1
|
Lu S, Bhattarai C, Samburova V, Khlystov A. Particle size distributions of wildfire aerosols in the western USA. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2025; 5:502-516. [PMID: 40114973 PMCID: PMC11917463 DOI: 10.1039/d5ea00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Wildfires are a major source of aerosols during summer in the western United States. Aerosols emitted from wildfires could significantly affect air quality, human health, and the global climate. This study conducted a comparison of aerosol characteristics during wildfire smoke-influenced and non-smoke-influenced days. Ambient particle size distribution (PSD) data were collected in Reno, Nevada, between July 2017 and October 2020. During this period, the site was impacted by smoke from over a hundred wildfires burning in a wide range of ecosystems in the western United States located at different distances from the measurement site. The smoke-influenced days were identified using satellite images, a hazard mapping system, and wind back-trajectory. Positive matrix factorization (PMF) was applied to identify the main sources and their characteristics. The wildfire aerosols were observed to have a number mode diameter of 212 nm, which is significantly larger than aerosols on non-smoke-influenced days (61 nm). In addition to the increase in particle size, wildfires made a large contribution to PM2.5 and CO concentrations. During fire-prone months (July, August, and September) from 2016 to 2021, 56% to 65% of PM2.5 and 18% to 26% of CO concentrations could be attributed to wildfire emissions in the study area. On an annual basis, wildfire emissions were responsible for 35% to 47% of PM2.5 concentrations and 5% to 12% of CO concentrations.
Collapse
Affiliation(s)
- Siying Lu
- Division of Atmospheric Sciences, Desert Research Institute Reno Nevada USA
| | | | - Vera Samburova
- Division of Atmospheric Sciences, Desert Research Institute Reno Nevada USA
- Department of Physics, University of Nevada Reno Nevada USA
| | - Andrey Khlystov
- Division of Atmospheric Sciences, Desert Research Institute Reno Nevada USA
| |
Collapse
|
2
|
Holder AL, Sullivan AP. Emissions, Chemistry, and the Environmental Impacts of Wildland Fire. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39133033 DOI: 10.1021/acs.est.4c07631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
|
3
|
Qu K, Yan Y, Wang X, Jin X, Vrekoussis M, Kanakidou M, Brasseur GP, Lin T, Xiao T, Cai X, Zeng L, Zhang Y. The effect of cross-regional transport on ozone and particulate matter pollution in China: A review of methodology and current knowledge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174196. [PMID: 38942314 DOI: 10.1016/j.scitotenv.2024.174196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
China is currently one of the countries impacted by severe atmospheric ozone (O3) and particulate matter (PM) pollution. Due to their moderately long lifetimes, O3 and PM can be transported over long distances, cross the boundaries of source regions and contribute to air pollution in other regions. The reported contributions of cross-regional transport (CRT) to O3 and fine PM (PM2.5) concentrations often exceed those of local emissions in the major regions of China, highlighting the important role of CRT in regional air pollution. Therefore, further improvement of air quality in China requires more joint efforts among regions to ensure a proper reduction in emissions while accounting for the influence of CRT. This review summarizes the methodologies employed to assess the influence of CRT on O3 and PM pollution as well as current knowledge of CRT influence in China. Quantifying CRT contributions in proportion to O3 and PM levels and studying detailed CRT processes of O3, PM and precursors can be both based on targeted observations and/or model simulations. Reported publications indicate that CRT contributes by 40-80 % to O3 and by 10-70 % to PM2.5 in various regions of China. These contributions exhibit notable spatiotemporal variations, with differences in meteorological conditions and/or emissions often serving as main drivers of such variations. Based on trajectory-based methods, transport pathways contributing to O3 and PM pollution in major regions of China have been revealed. Recent studies also highlighted the important role of horizontal transport in the middle/high atmospheric boundary layer or low free troposphere, of vertical exchange and mixing as well as of interactions between CRT, local meteorology and chemistry in the detailed CRT processes. Drawing on the current knowledge on the influence of CRT, this paper provides recommendations for future studies that aim at supporting ongoing air pollution mitigation strategies in China.
