1
|
Ariana A, Cozzarelli I, Danforth C, McDevitt B, Rosofsky A, Vorhees D. Pathways for Potential Exposure to Onshore Oil and Gas Wastewater: What We Need to Know to Protect Human Health. GEOHEALTH 2025; 9:e2024GH001263. [PMID: 40182626 PMCID: PMC11966568 DOI: 10.1029/2024gh001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
Produced water is a chemically complex waste stream generated during oil and gas development. Roughly four trillion liters were generated onshore in the United States in 2021 (ALL Consulting, 2022, https://www.gwpc.org/wp-content/uploads/2021/09/2021_Produced_Water_Volumes.pdf). Efforts are underway to expand historic uses of produced water to offset freshwater needs in water-stressed regions, avoid induced seismic activity associated with its disposal, and extract commodities. Understanding the potential exposures from current and proposed produced water uses and management practices can help to inform health-protective practices. This review summarizes what is known about potential human exposure to produced water from onshore oil and gas development in the United States. We synthesize 236 publications to create a conceptual model of potential human exposure that illustrates the current state of scientific inquiry and knowledge. Exposure to produced water can occur following its release to the environment through spills or leaks during its handling and management. Exposure can also arise from authorized releases, including permitted discharges to surface water, crop irrigation, and road treatment. Knowledge gaps include understanding the variable composition and toxicity of produced water released to the environment, the performance of treatment methods, migration pathways through the environment that can result in human exposure, and the significance of the exposures for human and ecosystem health. Reducing these uncertainties may help in realizing the benefits of produced water use while simultaneously protecting human health.
Collapse
Affiliation(s)
| | | | | | - Bonnie McDevitt
- Geology, Energy & Minerals Science CenterU.S. Geological SurveyRestonVAUSA
| | | | | |
Collapse
|
2
|
Sasidharan S, Bradford SA. Assessing drywell designs for managed aquifer recharge via canals and repurposed wells. Sci Rep 2025; 15:1829. [PMID: 39805924 PMCID: PMC11730339 DOI: 10.1038/s41598-024-84865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
This study explores innovative drywell designs for managed aquifer recharge (MAR) in agricultural settings, focusing on smaller diameter and deeper drywells, including the repurposing of dried or abandoned wells. Numerical simulations assessed the impact of drywell diameter (5-120 cm), depth (15-55 m), screen height, and subsurface heterogeneity on infiltration (I) and recharge (R) volumes over a one-year period under constant head conditions. Results indicate that smaller diameter drywells can effectively infiltrate and recharge significant water volumes. A 5 cm diameter drywell exhibited only a 48% decrease in infiltration efficiency compared to a standard 120 cm drywell, while being easier to install and requiring less space. Deeper drywells substantially enhanced both I and R; a 20 cm diameter drywell at 55 m depth infiltrated 1.9 × 105 m3 and recharged 3.56 × 104 m3 within a year, with faster arrival times of recharge water. The study also proposes integrating drywells into existing irrigation canal networks. Simulations suggest that installing drywells every 70 m along canals could infiltrate 7.14 × 105 to 1.43 × 106 m3 of water per kilometer annually, significantly enhancing groundwater recharge in regions where traditional MAR methods are limited. Subsurface heterogeneity was found to increase I and R volumes compared to homogeneous conditions, emphasizing the importance of site-specific assessments. An economic analysis revealed that deeper, small-diameter drywells offer lower levelized costs, down to $0.46 per cubic meter of recharged water, making them economically viable alternatives. However, technical challenges such as clogging, water quality concerns, and regulatory requirements were identified. Pretreatment measures like sedimentation chambers and geotextile membranes are recommended to mitigate clogging, though their costs require further evaluation. Pilot-scale studies are recommended to validate simulation findings, assess technical and regulatory challenges, and refine designs for practical implementation.
Collapse
Affiliation(s)
- Salini Sasidharan
- Department of Biological & Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR, 97331-3906, USA.
