly Ambient Black Carbon Measurements at Multiple Cities in Africa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12575-12584. [PMID: 38952258 PMCID: PMC11256757 DOI: 10.1021/acs.est.4c02297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
There is a notable lack of continuous monitoring of air pollutants in the Global South, especially for measuring chemical composition, due to the high cost of regulatory monitors. Using our previously developed low-cost method to quantify black carbon (BC) in fine particulate matter (PM2.5) by analyzing reflected red light from ambient particle deposits on glass fiber filters, we estimated hourly ambient BC concentrations with filter tapes from beta attenuation monitors (BAMs). BC measurements obtained through this method were validated against a reference aethalometer between August 2 and 23, 2023 in Addis Ababa, Ethiopia, demonstrating a very strong agreement (R2 = 0.95 and slope = 0.97). We present hourly BC for three cities in sub-Saharan Africa (SSA) and one in North America: Abidjan (Côte d'Ivoire), Accra (Ghana), Addis Ababa (Ethiopia), and Pittsburgh (USA). The average BC concentrations for the measurement period at the Abidjan, Accra, Addis Ababa Central summer, Addis Ababa Central winter, Addis Ababa Jacros winter, and Pittsburgh sites were 3.85 μg/m3, 5.33 μg/m3, 5.63 μg/m3, 3.89 μg/m3, 9.14 μg/m3, and 0.52 μg/m3, respectively. BC made up 14-20% of PM2.5 mass in the SSA cities compared to only 5.6% in Pittsburgh. The hourly BC data at all sites (SSA and North America) show a pronounced diurnal pattern with prominent peaks during the morning and evening rush hours on workdays. A comparison between our measurements and the Goddard Earth Observing System Composition Forecast (GEOS-CF) estimates shows that the model performs well in predicting PM2.5 for most sites but struggles to predict BC at an hourly resolution. Adding more ground measurements could help evaluate and improve the performance of chemical transport models. Our method can potentially use existing BAM networks, such as BAMs at U.S. Embassies around the globe, to measure hourly BC concentrations. The PM2.5 composition data, thus acquired, can be crucial in identifying emission sources and help in effective policymaking in SSA.
Collapse
Affiliation(s)
- Abhishek Anand
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | | | - Julien Bahino
- Université
Félix Houphouët-Boigny, Abidjan 00225, Côte d’Ivoire
| | - Sylvain Gnamien
- Université
Félix Houphouët-Boigny, Abidjan 00225, Côte d’Ivoire
| | | | - Raphael E Arku
- Department
of Environmental Health Sciences, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Victoria Owusu Tawiah
- Department
of Meteorology & Climate Science, Kwame
Nkrumah University of Science and Technology, Kumasi 00233, Ghana
| | - Araya Asfaw
- Institute
of Geophysics, Space Science and Astronomy, Addis Ababa University, Addis
Ababa 1176, Ethiopia
| | - Tesfaye Mamo
- Institute
of Geophysics, Space Science and Astronomy, Addis Ababa University, Addis
Ababa 1176, Ethiopia
| | - Sina Hasheminassab
- Jet
Propulsion Laboratory, California Institute
of Technology institution, Pasadena, California 91011, United States
| | - Solomon Bililign
- Department
of Physics, North Carolina A&T State
University, Greensboro, North Carolina 27411, United States
| | - Vaios Moschos
- Department
of Physics, North Carolina A&T State
University, Greensboro, North Carolina 27411, United States
| | - Daniel M. Westervelt
- Lamont
Doherty Earth Observatory, Columbia University, New York, New York 10964, United States
| | - Albert A. Presto
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Buntaine MT, Komakech P, Shen SV. Social competition drives collective action to reduce informal waste burning in Uganda. Proc Natl Acad Sci U S A 2024; 121:e2319712121. [PMID: 38805276 PMCID: PMC11161752 DOI: 10.1073/pnas.2319712121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Improving urban air quality is a pressing challenge in the Global South. A key source of air pollution is the informal burning of household waste. Reducing informal burning requires governments to develop formal systems for waste disposal and for residents to adopt new disposal behaviors. Using a randomized experiment, we show that social competitions between pairs of neighborhoods in Nansana municipality, Uganda, galvanized leadership and inspired collective action to reduce informal burning. All 44 neighborhoods in the study received a public health campaign, while 22 treated neighborhoods were paired and competed to reduce waste burning over an 8-mo period. Treated neighborhoods showed a 24 percent reduction (95% CI: 11 to 35 percent) in waste burning relative to control neighborhoods at the end of the competition period. There is no evidence that treated neighborhoods experienced a rebound in waste burning several months after the competitions. Community leaders reported greater effort in coordinating residents and more pride in their neighborhood when assigned to the competition treatment. These results suggest that creating focal points for leadership and collective action can be an effective and low-cost strategy to address policy problems that require broad participation and costly behavior change.
