1
|
Debnath A, Rajakumar B. Exploring the Intricate Mechanism and Kinetics of the Reaction between C2-Criegee Intermediates (CH 3CHOO) and Acetaldehyde: A Study Using Cavity Ring-Down Spectroscopy and Computational Methods. J Phys Chem A 2025. [PMID: 40114427 DOI: 10.1021/acs.jpca.5c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Temperature-dependent kinetics for the reaction of C2-Criegee intermediates (CH3CHOO) with acetaldehyde (CH3CHO) was studied at 268-313 K and 50 Torr using cavity ring-down spectroscopy with single-wavelength (360 nm) probing. The measured rate coefficients are expected to have contributions from both the anti- and syn-conformers of CH3CHOO. Negative T dependence was observed for the title reaction, and the corresponding Arrhenius equation is k3(T = 268 - 313 K) = (1.34 ± 0.07) × 10-13 × exp{(1.71 ± 0.03) kcal mol-1/RT}. The room temperature rate coefficients measured at 50 and 100 Torr are (2.43 ± 0.17) × 10-12 and (2.56 ± 0.20) × 10-12 cm3 molecule-1 s-1, respectively. Theoretical calculations were performed at the CCSD(T)/aug-cc-pVTZ//B3LYP/6-311G(d,p) level of theory to obtain the high-pressure limit rate coefficients for the reaction of anti- and syn-CH3CHOO with CH3CHO. The high-pressure limit rate coefficient for syn-CH3CHOO is approximately 3 orders of magnitude smaller than that of the anti-conformer, the latter being closely aligned with the experimental value. The rate coefficients for anti-CH3CHOO + CH3CHO at 50 Torr using the master equation solver (MESMER) are in agreement with the experimental values in the studied temperature range. MESMER also predicted CH3COOH to be the major product for both anti- and syn-CH3CHOO reactions by comparing the rate coefficients for the product formation pathways. A dramatic dependence of the pressure on stabilization of the SOZs was also observed for both conformers at different pressures.
Collapse
Affiliation(s)
- Amit Debnath
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Balla Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Akande AA, Borduas-Dedekind N. The gas phase ozonolysis and secondary OH production of cashmeran, a musk compound from fragrant volatile chemical products. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39480479 DOI: 10.1039/d4em00452c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Fragrant personal care products are a subset of volatile chemical products (VCPs), an emerging source of outdoor pollutants capable of impacting air quality. Fragrant molecules, such as musks, are used in perfumes and have been found in aquatic organisms, water bodies, indoor air, and urban environments. Considering the distribution of musk-smelling compounds, there is a need to constrain their atmospheric fate indoors and outdoors. Here, we used a Vocus proton-transfer-reaction time-of-flight mass spectrometer to quantify the atmospheric oxidative fate of cashmeran, a bicyclic musk compound, detected in a commercial perfume alongside galaxolide, astratone and rosamusk. Cashmeran concentrations rose up to 0.35 ppbv representing a mass yield of 0.33 ± 0.04% of the perfume. We determined the second order rate constant of the cyclo-addition of O3 with cashmeran to be (2.78 ± 0.31) × 10-19 cm3 molec-1 s-1 at 293 ± 1 K in N2. This rate constant corresponds to an 85 day lifetime against 20 ppbv of O3. Then, we repeated the ozonolysis experiments in air with 20% O2 and measured significant secondary OH concentrations up to 5.1 × 105 molec cm-3. Consequently, the lifetime of cashmeran in our experiment was shortened to 5 h. Thus, the oxidation of fragrant molecules, like cashmeran, could alter the oxidative capacity of indoor air via the production of secondary OH radicals. Furthermore, our results show that cashmeran is long-lived and could serve as a VCP tracer in urban air.