| | - Scott A Bradford
- USDA, ARS, Sustainable Agricultural Water Systems (SAWS) Unit, UC Davis, 239 Hopkins Road, Davis, CA, 95616, USA
| |
Collapse
|
3
|
Hansen A, Kraus T, Landon M, McMahon P. Spectral characterization of dissolved organic matter in groundwater to assess mixing with oil-field water near selected oil fields, southern California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166970. [PMID: 37699489 DOI: 10.1016/j.scitotenv.2023.166970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Samples of oil-field water (oil wells, injectate, disposal ponds) and groundwater near selected oil and gas fields in southern California were analyzed for dissolved organic carbon (DOC) concentration and by optical spectroscopic techniques (i.e., absorbance and fluorescence) to assess whether these measurements can be used to distinguish between oil-field water (Oil Field), native groundwater (WGnat), and native groundwater mixed with oil-field water from surface (WGsurf) or subsurface sources (WGsub), and if so whether commonly reported optical measurements can be used as a screening tool to identify such water. Concentrations of DOC were significantly (p < 0.0001) higher (67 to 2934 mg C L-1) in oil-field water compared to native groundwater samples (<5.0 mg C L-1). Individual optical properties varied by water category and frequently overlapped. However, multivariate statistical analysis showed that when evaluated in combination, 10 optical properties were determined by discriminant analysis to be significant (p < 0.05) in distinguishing among water categories. Principal component analysis of those 10 optical properties showed that these properties can be used to successfully distinguish Oil Field samples from WGnat, WGsurf, and WGsub even when mixing fractions are low (approximately 10 %).
Collapse
Affiliation(s)
- Angela Hansen
- US Geological Survey, 6000 J Street, Placer Hall, Sacramento, CA 95819, United States.
| | - Tamara Kraus
- US Geological Survey, 6000 J Street, Placer Hall, Sacramento, CA 95819, United States
| | - Matthew Landon
- US Geological Survey, 4165 Spruance Road, Suite 200, San Diego, CA 92101, United States
| | - Peter McMahon
- US Geological Survey, Denver Federal Center, Bldg 95, Lakewood, CO 80225, United States
| |
Collapse
|
4
|
Tisherman RA, Rossi RJ, Shonkoff SBC, DiGiulio DC. Groundwater uranium contamination from produced water disposal to unlined ponds in the San Joaquin Valley. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166937. [PMID: 37696399 DOI: 10.1016/j.scitotenv.2023.166937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
In the southern San Joaquin Valley (SJV) of California, an agriculturally productive region that relies on groundwater for irrigation and domestic water supply, the infiltration of produced water from oil reservoirs is known to impact groundwater due to percolation from unlined disposal ponds. However, previously documented impacts almost exclusively focus on salinity, while contaminant loadings commonly associated with produced water (e.g., radionuclides) are poorly constrained. For example, the infiltration of bicarbonate-rich produced waters can react with sediment-bound uranium (U), leading to U mobilization and subsequent transport to nearby groundwater. Specifically, produced water infiltration poses a particular concern for SJV groundwater, as valley-fill sediments are well documented to be enriched in geogenic, reduced U. Here, we analyzed monitoring well data from two SJV produced water pond facilities to characterize U mobilization and subsequent groundwater contamination. Groundwater wells installed within 2 km of the facilities contained produced water and elevated levels of uranium. There are >400 produced water disposal pond facilities in the southern SJV. If our observations occur at even a fraction of these facilities, there is the potential for widespread U contamination in the groundwaters of one of the most productive agricultural regions in the world.
Collapse
Affiliation(s)
| | | | - Seth B C Shonkoff
- PSE Healthy Energy, Oakland, CA 94612, United States; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, United States; Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Dominic C DiGiulio
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO 80309, United States
| |
Collapse
|
5
|
McMahon PB, Landon MK, Stephens MJ, Taylor KA, Gillespie JM, Davis TA, Shimabukuro DH. Fluid migration pathways to groundwater in mature oil fields: Exploring the roles of water injection/production and oil-well integrity in California, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166400. [PMID: 37597555 DOI: 10.1016/j.scitotenv.2023.166400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Mature oil fields potentially contain multiple fluid migration pathways toward protected groundwater (total dissolved solids, TDS, in nonexempted aquifer <10,000 mg/L) because of their extensive development histories. Time-series data for water use, fluid pressures, oil-well construction, and geochemistry from the South Belridge and Lost Hills mature oil fields in California are used to explore the roles of injection/production of oil-field water and well-integrity issues in fluid migration. Injection/production of oil-field water modified hydraulic gradients in both oil fields, resulting in chemical transport from deeper groundwater and hydrocarbon-reservoir systems to aquifers in the oil fields. Those aquifers are used for water supply outside the oil-field boundaries. Oil wells drilled before 1976 can be fluid migration pathways because a relatively large percentage of them have >10 m of uncemented annulus that straddles oil-well casing damage and/or the base of groundwater with TDS <10,000 mg/L. The risk of groundwater-quality degradation is higher when wells with those risk factors occur in areas with upward hydraulic gradients created by positive net injection, groundwater withdrawals, or combinations of these variables. The complex changes in hydrologic conditions and groundwater chemistry likely would not have been discovered in the absence of years to decades of monitoring data for groundwater elevations and chemistry, and installation of monitoring wells in areas with overlapping risk factors. Important monitoring concepts based on results from this and other studies include monitoring hydrocarbon-reservoir and groundwater systems at multiple spatiotemporal scales and maintaining transparency and accessibility of data and analyses. This analysis focuses on two California oil fields, but the methods used and processes affecting fluid migration could be relevant in other oil fields where substantial injection/production of oil-field water occurs and oil-well integrity is of concern.