Collapse
Affiliation(s)
- Mark T. Buntaine
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA93117
| | - Polycarp Komakech
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA93117
| | - Shiran Victoria Shen
- Precourt Institute for Energy, Doerr School of Sustainability, Stanford University, Stanford, CA94305
| |
Collapse
|
4
|
Weary TE, Pappas T, Tusiime P, Tuhaise S, Otali E, Emery Thompson M, Ross E, Gern JE, Goldberg TL. Common cold viruses circulating in children threaten wild chimpanzees through asymptomatic adult carriers. Sci Rep 2024; 14:10431. [PMID: 38714841 PMCID: PMC11076286 DOI: 10.1038/s41598-024-61236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Reverse zoonotic respiratory diseases threaten great apes across Sub-Saharan Africa. Studies of wild chimpanzees have identified the causative agents of most respiratory disease outbreaks as "common cold" paediatric human pathogens, but reverse zoonotic transmission pathways have remained unclear. Between May 2019 and August 2021, we conducted a prospective cohort study of 234 children aged 3-11 years in communities bordering Kibale National Park, Uganda, and 30 adults who were forest workers and regularly entered the park. We collected 2047 respiratory symptoms surveys to quantify clinical severity and simultaneously collected 1989 nasopharyngeal swabs approximately monthly for multiplex viral diagnostics. Throughout the course of the study, we also collected 445 faecal samples from 55 wild chimpanzees living nearby in Kibale in social groups that have experienced repeated, and sometimes lethal, epidemics of human-origin respiratory viral disease. We characterized respiratory pathogens in each cohort and examined statistical associations between PCR positivity for detected pathogens and potential risk factors. Children exhibited high incidence rates of respiratory infections, whereas incidence rates in adults were far lower. COVID-19 lockdown in 2020-2021 significantly decreased respiratory disease incidence in both people and chimpanzees. Human respiratory infections peaked in June and September, corresponding to when children returned to school. Rhinovirus, which caused a 2013 outbreak that killed 10% of chimpanzees in a Kibale community, was the most prevalent human pathogen throughout the study and the only pathogen present at each monthly sampling, even during COVID-19 lockdown. Rhinovirus was also most likely to be carried asymptomatically by adults. Although we did not detect human respiratory pathogens in the chimpanzees during the cohort study, we detected human metapneumovirus in two chimpanzees from a February 2023 outbreak that were genetically similar to viruses detected in study participants in 2019. Our data suggest that respiratory pathogens circulate in children and that adults become asymptomatically infected during high-transmission times of year. These asymptomatic adults may then unknowingly carry the pathogens into forest and infect chimpanzees. This conclusion, in turn, implies that intervention strategies based on respiratory symptoms in adults are unlikely to be effective for reducing reverse zoonotic transmission of respiratory viruses to chimpanzees.