Collapse
Affiliation(s)
- Ayomide A Akande
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
3
|
Yang X, Li Y, Ma X, Tan Z, Lu K, Zhang Y. Unclassical Radical Generation Mechanisms in the Troposphere: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15888-15909. [PMID: 39206567 DOI: 10.1021/acs.est.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively known as HOx radicals, are crucial in removing primary pollutants, controlling atmospheric oxidation capacity, and regulating global air quality and climate. An imbalance between radical observations and simulations has been identified based on radical closure experiments, a valuable tool for accessing the state-of-the-art chemical mechanisms, demonstrating a deviation between the existing and actual tropospheric mechanisms. In the past decades, researchers have attempted to explain this deviation and proposed numerous radical generation mechanisms. However, these newly proposed unclassical radical generation mechanisms have not been systematically reviewed, and previous radical-related reviews dominantly focus on radical measurement instruments and radical observations in extensive field campaigns. Herein, we overview the unclassical generation mechanisms of radicals, mainly focusing on outlining the methodology and results of radical closure experiments worldwide and systematically introducing the mainstream mechanisms of unclassical radical generation, involving the bimolecular reaction of HO2 and organic peroxy radicals (RO2), RO2 isomerization, halogen chemistry, the reaction of H2O with O2 over soot, epoxide formation mechanism, mechanism of electronically excited NO2 and water, and prompt HO2 formation in aromatic oxidation. Finally, we highlight the existing gaps in the current studies and suggest possible directions for future research. This review of unclassical radical generation mechanisms will help promote a comprehensive understanding of the latest radical mechanisms and the development of additional new mechanisms to further explain deviations between the existing and actual mechanisms.
Collapse
Affiliation(s)
- Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Zhaofeng Tan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| |
Collapse
|
4
|
Xia Y, Long B, Liu A, Truhlar DG. Reactions with Criegee intermediates are the dominant gas-phase sink for formyl fluoride in the atmosphere. FUNDAMENTAL RESEARCH 2024; 4:1216-1224. [PMID: 39431129 PMCID: PMC11489503 DOI: 10.1016/j.fmre.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023] Open
Abstract
Atmospheric oxidation processes are of central importance in atmospheric climate models. It is often considered that volatile organic molecules are mainly removed by hydroxyl radical; however, the kinetics of some reactions of hydroxyl radical with volatile organic molecules are slow. Here we report rate constants for rapid reactions of formyl fluoride with Criegee intermediates. These rate constants are calculated by dual-level multistructural canonical variational transition state theory with small-curvature tunneling (DL-MS-CVT/SCT). The treatment contains beyond-CCSD(T) electronic structure calculations for transition state theory, and it employs validated density functional input for multistructural canonical variational transition state theory with small-curvature tunneling and for variable-reaction-coordinate variational transition state theory. We find that the M11-L density functional has higher accuracy than CCSD(T)/CBS for the HC(O)F + CH2OO and HC(O)F + anti-CH3CHOO reactions. We find significant negative temperature dependence in the ratios of the rate constants for HC(O)F + CH2OO/anti-CH3CHOO to the rate constant for HC(O)F + OH. We also find that different Criegee intermediates have different rate-determining-steps in their reactions with formyl fluoride, and we find that the dominant gas-phase removal mechanism for HC(O)F in the atmosphere is the reaction with CH2OO and/or anti-CH3CHOO Criegee intermediates.