Collapse
Affiliation(s)
- Kun Qu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
| | - Yu Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Sichuan Academy of Environmental Policy and Planning, Chengdu 610041, China
| | - Xuesong Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China.
| | - Xipeng Jin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mihalis Vrekoussis
- Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany; Center of Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany; Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Maria Kanakidou
- Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece; Center of Studies of Air quality and Climate Change, Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Guy P Brasseur
- Max Planck Institute for Meteorology, Hamburg, Germany; National Center for Atmospheric Research, Boulder, CO, USA
| | - Tingkun Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Teng Xiao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Xuhui Cai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
4
|
Ninneman M, Lyman S, Hu L, Cope E, Ketcherside D, Jaffe D. Investigation of Ozone Formation Chemistry during the Salt Lake Regional Smoke, Ozone, and Aerosol Study (SAMOZA). ACS EARTH & SPACE CHEMISTRY 2023; 7:2521-2534. [PMID: 38148992 PMCID: PMC10749563 DOI: 10.1021/acsearthspacechem.3c00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/13/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Salt Lake City (SLC), UT, is an urban area where ozone (O3) concentrations frequently exceed health standards. This study uses an observationally constrained photochemical box model to investigate the drivers of O3 production during the Salt Lake Regional Smoke, Ozone, and Aerosol Study (SAMOZA), which took place from August to September 2022 in SLC. During SAMOZA, a suite of volatile organic compounds (VOCs), oxides of nitrogen (NOx), and other parameters were measured at the Utah Technical Center, a high-NOx site in the urban core. We examined four high-O3 cases: 4 August and 3, 11, and 12 September, which were classified as a nonsmoky weekday, a weekend day with minimal smoke influence, a smoky weekend day, and a smoky weekday, respectively. The modeled O3 production on 4 August and 3 September was highly sensitive to VOCs and insensitive to NOx reductions of ≤50%. Box model results suggest that the directly emitted formaldehyde contributed to the rapid increase in morning O3 concentrations on 3 September. Model sensitivity tests for September 11-12 indicated that smoke-emitted VOCs, especially aldehydes, had a much larger impact on O3 production than NOx and/or anthropogenic VOCs. On 11 and 12 September, smoke-emitted VOCs enhanced model-predicted maximum daily 8 h average O3 concentrations by 21 and 13 parts per billion (ppb), respectively. Overall, our results suggest that regionwide VOC reductions of at least 30-50% or NOx reductions of at least 60% are needed to bring SLC into compliance with the national O3 standard of 70 ppb.
Collapse
Affiliation(s)
- Matthew Ninneman
- School
of Science, Technology, Engineering and Mathematics, University of Washington Bothell, 18115 Campus Way NE, Bothell, Washington 98011, United States
| | - Seth Lyman
- Bingham
Research Center, Utah State University, 320 North Aggie Boulevard, Vernal, Utah 84078, United States
- Department
of Chemistry and Biochemistry, Utah State
University, 4820 Old
Main Hill, Logan, Utah 84322, United States
| | - Lu Hu
- Department
of Chemistry and Biochemistry, University
of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Emily Cope
- Department
of Chemistry and Biochemistry, University
of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Damien Ketcherside
- Department
of Chemistry and Biochemistry, University
of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Daniel Jaffe
- School
of Science, Technology, Engineering and Mathematics, University of Washington Bothell, 18115 Campus Way NE, Bothell, Washington 98011, United States
- Department