Collapse
Affiliation(s)
- Taylor E Weary
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, USA
| | - Tressa Pappas
- Department of Paediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | - Emily Otali
- The Kasiisi Project, Fort Portal, Uganda
- Kibale Chimpanzee Project, Fort Portal, Uganda
| | - Melissa Emery Thompson
- Kibale Chimpanzee Project, Fort Portal, Uganda
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | | | - James E Gern
- Department of Paediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, USA.
| |
Collapse
|
5
|
Weary TE, Pappas T, Tusiime P, Tuhaise S, Ross E, Gern JE, Goldberg TL. High frequencies of nonviral colds and respiratory bacteria colonization among children in rural Western Uganda. Front Pediatr 2024; 12:1379131. [PMID: 38756971 PMCID: PMC11096560 DOI: 10.3389/fped.2024.1379131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Respiratory illness is the most common childhood disease globally, especially in developing countries. Previous studies have detected viruses in approximately 70-80% of respiratory illnesses. Methods In a prospective cohort study of 234 young children (ages 3-11 years) and 30 adults (ages 22-51 years) in rural Western Uganda sampled monthly from May 2019 to August 2021, only 24.2% of nasopharyngeal swabs collected during symptomatic disease had viruses detectable by multiplex PCR diagnostics and metagenomic sequencing. In the remaining 75.8% of swabs from symptomatic participants, we measured detection rates of respiratory bacteria Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae by quantitative PCR. Results 100% of children tested positive for at least one bacterial species. Detection rates were 87.2%, 96.8%, and 77.6% in children and 10.0%, 36.7%, and 13.3% for adults for H. influenzae, M. catarrhalis, and S. pneumoniae, respectively. In children, 20.8% and 70.4% were coinfected with two and three pathogens, respectively, and in adults 6.7% were coinfected with three pathogens but none were coinfected with two. Detection of any of the three pathogens was not associated with season or respiratory symptoms severity, although parsing detection status by symptoms was challenged by children experiencing symptoms in 80.3% of monthly samplings, whereas adults only reported symptoms 26.6% of the time. Pathobiont colonization in children in Western Uganda was significantly more frequent than in children living in high-income countries, including in a study of age-matched US children that utilized identical diagnostic methods. Detection rates were, however, comparable to rates in children living in other Sub-Saharan African countries. Discussion Overall, our results demonstrate that nonviral colds contribute significantly to respiratory disease burden among children in rural Uganda and that high rates of respiratory pathobiont colonization may play a role. These conclusions have implications for respiratory health interventions in the area, such as increasing childhood immunization rates and decreasing air pollutant exposure.
Collapse
Affiliation(s)
- Taylor E. Weary
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| | - Tressa Pappas
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | | | | | | | - James E. Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| |
Collapse
|
6
|
Weary TE, Tusiime P, Tuhaise S, Mandujano Reyes JF, Ross E, Gern JE, Goldberg TL. Respiratory disease patterns in rural Western Uganda, 2019-2022. Front Pediatr 2024; 12:1336009. [PMID: 38650995 PMCID: PMC11033374 DOI: 10.3389/fped.2024.1336009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Respiratory disease is a major cause of morbidity and mortality in the developing world, but prospective studies of temporal patterns and risk factors are rare. Methods We studied people in rural Western Uganda, where respiratory disease is pervasive. We followed 30 adults (ages 22-51 years; 534 observations) and 234 children (ages 3-11 years; 1,513 observations) between May 2019 and July 2022 and collected monthly data on their respiratory symptoms, for a total of 2,047 case records. We examined associations between demographic and temporal factors and respiratory symptoms severity. Results The timing of our study (before, during, and after the emergence of COVID-19) allowed us to document the effects of public health measures instituted in the region. Incidence rates of respiratory symptoms before COVID-19 lockdown were 568.4 cases per 1,000 person-months in children and 254.2 cases per 1,000 person-months in adults. These rates were 2.6 times higher than the 2019 global average for children but comparable for adults. Younger children (ages 3-6 years) had the highest frequencies and severities of respiratory symptoms. Study participants were most likely to experience symptoms in February, which is a seasonal pattern not previously documented. Incidence and severity of symptoms in children decreased markedly during COVID-19 lockdown, illustrating the broad effects of public health measures on the incidence of respiratory disease. Discussion Our results demonstrate that patterns of respiratory disease in settings such as Western Uganda resemble patterns in developed economies in some ways (age-related factors) but not in others (increased incidence in children and seasonal pattern). Factors such as indoor air quality, health care access, timing of school trimesters, and seasonal effects (rainy/dry seasons) likely contribute to the differences observed.