Collapse
|
6
|
Rossi RJ, Tisherman RA, Jaeger JM, Domen J, Shonkoff SBC, DiGiulio DC. Historic and Contemporary Surface Disposal of Produced Water Likely Inputs Arsenic and Selenium to Surficial Aquifers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7559-7567. [PMID: 37146013 DOI: 10.1021/acs.est.3c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Oil and gas development generates large amounts of wastewater (i.e., produced water), which in California has been partially disposed of in unlined percolation/evaporation ponds since the mid-20th century. Although produced water is known to contain multiple environmental contaminants (e.g., radium and trace metals), prior to 2015, detailed chemical characterizations of pondwaters were the exception rather than the norm. Using a state-run database, we synthesized samples (n = 1688) collected from produced water ponds within the southern San Joaquin Valley of California, one of the most productive agricultural regions in the world, to examine regional trends in pondwater arsenic and selenium concentrations. We filled crucial knowledge gaps resulting from historical pondwater monitoring by constructing random forest regression models using commonly measured analytes (boron, chloride, and total dissolved solids) and geospatial data (e.g., soil physiochemical data) to predict arsenic and selenium concentrations in historical samples. Our analysis suggests that both arsenic and selenium levels are elevated in pondwaters and thus this disposal practice may have contributed substantial amounts of arsenic and selenium to aquifers having beneficial uses. We further use our models to identify areas where additional monitoring infrastructure would better constrain the extent of legacy contamination and potential threats to groundwater quality.
Collapse
Affiliation(s)
- Robert J Rossi
- PSE Healthy Energy, Oakland, California 94612, United States
| | | | - Jessie M Jaeger
- PSE Healthy Energy, Oakland, California 94612, United States
| | - Jeremy Domen
- PSE Healthy Energy, Oakland, California 94612, United States
| | - Seth B C Shonkoff
- PSE Healthy Energy, Oakland, California 94612, United States
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dominic C DiGiulio
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
González DJX, Morton CM, Hill LAL, Michanowicz DR, Rossi RJ, Shonkoff SBC, Casey JA, Morello‐Frosch R. Temporal Trends of Racial and Socioeconomic Disparities in Population Exposures to Upstream Oil and Gas Development in California. GEOHEALTH 2023; 7:e2022GH000690. [PMID: 36968155 PMCID: PMC10035325 DOI: 10.1029/2022gh000690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
People living near oil and gas development are exposed to multiple environmental stressors that pose health risks. Some studies suggest these risks are higher for racially and socioeconomically marginalized people, which may be partly attributable to disparities in exposures. We examined whether racially and socioeconomically marginalized people in California are disproportionately exposed to oil and gas wells and associated hazards. We longitudinally assessed exposure to wells during three time periods (2005-2009, 2010-2014, and 2015-2019) using sociodemographic data at the census block group-level. For each block group and time period, we assessed exposure to new, active, retired, and plugged wells, and cumulative production volume. We calculated risk ratios to determine whether marginalized people disproportionately resided near wells (within 1 km). Averaged across the three time periods, we estimated that 1.1 million Californians (3.0%) lived within 1 km of active wells. Nearly 9 million Californians (22.9%) lived within 1 km of plugged wells. The proportion of Black residents near active wells was 42%-49% higher than the proportion of Black residents across California, and the proportion of Hispanic residents near active wells was 4%-13% higher than their statewide proportion. Disparities were greatest in areas with the highest oil and gas production, where the proportion of Black residents was 105%-139% higher than statewide. Socioeconomically marginalized residents also had disproportionately high exposure to wells. Though oil and gas production has declined in California, marginalized communities persistently had disproportionately high exposure to wells, potentially contributing to health disparities.