of Atmospheric Sciences, University of Washington, 3920 Okanogan Lane, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Jin X, Fiore AM, Cohen RC. Space-Based Observations of Ozone Precursors within California Wildfire Plumes and the Impacts on Ozone-NO x-VOC Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14648-14660. [PMID: 37703172 DOI: 10.1021/acs.est.3c04411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The frequency of wildfires in the western United States has escalated in recent decades. Here we examine the impacts of wildfires on ground-level ozone (O3) precursors and the O3-NOx-VOC chemistry from the source to downwind urban areas. We use satellite retrievals of nitrogen dioxide (NO2) and formaldehyde (HCHO, an indicator of VOC) from the Tropospheric Monitoring Instrument (TROPOMI) to track the evolution of O3 precursors from wildfires over California from 2018 to 2020. We improved these satellite retrievals by updating the a priori profiles and explicitly accounting for the effects of smoke aerosols. TROPOMI observations reveal that the extensive and intense fire smoke in 2020 led to an overall increase in statewide annual average HCHO and NO2 columns by 16% and 9%. The increase in the level of NO2 offsets the anthropogenic NOx emission reduction from the COVID-19 lockdown. The enhancement of NO2 within fire plumes is concentrated near the regions actively burning, whereas the enhancement of HCHO is far-reaching, extending from the source regions to urban areas downwind due to the secondary production of HCHO from longer-lived VOCs such as ethene. Consequently, a larger increase in NOx occurs in NOx-limited source regions, while a greater increase in HCHO occurs in VOC-limited urban areas, both contributing to more efficient O3 production.
Collapse
Affiliation(s)
- Xiaomeng Jin
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Arlene M Fiore
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald C Cohen
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Kabeshita L, Sloat LL, Fischer EV, Kampf S, Magzamen S, Schultz C, Wilkins MJ, Kinnebrew E, Mueller ND. Pathways framework identifies wildfire impacts on agriculture. NATURE FOOD 2023; 4:664-672. [PMID: 37550540 DOI: 10.1038/s43016-023-00803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/14/2023] [Indexed: 08/09/2023]
Abstract
Wildfires are a growing concern to society and the environment in many parts of the world. Within the United States, the land area burned by wildfires has steadily increased over the past 40 years. Agricultural land management is widely understood as a force that alters fire regimes, but less is known about how wildfires, in turn, impact the agriculture sector. Based on an extensive literature review, we identify three pathways of impact-direct, downwind and downstream-through which wildfires influence agricultural resources (soil, water, air and photosynthetically active radiation), labour (agricultural workers) and products (crops and livestock). Through our pathways framework, we highlight the complexity of wildfire-agriculture interactions and the need for collaborative, systems-oriented research to better quantify the magnitude of wildfire impacts and inform the adaptation of agricultural systems to an increasingly fire-prone future.
Collapse
Affiliation(s)
- Lena Kabeshita
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Lindsey L Sloat
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
- Land and Carbon Lab, World Resources Institute, Washington, DC, USA
| | - Emily V Fischer
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - Stephanie Kampf
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Courtney Schultz
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Eva Kinnebrew
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
| | - Nathaniel D Mueller
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Liu Y, Huang Y, Liggio J, Hayden K, Mihele C, Wentzell J, Wheeler M, Leithead A, Moussa S, Xie C, Yang Y, Zhang Y, Han T, Li SM. A newly developed Lagrangian chemical transport scheme: Part 1. Simulation of a boreal forest fire plume. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163232. [PMID: 37023817 DOI: 10.1016/j.scitotenv.2023.163232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
Forest fire research over the last several decades has improved the understanding of fire emissions and impacts. Nevertheless, the evolution of forest fire plumes remains poorly quantified and understood. Here, a Lagrangian chemical transport model, the Forward Atmospheric Stochastic Transport model coupled with the Master Chemical Mechanism (FAST-MCM), has been developed to simulate the transport and chemical transformations of plumes from a boreal forest fire over several hours since their emission. The model results for NOx (NO and NO2), O3, HONO, HNO3, pNO3 and 70 VOC species are compared with airborne in-situ measurements within plume centers and their surrounding portions during the transport. Comparisons between simulation results and measurements show that the FAST-MCM model can properly reproduce the physical and chemical evolution of forest fire plumes. The results indicate that the model can be an important tool used to aid the understanding of the downwind impacts of forest fire plumes.