Collapse
Affiliation(s)
- Taylor E. Weary
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| | | | | | | | | | - James E. Gern
- Department of Pediatrics, University of Wisconsin Hospital and Clinics, Madison, WI, United States
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| |
Collapse
|
7
|
Sharps K, Foster J, Vieno M, Beck R, Hayes F. Ozone pollution contributes to the yield gap for beans in Uganda, East Africa, and is co-located with other agricultural stresses. Sci Rep 2024; 14:8026. [PMID: 38580752 PMCID: PMC10997645 DOI: 10.1038/s41598-024-58144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Air quality negatively impacts agriculture, reducing the yield of staple food crops. While measured data on African ground-level ozone levels are scarce, experimental studies demonstrate the damaging impact of ozone on crops. Common beans (Phaseolus vulgaris), an ozone-sensitive crop, are widely grown in Uganda. Using modelled ozone flux, agricultural surveys, and a flux-effect relationship, this study estimates yield and production losses due to ozone for Ugandan beans in 2015. Analysis at this scale allows the use of localised data, and results can be presented at a sub-regional level. Soil nutrient stress, drought, flood risk, temperature and deprivation were also mapped to investigate where stresses may coincide. Average bean yield losses due to ozone were 17% and 14% (first and second growing season respectively), equating to 184 thousand tonnes production loss. However, for some sub-regions, losses were up to 27.5% and other crop stresses also coincided in these areas. This methodology could be applied widely, allowing estimates of ozone impact for countries lacking air quality and/or experimental data. As crop productivity is below its potential in many areas of the world, changing agricultural practices to mitigate against losses due to ozone could help to reduce the crop yield gap.
Collapse
Affiliation(s)
- K Sharps
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK.
| | - J Foster
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - M Vieno
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - R Beck
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - F Hayes
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
8
|
Liu Y, Deng G, Liu H, Chen P, Pan Y, Chen L, Chen H, Zhang G. Seasonal variations of airborne microbial diversity in waste transfer stations and preventive effect on Streptococcus pneumoniae induced pulmonary inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168888. [PMID: 38030004 DOI: 10.1016/j.scitotenv.2023.168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Environment, location, and season are important factors that influence the microbiological community, yet, little research on airborne microorganisms in waste transfer stations (WTSs). Here, the airborne bacterial and fungal communities at four WTSs during different seasons were analyzed by high-throughput sequencing. The bacteria were isolated by cultural method and screened bacterium alleviate inflammation induced by Streptococcus pneumoniae (Spn) by regulating gut microbiome. The results revealed that collected bioaerosols from the WTSs varied significantly by location and season. Proteobacteria and Pseudomonadota are prevalent in summer and winter, respectively. Ascomycota was predominant in two seasons. Hazard quotients for adults from four WTSs were below one. Three selected potential probiotics were formulated into a microbial preparation with a carrier that effectively prevented inflammation in bacterial and animal experiments. The expression levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α in Pre group (0.11, 0.17, and 0.48-fold) were significantly lower than Spn group (2.75, 1.71, and 5.01-fold). These mechanisms are associated with changes in gut microbiota composition and short-chain fatty acids (SCFAs) levels, such as affecting Lachnospiraceae lachnospira abundance and acetic acid content. This study provides insights into the potential application of probiotics derived from WTSs as an alternative approach to preventing respiratory infections.