Collapse
Affiliation(s)
- Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Ai Liu
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, United States
| |
Collapse
|
5
|
Zhang W, Xu L, Zhang H. Recent advances in mass spectrometry techniques for atmospheric chemistry research on molecular-level. MASS SPECTROMETRY REVIEWS 2024; 43:1091-1134. [PMID: 37439762 DOI: 10.1002/mas.21857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
The Earth's atmosphere is composed of an enormous variety of chemical species associated with trace gases and aerosol particles whose composition and chemistry have critical impacts on the Earth's climate, air quality, and human health. Mass spectrometry analysis as a powerful and popular analytical technique has been widely developed and applied in atmospheric chemistry for decades. Mass spectrometry allows for effective detection, identification, and quantification of a broad range of organic and inorganic chemical species with high sensitivity and resolution. In this review, we summarize recently developed mass spectrometry techniques, methods, and applications in atmospheric chemistry research in the past several years on molecular-level. Specifically, new developments of ion-molecule reactors, various soft ionization methods, and unique coupling with separation techniques are highlighted. The new mass spectrometry applications in laboratory studies and field measurements focused on improving the detection limits for traditional and emerging volatile organic compounds, characterizing multiphase highly oxygenated molecules, and monitoring particle bulk and surface compositions.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry, University of California, Riverside, California, USA
| | - Lu Xu
- NOAA Chemical Sciences Laboratory, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Missouri, USA
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California, USA
| |
Collapse
|
6
|
Gao Q, Shen C, Zhang H, Long B, Truhlar DG. Quantitative kinetics reveal that reactions of HO 2 are a significant sink for aldehydes in the atmosphere and may initiate the formation of highly oxygenated molecules via autoxidation. Phys Chem Chem Phys 2024; 26:16160-16174. [PMID: 38787752 DOI: 10.1039/d4cp00693c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Large aldehydes are widespread in the atmosphere and their oxidation leads to secondary organic aerosols. The current understanding of their chemical transformation processes is limited to hydroxyl radical (OH) oxidation during daytime and nitrate radical (NO3) oxidation during nighttime. Here, we report quantitative kinetics calculations of the reactions of hexanal (C5H11CHO), pentanal (C4H9CHO), and butanal (C3H7CHO) with hydroperoxyl radical (HO2) at atmospheric temperatures and pressures. We find that neither tunneling nor multistructural torsion anharmonicity should be neglected in computing these rate constants; strong anharmonicity at the transition states is also important. We find rate constants for the three reactions in the range 3.2-7.7 × 10-14 cm3 molecule-1 s-1 at 298 K and 1 atm, showing that the HO2 reactions can be competitive with OH and NO3 oxidation under some conditions relevant to the atmosphere. Our findings reveal that HO2-initiated oxidation of large aldehydes may be responsible for the formation of highly oxygenated molecules via autoxidation. We augment the theoretic studies with laboratory flow-tube experiments using an iodide-adduct time-of-flight chemical ionization mass spectrometer to confirm the theoretical predictions of peroxy radicals and the autoxidation pathway. We find that the adduct from HO2 + C5H11CHO undergoes a fast unimolecular 1,7-hydrogen shift with a rate constant of 0.45 s-1. We suggest that the HO2 reactions make significant contributions to the sink of aldehydes.
Collapse
Affiliation(s)
- Qiao Gao
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China.
| | - Chuanyang Shen
- Department of Chemistry, University of California, Riverside, California, 92507, USA.
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California, 92507, USA.
| | - Bo Long
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China.
- College of Materials Science and Engineering, Guizhou Minzu university, Guiyang 550025, China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA.
| |
Collapse
|
7
|
Klippenstein SJ, Elliott SN. OH Roaming during the Ozonolysis of α-Pinene: A New Route to Highly Oxygenated Molecules? J Phys Chem A 2023; 127:10647-10662. [PMID: 38055299 DOI: 10.1021/acs.jpca.3c05179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The formation of low-volatility organic compounds in the ozonolysis of α-pinene, the dominant atmospheric monoterpene, provides an important route to aerosol formation. In this work, we consider a previously unexplored set of pathways for the formation of highly oxygenated molecules in α-pinene ozonolysis. Pioneering, direct experimental observations of Lester and co-workers have demonstrated a significant production of hydroxycarbonyl products in the dissociation of Criegee intermediates. Theoretical analyses indicate that this production arises from OH roaming-induced pathways during the OO fission of the vinylhydroperoxides (VHPs), which in turn come from internal H transfers in the Criegee intermediates. Ab initio kinetics computations are used here to explore the OH roaming-induced channels that arise from the ozonolysis of α-pinene. For computational reasons, the calculations consider a surrogate for α-pinene, where two spectator methyl groups are replaced with H atoms. Multireference electronic structure calculations are used to illustrate a variety of energetically accessible OH roaming pathways for the four VHPs arising from the ozonolysis of this α-pinene surrogate. Ab initio transition-state theory-based master equation calculations indicate that for the dissociation of stabilized VHPs, these OH roaming pathways are kinetically significant with a branching that generally increases from ∼20% at room temperature up to ∼70% at lower temperatures representative of the troposphere. For one of the VHPs, this branching already exceeds 60% at room temperature. For the overall ozonolysis process, these branching ratios would be greatly reduced by a limited branching to the stabilized VHP, although there would also be some modest roaming fraction for the nonthermal VHP dissociation process. The strong exothermicities of the roaming-induced isomerizations/additions and abstractions suggest new routes to fission of the cyclobutane rings. Such ring fissions would facilitate further autoxidation reactions, thereby providing a new route for producing highly oxygenated nonvolatile precursors to aerosol formation.