Collapse
Affiliation(s)
- Yayong Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Yufei Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - John Liggio
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Katherine Hayden
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Cris Mihele
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Jeremy Wentzell
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Michael Wheeler
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Amy Leithead
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Samar Moussa
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Conghui Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Yanrong Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Yuheng Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Tianran Han
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Shao-Meng Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871.
| |
Collapse
|
8
|
Wu K, Zhu S, Mac Kinnon M, Samuelsen S. Unexpected deterioration of O 3 pollution in the South Coast Air Basin of California: The role of meteorology and emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121728. [PMID: 37116566 DOI: 10.1016/j.envpol.2023.121728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Tropospheric ozone (O3) pollution has long been a prominent environmental threat due to its adverse impacts on vulnerable populations and ecosystems. In recent years, an unexpected increase in O3 levels over the South Coast Air Basin (SoCAB) of California has been observed despite reduced precursor emissions and the driving factors behind this abnormal condition remain unclear. In this work, we combine ambient measurements, satellite data, and air quality modeling to investigate O3 and precursor emission trends and explore the impacts of meteorological variability and emission changes on O3 over the SoCAB from 2012 to 2020. Changes in O3 trends were characterized by declining O3 in 2012-2015, and increasing O3 afterwards with the most extreme O3 exceedances in 2020. Basin-wide increases of MDA8 O3 concentrations over warm season were depicted between 2012 and 2020, with the most significant enhancements (5-10 ppb) observed in San Bernardino County. Persistent heatwaves and weak ventilation on consecutive days were closely correlated with O3 exceedances (r2 above 0.6) over inland SoCAB. While decreasing trends in NOx (-4.1%/yr) and VOC emissions (-1.8%/yr) inferred from emission inventory and satellites during 2012-2020 resulted in a slow transition for O3 sensitivity from VOCs-limited to NOx-limited, model simulations performed with fixed meteorology indicate that unfavorable meteorological conditions could largely offset regulation benefits, with meteorology anomaly-induced monthly O3 changes reaching 20 ppb (May 2020) and the deterioration of O3 pollution in 2016, 2017, and 2020 was largely attributed to unfavorable meteorological conditions. Nevertheless, anthropogenic emission changes may act as the dominant factor in governing O3 variations across the SoCAB when net effects of meteorology are neutral (typically 2018). This work provides a comprehensive assessment of O3 pollution and contributes valuable insights into understanding the long-term changes of O3 and precursors in guiding future regulation efforts in the SoCAB.
Collapse
Affiliation(s)
- Kai Wu
- Advanced Power and Energy Program, University of California, Irvine, CA, USA; Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA
| | - Shupeng Zhu
- Advanced Power and Energy Program, University of California, Irvine, CA, USA
| | - Michael Mac Kinnon
- Advanced Power and Energy Program, University of California, Irvine, CA, USA
| | - Scott Samuelsen
- Advanced Power and Energy Program, University of California, Irvine, CA, USA; Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA; Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
9
|
Chen S, Wei W, Chen K, Wang X, Han L, Cheng S. Diagnosis of photochemical O 3 production of urban plumes in summer via developing the real-field IRs of VOCs: A case study in Beijing of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120836. [PMID: 36528196 DOI: 10.1016/j.envpol.2022.120836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
This study mainly developed an estimate method for photochemical ozone (O3) production from urban plumes in hot season, through simulating O3 evolution from precursors locally emitted and determining the real-field O3 increment reactivity (IR) of volatile organic compounds (VOCs) based on the box chemical model. Our simulation on June-2019 indicated that Beijing local emissions produced O3 at the rate of 0.7-9.2 ppb/h and led to an O3 increase of 48.9 ppb during 05:00-18:00, accounting for 68.3% of the observed O3 increase. The maximum level and production rate of simulated O3 showed a linear response to VOCs, therefore we can use VOCs levels in urban plumes to quantify O3 formation in summer. The IR (g O3 formed per g VOCs) was calculated on the actual precursor and meteorology condition of this megacity, 0.12-4.90 g/g for individual VOCs and 1.49 g/g for comprehensive TVOCs. The weighted average of individual IRs agreed well with that of TVOCs, but these IRs were 34.5% of MIR values that were widely used in references. It's noteworthy that these IRs had greater sensitivity to precursor levels, and broadly remained stable under the fixed VOCs:NOx. Considering the synchronous reductions of precursors in Beijing, we applied these IRs to quantify chemical O3 evolution from Beijing local emissions in summer of recent years, declining from 63.5 ppb in 2016 to 44.0 ppb in 2020 for June. The contributions of the diagnosed chemical O3 to Beijing O3 better matched with the atmospheric transport paths on daily basis, higher than 100% when the transport paths starting from the clean neighbor cities, but lower to 45%-66% when the transport paths originating from the highly-polluted neighbor cities. This consistence indicated the reliability of our IR calculation method for quickly estimating chemical O3 production of urban plumes in summer.