Collapse
Affiliation(s)
- Yuqi Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Guanhua Deng
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Huanhuan Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Pei Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; Nansha District Center for Disease Control and Prevention, Guangzhou 511455, China
| | - Yimin Pan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; Liwan District Center for Disease Control and Prevention, Guangzhou 510176, China
| | - Lingyun Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Huashan Chen
- Guoke (Foshan) Testing and Certification Co., Ltd, Foshan 528299, China
| | - Guoxia Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
9
|
Bainomugisha E, Ssematimba J, Okedi D, Nsubuga A, Banda M, Settala GW, Lubisia G. AirQo sensor kit: A particulate matter air quality sensing kit custom designed for low-resource settings. HARDWAREX 2023; 16:e00482. [PMID: 38020545 PMCID: PMC10660076 DOI: 10.1016/j.ohx.2023.e00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Air pollution remains a major public health risk. People living in urban spaces are among those most affected by exposure to unhealthy levels of air pollution. However, many urban spaces especially in low- and middle-income countries lack high resolution and long-term data on the state of air quality. Without high resolution air quality data on the different spaces in a city, citizens and authorities are unable to quantify the challenge and act. This is in part attributed to the high cost of air quality monitoring equipment that are expensive to set up, maintain and not designed for local operating conditions that characterise environments in such contexts. In this paper, we describe AirQo sensor kit, a low-cost sensing hardware system designed for and custom made to work in low-resource settings and outdoor urban environments. We describe the design of the air quality sensing device, 3D-printed enclosure, installation-mount, fabrication and deployment configurations. We demonstrate that the low-cost sensing hardware provides a complete solution comparable to the traditional monitoring system and inspires action to tackle air pollution issues. The sensor kit presented in this paper has been widely deployed in cities in Eastern, Western and Central African countries.
Collapse
Affiliation(s)
| | - Joel Ssematimba
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| | - Deogratius Okedi
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| | - Anold Nsubuga
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| | - Marvin Banda
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| | | | - Gideon Lubisia
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| |
Collapse
|
10
|
Men Y, Li Y, Luo Z, Jiang K, Yi F, Liu X, Xing R, Cheng H, Shen G, Tao S. Interpreting Highly Variable Indoor PM 2.5 in Rural North China Using Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18183-18192. [PMID: 37150969 DOI: 10.1021/acs.est.3c02014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Household air pollution associated with solid fuel use is a long-standing public concern. The global population mainly using solid fuels for cooking remains large. Besides cooking, large amounts of coal and biomass fuels are burned for space heating during cold seasons in many regions. In this study, a wintertime multiple-region field campaign was carried out in north China to evaluate indoor PM2.5 variations. With hourly resolved data from ∼1600 households, key influencing factors of indoor PM2.5 were identified from a machine learning approach, and a random forest regression (RFR) model was further developed to quantitatively assess the impacts of household energy transition on indoor PM2.5. The indoor PM2.5 concentration averaged at 120 μg/m3 but ranged from 16 to ∼400 μg/m3. Indoor PM2.5 was ∼60% lower in families using clean heating approaches compared to those burning traditional coal or biomass fuels. The RFR model had a good performance (R2 = 0.85), and the interpretation was consistent with the field observation. A transition to clean coals or biomass pellets can reduce indoor PM2.5 by 20%, and further switching to clean modern energies would reduce it an additional 30%, suggesting many significant benefits in promoting clean transitions in household heating activities.