Collapse
Affiliation(s)
- Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sarah N Elliott
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
8
|
Kenseth CM, Hafeman NJ, Rezgui SP, Chen J, Huang Y, Dalleska NF, Kjaergaard HG, Stoltz BM, Seinfeld JH, Wennberg PO. Particle-phase accretion forms dimer esters in pinene secondary organic aerosol. Science 2023; 382:787-792. [PMID: 37972156 DOI: 10.1126/science.adi0857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
Secondary organic aerosol (SOA) is ubiquitous in the atmosphere and plays a pivotal role in climate, air quality, and health. The production of low-volatility dimeric compounds through accretion reactions is a key aspect of SOA formation. However, despite extensive study, the structures and thus the formation mechanisms of dimers in SOA remain largely uncharacterized. In this work, we elucidate the structures of several major dimer esters in SOA from ozonolysis of α-pinene and β-pinene-substantial global SOA sources-through independent synthesis of authentic standards. We show that these dimer esters are formed in the particle phase and propose a mechanism of nucleophilic addition of alcohols to a cyclic acylperoxyhemiacetal. This chemistry likely represents a general pathway to dimeric compounds in ambient SOA.
Collapse
Affiliation(s)
- Christopher M Kenseth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nicholas J Hafeman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Samir P Rezgui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jing Chen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Yuanlong Huang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nathan F Dalleska
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John H Seinfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Weschler CJ, Nazaroff WW. Ozone Loss: A Surrogate for the Indoor Concentration of Ozone-Derived Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13569-13578. [PMID: 37639667 DOI: 10.1021/acs.est.3c03968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Ozone concentrations tend to be substantially lower indoors than outdoors, largely because of ozone reactions with indoor surfaces. When there are no indoor sources of ozone, a common condition, the net concentration of gaseous products derived from indoor ozone chemistry scales linearly with the difference between outdoor and indoor ozone concentrations, termed "ozone loss." As such, ozone loss is a metric that might be used by epidemiologists to disentangle the adverse health effects of ozone's oxidation products from those of exposure to ozone itself. The present paper examines the characteristics, potential utility, and limitations of the ozone loss concept. We show that for commonly occurring indoor conditions, the ozone loss concentration is directly proportional to the total rate constant for ozone removal on surfaces (ksum) and inversely proportional to the net removal of ozone by air exchange (λ) plus surface reactions (ksum). It follows that the ratio of indoor ozone to ozone loss is equal to the ratio of λ to ksum. Ozone loss is a promising metric for probing potential adverse health effects resulting from exposures to products of indoor ozone chemistry. Notwithstanding its virtues, practitioners using it should be mindful of the limitations discussed in this paper.