Collapse
Affiliation(s)
- Saisai Chen
- Department of Environmental Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wei Wei
- Department of Environmental Science and Engineering, Beijing University of Technology, Beijing, 100124, China; Key Laboratory of Beijing on Regional Air Pollution Control, Beijing, 100124, China.
| | - Kang Chen
- Department of Environmental Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoqi Wang
- Department of Environmental Science and Engineering, Beijing University of Technology, Beijing, 100124, China; Key Laboratory of Beijing on Regional Air Pollution Control, Beijing, 100124, China
| | - Lihui Han
- Department of Environmental Science and Engineering, Beijing University of Technology, Beijing, 100124, China; Key Laboratory of Beijing on Regional Air Pollution Control, Beijing, 100124, China
| | - Shuiyuan Cheng
- Department of Environmental Science and Engineering, Beijing University of Technology, Beijing, 100124, China; Key Laboratory of Beijing on Regional Air Pollution Control, Beijing, 100124, China
| |
Collapse
|
10
|
Rickly PS, Coggon MM, Aikin KC, Alvarez RJ, Baidar S, Gilman JB, Gkatzelis GI, Harkins C, He J, Lamplugh A, Langford AO, McDonald BC, Peischl J, Robinson MA, Rollins AW, Schwantes RH, Senff CJ, Warneke C, Brown SS. Influence of Wildfire on Urban Ozone: An Observationally Constrained Box Modeling Study at a Site in the Colorado Front Range. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1257-1267. [PMID: 36607321 DOI: 10.1021/acs.est.2c06157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Increasing trends in biomass burning emissions significantly impact air quality in North America. Enhanced mixing ratios of ozone (O3) in urban areas during smoke-impacted periods occur through transport of O3 produced within the smoke or through mixing of pyrogenic volatile organic compounds (PVOCs) with urban nitrogen oxides (NOx = NO + NO2) to enhance local O3 production. Here, we analyze a set of detailed chemical measurements, including carbon monoxide (CO), NOx, and speciated volatile organic compounds (VOCs), to evaluate the effects of smoke transported from relatively local and long-range fires on O3 measured at a site in Boulder, Colorado, during summer 2020. Relative to the smoke-free period, CO, background O3, OH reactivity, and total VOCs increased during both the local and long-range smoke periods, but NOx mixing ratios remained approximately constant. These observations are consistent with transport of PVOCs (comprised primarily of oxygenates) but not NOx with the smoke and with the influence of O3 produced within the smoke upwind of the urban area. Box-model calculations show that local O3 production during all three periods was in the NOx-sensitive regime. Consequently, this locally produced O3 was similar in all three periods and was relatively insensitive to the increase in PVOCs. However, calculated NOx sensitivities show that PVOCs substantially increase O3 production in the transition and NOx-saturated (VOC-sensitive) regimes. These results suggest that (1) O3 produced during smoke transport is the main driver for O3 increases in NOx-sensitive urban areas and (2) smoke may cause an additional increase in local O3 production in NOx-saturated (VOC-sensitive) urban areas. Additional detailed VOC and NOx measurements in smoke impacted urban areas are necessary to broadly quantify the effects of wildfire smoke on urban O3 and develop effective mitigation strategies.