Collapse
Affiliation(s)
- Yatai Men
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yaojie Li
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhihan Luo
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ke Jiang
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fan Yi
- Beijing Key Lab Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Xinlei Liu
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ran Xing
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Guofeng Shen
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 45001, China
| | - Shu Tao
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Galiwango R, Bainomugisha E, Kivunike F, Kateete DP, Jjingo D. Air pollution and mobility patterns in two Ugandan cities during COVID-19 mobility restrictions suggest the validity of air quality data as a measure for human mobility. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34856-34871. [PMID: 36520281 PMCID: PMC9751517 DOI: 10.1007/s11356-022-24605-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
We explored the viability of using air quality as an alternative to aggregated location data from mobile phones in the two most populated cities in Uganda. We accessed air quality and Google mobility data collected from 15th February 2020 to 10th June 2021 and augmented them with mobility restrictions implemented during the COVID-19 lockdown. We determined whether air quality data depicted similar patterns to mobility data before, during, and after the lockdown and determined associations between air quality and mobility by computing Pearson correlation coefficients ([Formula: see text]), conducting multivariable regression with associated confidence intervals (CIs), and visualized the relationships using scatter plots. Residential mobility increased with the stringency of restrictions while both non-residential mobility and air pollution decreased with the stringency of restrictions. In Kampala, PM2.5 was positively correlated with non-residential mobility and negatively correlated with residential mobility. Only correlations between PM2.5 and movement in work and residential places were statistically significant in Wakiso. After controlling for stringency in restrictions, air quality in Kampala was independently correlated with movement in retail and recreation (- 0.55; 95% CI = - 1.01- - 0.10), parks (0.29; 95% CI = 0.03-0.54), transit stations (0.29; 95% CI = 0.16-0.42), work (- 0.25; 95% CI = - 0.43- - 0.08), and residential places (- 1.02; 95% CI = - 1.4- - 0.64). For Wakiso, only the correlation between air quality and residential mobility was statistically significant (- 0.99; 95% CI = - 1.34- - 0.65). These findings suggest that air quality is linked to mobility and thus could be used by public health programs in monitoring movement patterns and the spread of infectious diseases without compromising on individuals' privacy.
Collapse
Affiliation(s)
- Ronald Galiwango
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, The Infectious Diseases Institute, Makerere University, Kampala, Uganda.
- Center for Computational Biology, Uganda Christian University, Mukono, Uganda.
| | - Engineer Bainomugisha
- Department of Computer Science, College of Computing and Information Sciences, Makerere University, Kampala, Uganda
| | - Florence Kivunike
- Department of Computer Science, College of Computing and Information Sciences, Makerere University, Kampala, Uganda
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Daudi Jjingo
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, The Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Department of Computer Science, College of Computing and Information Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
12
|
Okello G, Nantanda R, Awokola B, Thondoo M, Okure D, Tatah L, Bainomugisha E, Oni T. Air quality management strategies in Africa: A scoping review of the content, context, co-benefits and unintended consequences. ENVIRONMENT INTERNATIONAL 2023; 171:107709. [PMID: 36580733 DOI: 10.1016/j.envint.2022.107709] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
One of the major consequences of Africa's rapid urbanisation is the worsening air pollution, especially in urban centres. However, existing societal challenges such as recovery from the COVID-19 pandemic, poverty, intensifying effects of climate change are making prioritisation of addressing air pollution harder. We undertook a scoping review of strategies developed and/or implemented in Africa to provide a repository to stakeholders as a reference that could be applied for various local contexts. The review includes strategies assessed for effectiveness in improving air quality and/or health outcomes, co-benefits of the strategies, potential collaborators, and pitfalls. An international multidisciplinary team convened to develop well-considered research themes and scope from a contextual lens relevant to the African continent. From the initial 18,684 search returns, additional 43 returns through reference chaining, contacting topic experts and policy makers, 65 studies and reports were included for final analysis. Three main strategy categories obtained from the review included technology (75%), policy (20%) and education/behavioural change (5%). Most strategies (83%) predominantly focused on household air pollution compared to outdoor air pollution (17%) yet the latter is increasing due to urbanisation. Mobility strategies were only 6% compared to household energy strategies (88%) yet motorised mobility has rapidly increased over recent decades. A cost effective way to tackle air pollution in African cities given the competing priorities could be by leveraging and adopting implemented strategies, collaborating with actors involved whilst considering local contextual factors. Lessons and best practices from early adopters/implementers can go a long way in identifying opportunities and mitigating potential barriers related to the air quality management strategies hence saving time on trying to "reinvent the wheel" and prevent pitfalls. We suggest collaboration of various stakeholders, such as policy makers, academia, businesses and communities in order to formulate strategies that are suitable and practical to various local contexts.