Collapse
Affiliation(s)
- Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
- International Centre for Indoor Environment and Energy, Technical University of Denmark, Lyngby 2800, Denmark
| | - William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| |
Collapse
|
10
|
Zhang W, Zhao Z, Shen C, Zhang H. Unexpectedly Efficient Aging of Organic Aerosols Mediated by Autoxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6965-6974. [PMID: 37083304 DOI: 10.1021/acs.est.2c09773] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Multiphase oxidative aging is a ubiquitous process for atmospheric organic aerosols (OA). But its kinetics was often found to be slow in previous laboratory studies where high hydroxyl radical concentrations ([•OH]) were used. In this study, we performed heterogeneous oxidation experiments of several model OA systems under varied aging timescales and gas-phase [•OH]. Our results suggest that OA heterogeneous oxidation may be 2-3 orders of magnitude faster when [•OH] is decreased from typical laboratory flow tube conditions to atmospheric levels. Direct laboratory mass spectrometry measurements coupled with kinetic simulations suggest that an intermolecular autoxidation mechanism mediated by particle-phase peroxy radicals greatly accelerates OA oxidation, with enhanced formation of organic hydroperoxides, alcohols, and fragmentation products. With autoxidation, we estimate that the OA oxidation timescale in the atmosphere may be from less than a day to several days. Thus, OA oxidative aging can have greater atmospheric impacts than previously expected. Furthermore, our findings reveal the nature of heterogeneous aerosol oxidation chemistry in the atmosphere and help improve the understanding and prediction of atmospheric OA aging and composition evolution.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Zixu Zhao
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Chuanyang Shen
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California 92507, United States
| |
Collapse
|
11
|
Upshur MA, Bé AG, Luo J, Varelas JG, Geiger FM, Thomson RJ. Organic synthesis in the study of terpene-derived oxidation products in the atmosphere. Nat Prod Rep 2023; 40:890-921. [PMID: 36938683 DOI: 10.1039/d2np00064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Covering: 1997 up to 2022Volatile biogenic terpenes involved in the formation of secondary organic aerosol (SOA) particles participate in rich atmospheric chemistry that impacts numerous aspects of the earth's complex climate system. Despite the importance of these species, understanding their fate in the atmosphere and determining their atmospherically-relevant properties has been limited by the availability of authentic standards and probe molecules. Advances in synthetic organic chemistry directly aimed at answering these questions have, however, led to exciting discoveries at the interface of chemistry and atmospheric science. Herein we provide a review of the literature regarding the synthesis of commercially unavailable authentic standards used to analyze the composition, properties, and mechanisms of SOA particles in the atmosphere.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Ariana Gray Bé
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jingyi Luo
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jonathan G Varelas
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| |
Collapse
|
12
|
West CP, Mesa Sanchez D, Morales AC, Hsu YJ, Ryan J, Darmody A, Slipchenko LV, Laskin J, Laskin A. Molecular and Structural Characterization of Isomeric Compounds in Atmospheric Organic Aerosol Using Ion Mobility-Mass Spectrometry. J Phys Chem A 2023; 127:1656-1674. [PMID: 36763810 DOI: 10.1021/acs.jpca.2c06459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Secondary organic aerosol (SOA) formed through multiphase atmospheric chemistry makes up a large fraction of airborne particles. The chemical composition and molecular structures of SOA constituents vary between different emission sources and aging processes in the atmosphere, which complicates their identification. In this work, we employ drift tube ion mobility spectrometry with quadrupole time-of-flight mass spectrometry (IM-MS) detection for rapid gas-phase separation and multidimensional characterization of isomers in two biogenic SOAs produced from ozonolysis of isomeric monoterpenes, d-limonene (LSOA) and α-pinene (PSOA). SOA samples were ionized using electrospray ionization (ESI) and characterized using IM-MS in both positive and negative ionization modes. The IM-derived collision cross sections in nitrogen gas (DTCCSN2 ) for individual SOA components were obtained using multifield and single-field measurements. A novel application of IM multiplexing/high-resolution demultiplexing methodology was employed to increase sensitivity, improve peak shapes, and augment mobility baseline resolution, which revealed several isomeric structures for the measured ions. For LSOA and PSOA samples, we report significant structural differences of the isomer structures. Molecular structural calculations using density functional theory combined with the theoretical modeling of CCS values provide insights into the structural differences between LSOA and PSOA constituents. The average DTCCSN2 values for monomeric SOA components observed as [M + Na]+ ions are 3-6% higher than those of their [M - H]- counterparts. Meanwhile, dimeric and trimeric isomer components in both samples showed an inverse trend with the relevant values of [M - H]- ions being 3-7% higher than their [M + Na]+ counterparts, respectively. The results indicate that the structures of Na+-coordinated oligomeric ions are more compact than those of the corresponding deprotonated species. The coordination with Na+ occurs on the oxygen atoms of the carbonyl groups leading to a compact configuration. Meanwhile, deprotonated molecules have higher DTCCSN2 values due to their elongated structures in the gas phase. Therefore, DTCCSN2 values of isomers in SOA mixtures depend strongly on the mode of ionization in ESI. Additionally, PSOA monomers and dimers exhibit larger DTCCSN2 values (1-4%) than their LSOA counterparts owing to more rigid structures. A cyclobutane ring is present with functional groups pointing in opposite directions in PSOA compounds, as compared to noncyclic flexible LSOA structures, forming more compact ions in the gas phase. Lastly, we investigated the effects of direct photolysis on the chemical transformations of selected individual PSOA components. We use IM-MS to reveal structural changes associated with aerosol aging by photolysis. This study illustrates the detailed molecular and structural descriptors for the detection and annotation of structural isomers in complex SOA mixtures.