Collapse
Affiliation(s)
- Pamela S Rickly
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Matthew M Coggon
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Kenneth C Aikin
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Raul J Alvarez
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Sunil Baidar
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Jessica B Gilman
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | | | - Colin Harkins
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Jian He
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Aaron Lamplugh
- Institute of Behavioral Science, University of Colorado, Boulder, Colorado80309, United States
| | - Andrew O Langford
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Brian C McDonald
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Jeff Peischl
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Michael A Robinson
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Andrew W Rollins
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | | | - Christoph J Senff
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Carsten Warneke
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Steven S Brown
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| |
Collapse
|
11
|
Tan Z, Lu K, Ma X, Chen S, He L, Huang X, Li X, Lin X, Tang M, Yu D, Wahner A, Zhang Y. Multiple Impacts of Aerosols on O 3 Production Are Largely Compensated: A Case Study Shenzhen, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17569-17580. [PMID: 36473087 DOI: 10.1021/acs.est.2c06217] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tropospheric ozone (O3) is a harmful gas compound to humans and vegetation, and it also serves as a climate change forcer. O3 is formed in the reactions of nitrogen oxides and volatile organic compounds (VOCs) with light. In this study, an O3 pollution episode encountered in Shenzhen, South China in 2018 was investigated to illustrate the influence of aerosols on local O3 production. We used a box model with comprehensive heterogeneous mechanisms and empirical prediction of photolysis rates to reproduce the O3 episode. Results demonstrate that the aerosol light extinction and NO2 heterogeneous reactions showed comparable influence but opposite signs on the O3 production. Hence, the influence of aerosols from different processes is largely counteracted. Sensitivity tests suggest that O3 production increases with further reduction in aerosols in this study, while the continued NOx reduction finally shifts O3 production to an NOx-limited regime with respect to traditional O3-NOx-VOC sensitivity. Our results shed light on the role of NOx reduction on O3 production and highlight further mitigation in NOx not only limiting the production of O3 but also helping to ease particulate nitrate, as a path for cocontrol of O3 and fine particle pollution.
Collapse
Affiliation(s)
- Zhaofeng Tan
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 100871Beijing, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871Beijing, China
- International Joint Laboratory for Regional Pollution Control, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 100871Beijing, China
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871Beijing, China
- International Joint Laboratory for Regional Pollution Control, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 100871Beijing, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871Beijing, China
- International Joint Laboratory for Regional Pollution Control, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 100871Beijing, China
| | - Lingyan He
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, 518055Shenzhen, China
| | - Xiaofeng Huang
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, 518055Shenzhen, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871Beijing, China
- International Joint Laboratory for Regional Pollution Control, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 100871Beijing, China
| | - Xiaoyu Lin
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, 518055Shenzhen, China
| | - Mengxue Tang
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, 518055Shenzhen, China
| | - Dan Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871Beijing, China
| | - Andreas Wahner
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 100871Beijing, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871Beijing, China
- International Joint Laboratory for Regional Pollution Control, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 100871Beijing, China
| |
Collapse
|
12
|
Liang Y, Weber RJ, Misztal PK, Jen CN, Goldstein AH. Aging of Volatile Organic Compounds in October 2017 Northern California Wildfire Plumes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1557-1567. [PMID: 35037463 DOI: 10.1021/acs.est.1c05684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the western United States, the number and severity of large wildfires have been growing for decades. Biomass burning (BB) is a major source of volatile organic compounds (VOCs) to the atmosphere both globally and regionally. Following emission, BB VOCs are oxidized while being transported downwind, producing ozone, secondary organic aerosols, and secondary hazardous VOCs. In this research, we measured VOCs using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) in an urban area 55-65 km downwind of the October 2017 Northern California wildfires. Nonaromatic oxygenated compounds were the dominant component of BB VOCs measured. In the smoke plumes, the VOCs account for 70-75% of the total observed organic carbon, with the remainder being particulate matter (with a diameter of <2.5 μm, PM2.5). We show that the correlation of VOCs with furan (primary BB VOC) and maleic anhydride (secondary BB VOC) can indicate the origin of the VOCs. This was further confirmed by the diurnal variations of the VOCs and their concentration-weighted trajectories. Oxidation during transport consumed highly reactive compounds including benzenoids, furanoids, and terpenoids and produced more oxygenated VOCs. Furthermore, wildfire VOCs altered the ozone formation regime and raised the O3 levels in the San Francisco Bay Area.