Collapse
Affiliation(s)
- Gabriel Okello
- Institute for Sustainability Leadership, University of Cambridge, Cambridge, United Kingdom; MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom; AirQo, Department of Computer Science, Makerere University, Kampala, Uganda.
| | | | - Babatunde Awokola
- Department of Clinical Services, Medical Research Council Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Meelan Thondoo
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Deo Okure
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| | - Lambed Tatah
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | | | - Tolu Oni
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Sserunjogi R, Ssematimba J, Okure D, Ogenrwot D, Adong P, Muyama L, Nsimbe N, Bbaale M, Bainomugisha E. Seeing the air in detail: Hyperlocal air quality dataset collected from spatially distributed AirQo network. Data Brief 2022; 44:108512. [PMID: 35990920 PMCID: PMC9389188 DOI: 10.1016/j.dib.2022.108512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Air pollution is a major global challenge associated with an increasing number of morbidity and mortality from lung cancer, cardiovascular and respiratory diseases, among others. However, there is scarcity of ground monitoring air quality data from Sub-Saharan Africa that can be used to quantify the level of pollution. This has resulted in limited targeted air pollution research and interventions e.g. health impacts, key drivers and sources, economic impacts, among others; ultimately hindering the establishment of effective management strategies. This paper presents a dataset of air quality observations collected from 68 spatially distributed monitoring stations across Uganda. The dataset includes hourly PM2 . 5 and PM10 data collected from low-cost air quality monitoring devices and one reference grade monitoring device over a period ranging from 2019 to 2020. This dataset contributes towards filling some of the data gaps witnessed over the years in ground level monitored ambient air quality in Sub-Saharan Africa and it can be useful to various policy makers and researchers.
Collapse
Affiliation(s)
- Richard Sserunjogi
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| | - Joel Ssematimba
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| | - Deo Okure
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| | - Daniel Ogenrwot
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| | - Priscilla Adong
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| | - Lillian Muyama
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| | - Noah Nsimbe
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| | - Martin Bbaale
- AirQo, Department of Computer Science, Makerere University, Kampala, Uganda
| | | |
Collapse
|
14
|
A Social Vulnerability Index for Air Pollution and Its Spatially Varying Relationship to PM2.5 in Uganda. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fine particulate matter (PM2.5) is a ubiquitous air pollutant that is harmful to human health. Social vulnerability indices (SVIs) are calculated to determine where vulnerable populations are located. We developed an SVI for Uganda to identify areas with high vulnerability and exposure to air pollution. The 2014 national census was used to create the SVI. Mean PM2.5 at the subcounty level was estimated using global PM2.5 estimates. The mean PM2.5 for Kampala at the parish level was estimated using low-cost PM2.5 sensors and spatial interpolation. A local indicator of spatial association (LISA) was performed to determine significant spatial clusters of social vulnerability, and a bivariate analysis was performed to identify where significant associations were between SVI and annual PM2.5 mean concentrations. The LISA results showed significant clustering of high SVI in the northern and western regions of the country. The spatial bivariate analysis showed positive linear associations between SVI and PM2.5 concentration in subcounties in the northern, western, and central regions of Uganda, as well as in certain northern parishes in Kampala. Our approach identified areas facing both high social vulnerability and air pollution levels. These areas can be prioritized for health interventions and policy to reduce the impact of ambient PM2.5.
Collapse
|