Collapse
Affiliation(s)
- Christopher P West
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniela Mesa Sanchez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ana C Morales
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yun-Jung Hsu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jackson Ryan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew Darmody
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Aeronautics and Aerospace Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lyudmila V Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Earth, Atmospheric & Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Wang S, Zhao Y, Chan AWH, Yao M, Chen Z, Abbatt JPD. Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere. Chem Rev 2023; 123:1635-1679. [PMID: 36630720 DOI: 10.1021/acs.chemrev.2c00430] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organic peroxides (POs) are organic molecules with one or more peroxide (-O-O-) functional groups. POs are commonly regarded as chemically labile termination products from gas-phase radical chemistry and therefore serve as temporary reservoirs for oxidative radicals (HOx and ROx) in the atmosphere. Owing to their ubiquity, active gas-particle partitioning behavior, and reactivity, POs are key reactive intermediates in atmospheric multiphase processes determining the life cycle (formation, growth, and aging), climate, and health impacts of aerosol. However, there remain substantial gaps in the origin, molecular diversity, and fate of POs due to their complex nature and dynamic behavior. Here, we summarize the current understanding on atmospheric POs, with a focus on their identification and quantification, state-of-the-art analytical developments, molecular-level formation mechanisms, multiphase chemical transformation pathways, as well as environmental and health impacts. We find that interactions with SO2 and transition metal ions are generally the fast PO transformation pathways in atmospheric liquid water, with lifetimes estimated to be minutes to hours, while hydrolysis is particularly important for α-substituted hydroperoxides. Meanwhile, photolysis and thermolysis are likely minor sinks for POs. These multiphase PO transformation pathways are distinctly different from their gas-phase fates, such as photolysis and reaction with OH radicals, which highlights the need to understand the multiphase partitioning of POs. By summarizing the current advances and remaining challenges for the investigation of POs, we propose future research priorities regarding their origin, fate, and impacts in the atmosphere.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
- School of the Environment, University of Toronto, Toronto, OntarioM5S 3E8, Canada
| | - Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| |
Collapse
|
14
|
Gao Y, Lu K, Zhang Y. Review of technologies and their applications for the speciated detection of RO 2 radicals. J Environ Sci (China) 2023; 123:487-499. [PMID: 36522008 DOI: 10.1016/j.jes.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Peroxy radicals (RO2), which are formed during the oxidation of volatile organic compounds, play an important role in atmospheric oxidation reactions. Therefore, the measurement of RO2, especially distinct species of RO2 radicals, is important and greatly helps the exploration of atmospheric chemistry mechanisms. Although the speciated detection of RO2 radicals remains challenging, various methods have been developed to study them in detail. These methods can be divided into spectroscopy and mass spectrometry technologies. The spectroscopy methods contain laser-induced fluorescence (LIF), UV-absorption spectroscopy, cavity ring-down spectroscopy (CRDS) and matrix isolation and electron spin resonance (MIESR). The mass spectrometry methods contain chemical ionization atmospheric pressure interface time-of-flight mass spectrometry (CI-APi-TOF), chemical ionization mass spectrometry (CIMS), CI-Orbitrap-MS and the third-generation proton transfer reaction-time-of-flight mass spectrometer (PTR3). This article reviews technologies for the speciated detection of RO2 radicals and the applications of these methods. In addition, a comparison of these techniques and the reaction mechanisms of some key species are discussed. Finally, possible gaps are proposed that could be filled by future research into speciated RO2 radicals.