Collapse
Affiliation(s)
- Yutong Liang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Robert J Weber
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Pawel K Misztal
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Coty N Jen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United State
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Large contribution of biomass burning emissions to ozone throughout the global remote troposphere. Proc Natl Acad Sci U S A 2021; 118:2109628118. [PMID: 34930838 PMCID: PMC8719870 DOI: 10.1073/pnas.2109628118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors. Here, we report global-scale, in situ airborne measurements of ozone and precursor source tracers from the NASA Atmospheric Tomography mission. Measurements from the remote troposphere showed that tropospheric ozone is regularly enhanced above background in polluted air masses in all regions of the globe. Ozone enhancements in air with high BB and urban emission tracers (2.1 to 23.8 ppbv [parts per billion by volume]) were generally similar to those in BB-influenced air (2.2 to 21.0 ppbv) but larger than those in urban-influenced air (-7.7 to 6.9 ppbv). Ozone attributed to BB was 2 to 10 times higher than that from urban sources in the Southern Hemisphere and the tropical Atlantic and roughly equal to that from urban sources in the Northern Hemisphere and the tropical Pacific. Three independent global chemical transport models systematically underpredict the observed influence of BB on tropospheric ozone. Potential reasons include uncertainties in modeled BB injection heights and emission inventories, export efficiency of BB emissions to the free troposphere, and chemical mechanisms of ozone production in smoke. Accurately accounting for intermittent but large and widespread BB emissions is required to understand the global tropospheric ozone burden.
Collapse
|
14
|
Xu L, Crounse JD, Vasquez KT, Allen H, Wennberg PO, Bourgeois I, Brown SS, Campuzano-Jost P, Coggon MM, Crawford JH, DiGangi JP, Diskin GS, Fried A, Gargulinski EM, Gilman JB, Gkatzelis GI, Guo H, Hair JW, Hall SR, Halliday HA, Hanisco TF, Hannun RA, Holmes CD, Huey LG, Jimenez JL, Lamplugh A, Lee YR, Liao J, Lindaas J, Neuman JA, Nowak JB, Peischl J, Peterson DA, Piel F, Richter D, Rickly PS, Robinson MA, Rollins AW, Ryerson TB, Sekimoto K, Selimovic V, Shingler T, Soja AJ, St. Clair JM, Tanner DJ, Ullmann K, Veres PR, Walega J, Warneke C, Washenfelder RA, Weibring P, Wisthaler A, Wolfe GM, Womack CC, Yokelson RJ. Ozone chemistry in western U.S. wildfire plumes. SCIENCE ADVANCES 2021; 7:eabl3648. [PMID: 34878847 PMCID: PMC8654285 DOI: 10.1126/sciadv.abl3648] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Wildfires are a substantial but poorly quantified source of tropospheric ozone (O3). Here, to investigate the highly variable O3 chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O3 production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O3 chemistry exhibits rapid transition in chemical regimes. Within a few daylight hours, the O3 formation substantially slows and is largely limited by the abundance of nitrogen oxides (NOx). This finding supports previous observations that O3 formation is enhanced when VOC-rich wildfire smoke mixes into NOx-rich urban plumes, thereby deteriorating urban air quality. Last, we relate O3 chemistry to the underlying fire characteristics, enabling a more accurate representation of wildfire chemistry in atmospheric models that are used to study air quality and predict climate.