Collapse
Affiliation(s)
- David J. X. González
- Division of Environmental Health SciencesSchool of Public HealthUniversity of California, BerkeleyBerkeleyCAUSA
- Department of Environmental Science, Policy, and ManagementUniversity of California, BerkeleyBerkeleyCAUSA
| | - Claire M. Morton
- Mathematical and Computational Science ProgramStanford UniversityStanfordCAUSA
| | | | | | | | - Seth B. C. Shonkoff
- Division of Environmental Health SciencesSchool of Public HealthUniversity of California, BerkeleyBerkeleyCAUSA
- PSE Healthy EnergyOaklandCAUSA
- Lawrence Berkeley National LaboratoryEnergy Technologies AreaBerkeleyCAUSA
| | - Joan A. Casey
- Department of Environmental Health SciencesColumbia UniversityNew YorkNYUSA
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - Rachel Morello‐Frosch
- Division of Environmental Health SciencesSchool of Public HealthUniversity of California, BerkeleyBerkeleyCAUSA
- Department of Environmental Science, Policy, and ManagementUniversity of California, BerkeleyBerkeleyCAUSA
| |
Collapse
|
8
|
Rossi RJ, DiGiulio DC, Shonkoff SBC. An examination of onshore produced water spills in the state of California: incident frequency, spatial distribution, and shortcomings in available data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18631-18642. [PMID: 36215008 DOI: 10.1007/s11356-022-23391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Accidental releases (i.e., spills) of produced water can occur at any point during oil and gas development operations, potentially resulting in chronic and/or catastrophic loadings of produced water to nearby ecosystems and exposures of human populations to toxic constituents including trace metals (e.g., arsenic), organic compounds (e.g., benzene), and/or radionuclides (e.g., radium). Despite California being one of the largest oil and gas producing states in the USA, no comprehensive reviews of produced water spills in the peer-reviewed literature have been published. To address this knowledge gap, produced water spill incident data contained within the California HazMat database were synthesized to elucidate trends in produced water spills in California. During the period of 2006-2020, a total of 1029 incidents involving produced water spills were reported. Despite the potential threat to environmental and human receptors, there are significant knowledge gaps concerning these incidents. Specifically, only ~ 6% of spill incidents contained geographic coordinates, greatly hindering assessments of the impacts of these events to public health and the environment. Moreover, updated spill volumes are not rapidly retrievable from the HazMat database, and during the years 2018-2020 volumes of produced water spilled were underreported in initial reports anywhere from 35-2750%. Further, it is unclear if groundwater monitoring is performed following spill events. This study highlights significant shortcomings in produced water spill reporting in California and recommends improvements to aid future investigations that assess the environmental and public health impacts of spill incidents.
Collapse
Affiliation(s)
| | - Dominic C DiGiulio
- PSE Healthy Energy, Oakland, CA, 94612, USA
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Seth B C Shonkoff
- PSE Healthy Energy, Oakland, CA, 94612, USA
- Department of Environmental Science, Policy, Management, University of California, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
9
|
Gonzalez DJX, Nardone A, Nguyen AV, Morello-Frosch R, Casey JA. Historic redlining and the siting of oil and gas wells in the United States. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:76-83. [PMID: 35418707 PMCID: PMC9556657 DOI: 10.1038/s41370-022-00434-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND The presence of active or inactive (i.e., postproduction) oil and gas wells in neighborhoods may contribute to ongoing pollution. Racially discriminatory neighborhood security maps developed by the Home-Owners Loan Corporation (HOLC) in the 1930s may contribute to environmental exposure disparities. OBJECTIVE To determine whether receiving worse HOLC grades was associated with exposure to more oil and gas wells. METHODS We assessed exposure to oil and gas wells among HOLC-graded neighborhoods in 33 cities from 13 states where urban oil and gas wells were drilled and operated. Among the 17 cities for which 1940 census data were available, we used propensity score restriction and matching to compare well exposure neighborhoods that were similar on observed 1940 sociodemographic characteristics but that received different grades. RESULTS Across all included cities, redlined D-graded neighborhoods had 12.2 ± 27.2 wells km-2, nearly twice the density in neighborhoods graded A (6.8 ± 8.9 wells km-2). In propensity score restricted and matched analyses, redlined neighborhoods had 2.0 (1.3, 2.7) more wells than comparable neighborhoods with a better grade. SIGNIFICANCE Our study adds to the evidence that structural racism in federal policy is associated with the disproportionate siting of oil and gas wells in marginalized neighborhoods.
Collapse
Affiliation(s)
- David J X Gonzalez
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA.
| | - Anthony Nardone
- University of California (UC) Berkeley-UC San Francisco (UCSF) Joint Medical Program, UC Berkeley School of Public Health and UCSF School of Medicine, Berkeley and San Francisco, CA, USA
| | - Andrew V Nguyen
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Rachel Morello-Frosch
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Joan A Casey
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|