Collapse
Affiliation(s)
- Yue Gao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Mayorga R, Xia Y, Zhao Z, Long B, Zhang H. Peroxy Radical Autoxidation and Sequential Oxidation in Organic Nitrate Formation during Limonene Nighttime Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15337-15346. [PMID: 36282674 DOI: 10.1021/acs.est.2c04030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Limonene is an abundant monoterpene released into the atmosphere via biogenic emissions and biomass burning. However, the atmospheric oxidation and secondary organic aerosol (SOA) formation mechanisms of limonene, especially during nighttime, remain largely understudied. In this work, limonene was oxidized synergistically by ozone (O3) and nitrate radicals (NO3) in a flow tube reactor and a continuous flow stirred tank reactor. Upon oxidation, many highly oxidized organic nitrates and nitrooxy peroxy radicals (RO2) were observed in the gas phase within 1 min. Combining quantum chemical calculations with kinetic simulations, we found that the primary nitrooxy RO2 (C10H16NO5) through NO3 addition at the more substituted endocyclic double bond and at the exocyclic double bond (previously considered as minor pathways) can undergo autoxidation with rate constants of around 0.02 and 20 s-1 at 298 K, respectively. These pathways could explain a major portion of the observed highly oxidized organic nitrates. In the SOA, highly oxidized mono- and dinitrates (e.g., C10H17NO7-8 and C10H16,18N2O8-10) make up a significant contribution, highlighting nitrooxy RO2 autoxidation and sequential NO3 oxidation of limonene. The same organic nitrates are also observed in ambient aerosol during biomass burning and nighttime in the southeastern United States. Therefore, the present work provides new insights into the nighttime oxidation of limonene and SOA formation in the atmosphere.
Collapse
Affiliation(s)
- Raphael Mayorga
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Yu Xia
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Zixu Zhao
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Bo Long
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California 92507, United States
| |
Collapse
|
16
|
Berndt T. Peroxy Radical and Product Formation in the Gas-Phase Ozonolysis of α-Pinene under Near-Atmospheric Conditions: Occurrence of an Additional Series of Peroxy Radicals O,O-C 10H 15O(O 2) yO 2 with y = 1-3. J Phys Chem A 2022; 126:6526-6537. [PMID: 36074727 DOI: 10.1021/acs.jpca.2c05094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ozonolysis of α-pinene, C10H16, and other monoterpenes is considered to be one of the important chemical process in the atmosphere leading to condensable vapors, which are relevant to aerosol formation and, finally, for Earth's radiation budget. The formation of peroxy (RO2) radicals, O,O-C10H15(O2)xO2 with x = 0-3, and closed-shell products has been probed from the ozonolysis of α-pinene for close to atmospheric reaction conditions. (The "O,O" in the chemical formulas indicates the two carbonyl groups formed in the ozonolysis.) An additional series of RO2 radicals, O,O-C10H15O(O2)yO2 with y = 1-3, emerged in the presence of NO additions of (1.7-50) × 109 molecules cm-3, whose formation can be explained via different processes starting from alkoxy (RO) radicals, such as the RO-driven autoxidation. The main closed-shell product is a substance with the composition C10H16O3, probably pinonic acid, obtained with a molar yield (lower limit) of 0.26+0.27-0.14 independent of NO. Total molar product yields accounted for up to 0.71+0.72-0.38 indicating reasonable detection sensitivity of the analytical technique applied. For the isomeric O,O-C10H15O2 radicals, an average rate coefficient k(RO2 + NO) = (1.5 ± 0.3) × 10-11 cm3 molecule-1 s-1 at 295 ± 2 K was determined. Product analysis showed a lowering in the formation of highly oxygenated organic molecules (HOMs) by a factor of ∼2.2 when adding 5 × 1010 molecules cm-3 of NO. The comparison with former results revealed that total HOM suppression by NO in the α-pinene ozonolysis is slightly stronger than in the OH + α-pinene reaction.