Collapse
Affiliation(s)
- Lu Xu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Corresponding author. (L.X.); (P.O.W.)
| | - John D. Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Krystal T. Vasquez
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hannah Allen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Paul O. Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
- Corresponding author. (L.X.); (P.O.W.)
| | - Ilann Bourgeois
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Steven S. Brown
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Pedro Campuzano-Jost
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew M. Coggon
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | | | | | | | - Alan Fried
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | | | | | - Georgios I. Gkatzelis
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Hongyu Guo
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | | | - Samuel R. Hall
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | | | - Thomas F. Hanisco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Reem A. Hannun
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Christopher D. Holmes
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | - L. Gregory Huey
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jose L. Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Aaron Lamplugh
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Young Ro Lee
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jin Liao
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Universities Space Research Association, Columbia, MD, USA
| | - Jakob Lindaas
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - J. Andrew Neuman
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | | | - Jeff Peischl
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | | | - Felix Piel
- Department of Chemistry, University of Oslo, Oslo, Norway
- IONICON Analytik GmbH, Innsbruck, Austria
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Dirk Richter
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Pamela S. Rickly
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Michael A. Robinson
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | | | | | - Kanako Sekimoto
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Vanessa Selimovic
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA
| | | | - Amber J. Soja
- NASA Langley Research Center, Hampton, VA, USA
- National Institute of Aerospace, Hampton, VA, USA
| | - Jason M. St. Clair
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - David J. Tanner
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kirk Ullmann
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | | | - James Walega
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | | | | | - Petter Weibring
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Armin Wisthaler
- Department of Chemistry, University of Oslo, Oslo, Norway
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Glenn M. Wolfe
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Caroline C. Womack
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Robert J. Yokelson
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA
| |
Collapse
|
15
|
Schneider SR, Lee K, Santos G, Abbatt JPD. Air Quality Data Approach for Defining Wildfire Influence: Impacts on PM 2.5, NO 2, CO, and O 3 in Western Canadian Cities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13709-13717. [PMID: 34609856 DOI: 10.1021/acs.est.1c04042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As the climate warms, it is recognized that wildfires are increasing in size and frequency. The negative effects of wildfires on air quality are well documented, especially on commonly monitored atmospheric pollutants such as PM2.5, NO2, CO, and O3. However, it is not clear how frequently wildfires influence urban air quality and the size of that influence relative to traffic and industrial pollutants. To understand the impact of wildfires on air quality, we have established an automated method to identify wildfire-influenced ambient air measurements. The trajectory-fire interception method (TFIM) compares hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) back-trajectories from an air quality monitoring station to satellite imagery of fire "hot-spots" to determine the number of trajectory-fire interceptions that occur. From the number of interceptions and local PM2.5 measurements, we have defined a wildfire-influenced period to occur if the interception count is ≥20. TFIM wildfire identification compares favorably with Environment and Climate Change Canada's smoke forecast, FireWork, and with the BlueSky trajectory-based forecast. Using TFIM, we studied the impact of wildfire-influenced periods on PM2.5, NO2, CO, and O3 from 2001 to 2019 in Western Canadian urban areas. We show that wildfire-influenced periods have elevated concentrations of PM2.5, NO2, and CO but not O3. We show that a decreasing urban baseline of CO and NO2 over time results in a relatively greater impact of wildfires on these pollutants, which emphasizes the changing relative importance of wildfires on air quality.
Collapse
Affiliation(s)
- Stephanie R Schneider
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Ontario, Canada
| | - Kristyn Lee
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Ontario, Canada
| | - Guadalupe Santos
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Ontario, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Ontario, Canada
| |
Collapse
|