Collapse
Affiliation(s)
- Torsten Berndt
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
17
|
Mayorga R, Chen K, Raeofy N, Woods M, Lum M, Zhao Z, Zhang W, Bahreini R, Lin YH, Zhang H. Chemical Structure Regulates the Formation of Secondary Organic Aerosol and Brown Carbon in Nitrate Radical Oxidation of Pyrroles and Methylpyrroles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7761-7770. [PMID: 35675110 DOI: 10.1021/acs.est.2c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrogen-containing heterocyclic volatile organic compounds (VOCs) are important components of wildfire emissions that are readily reactive toward nitrate radicals (NO3) during nighttime, but the oxidation mechanism and the potential formation of secondary organic aerosol (SOA) and brown carbon (BrC) are unclear. Here, NO3 oxidation of three nitrogen-containing heterocyclic VOCs, pyrrole, 1-methylyrrole (1-MP), and 2-methylpyrrole (2-MP), was investigated in chamber experiments to determine the effect of precursor structures on SOA and BrC formation. The SOA chemical compositions and the optical properties were analyzed using a suite of online and offline instrumentation. Dinitro- and trinitro-products were found to be the dominant SOA constituents from pyrrole and 2-MP, but not observed from 1-MP. Furthermore, the SOA from 2-MP and pyrrole showed strong light absorption, while that from 1-MP were mostly scattering. From these results, we propose that NO3-initiated hydrogen abstraction from the 1-position in pyrrole and 2-MP followed by radical shift and NO2 addition leads to light-absorbing nitroaromatic products. In the absence of a 1-position hydrogen, NO3 addition likely dominates the 1-MP chemistry. We also estimate that the total SOA mass and light absorption from pyrrole and 2-MP are comparable to those from phenolic VOCs and toluene in biomass burning, underscoring the importance of considering nighttime oxidation of pyrrole and methylpyrroles in air quality and climate models.
Collapse
Affiliation(s)
- Raphael Mayorga
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Kunpeng Chen
- Department of Environmental Sciences, University of California, Riverside, California 92507, United States
| | - Nilofar Raeofy
- Department of Environmental Sciences, University of California, Riverside, California 92507, United States
| | - Megan Woods
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Michael Lum
- Department of Environmental Sciences, University of California, Riverside, California 92507, United States
| | - Zixu Zhao
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Wen Zhang
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Roya Bahreini
- Department of Chemistry, University of California, Riverside, California 92507, United States
- Department of Environmental Sciences, University of California, Riverside, California 92507, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92507, United States
| | - Ying-Hsuan Lin
- Department of Environmental Sciences, University of California, Riverside, California 92507, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92507, United States
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California 92507, United States
- Department of Environmental Sciences, University of California, Riverside, California 92507, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92507, United States
| |
Collapse
|
18
|
Nyamwihura RJ, Ogungbe IV. The pinene scaffold: its occurrence, chemistry, synthetic utility, and pharmacological importance. RSC Adv 2022; 12:11346-11375. [PMID: 35425061 PMCID: PMC9003397 DOI: 10.1039/d2ra00423b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Plant-based secondary metabolites have been a major source of drug discovery and inspiration for new generations of drugs. Plants offer a wide variety of compound classes, including alkaloids, terpenes, flavonoids, and glycosides, with different molecular architectures (fused bridgehead, bi- and polycyclic, spirocyclic, polycyclic, and acyclic). The diversity, abundance, and accessibility of plant metabolites make plants an attractive source of human and animal medicine. Even though the pinene scaffold is abundant in nature and has historical use in traditional medicine, pinene and pinene-derived compounds have not been comprehensively studied for medicinal applications. This review provides insight into the utility of the pinene scaffold as a crucial building block of important natural and synthetic products and as a chiral reagent in the asymmetric synthesis of important compounds.
Collapse
Affiliation(s)
- Rogers J Nyamwihura
- Department of Chemistry, Jackson State University 1400 John R. Lynch Street Jackson MS 39217 USA +1-601-979-3719
| | - Ifedayo Victor Ogungbe
- Department of Chemistry, Jackson State University 1400 John R. Lynch Street Jackson MS 39217 USA +1-601-979-3719
| |
Collapse
|
19
|
Vacuum ultraviolet free-electron laser photoionization mass spectrometry of alpha-pinene ozonolysis. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|