1
|
Dong W, Liu C, Lin GB, Zhang YC, Li HB, Juhasz AL, Liu C, Ma LQ. Chromium Oral Bioavailability in 16 Contaminated Soils from Different Sources: Mouse Model Development and Cr Speciation in Soil and Mouse Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4318-4329. [PMID: 40017172 DOI: 10.1021/acs.est.4c12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Soil contamination by chromium (Cr) has attracted much public attention due to its ubiquity in the environment and toxicity to humans, with hexavalent CrVI being more toxic and mobile than trivalent CrIII. In this study, 16 soils contaminated from different sources were chosen to determine their Cr accumulation in mouse tissues and changes in Cr speciation in soils, and mouse intestinal contents, organs and excreta based on a steady-state mouse model. The Cr accumulation in mouse organs after exposing to CrVI was 1.6-2.6 fold greater than those exposing to CrIII. Further, Cr relative bioavailability (RBA) was measured using a mouse urinary excretion bioassay. Results show that Cr via oral digestion was mainly accumulated in the kidneys, with Cr-RBA in soils being 5.12-50.0%, averaging 15.6%. Besides soil properties, variation in Cr-RBA also depended on its contamination sources, with soils near electronic waste dismantling and tannery sites showing greater values. Further, instead of the CrVI contents in contaminated soils, Cr-RBA was closely related to the unreduced CrVI contents in mouse intestines, with 90.1% of CrVI being reduced before its absorption. This study helps to evaluate the health risks associated with Cr-contaminated soils by measuring Cr-RBA via a newly developed mouse model and its influence by Cr speciation. Our data suggest a potential risk associated with incidental exposure to Cr-contaminated soils via an oral pathway.
Collapse
Affiliation(s)
- Wenjie Dong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Can Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guo-Bing Lin
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuan-Chen Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Chenjing Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Zhuang W, Zhu T, Li F, Queiroz HM, Yan Q, Zhao X, Liu J. Potential Environmental Impacts and Management Strategies for Metal Release during Ocean Alkalinity Enhancement Using Olivine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1091-1099. [PMID: 39779491 DOI: 10.1021/acs.est.4c10705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Ocean alkalinity enhancement (OAE) based on enhanced weathering of olivine (EWO) is a promising marine carbon dioxide removal (mCDR) technique. Previous research primarily focuses on the toxicological effects of potentially toxic metals (PTMs) released from olivine. In this Perspective, we explore the overlooked impacts of EWO on environmental media in two scenarios: olivine applied to beaches/shallow continental shelves and offshore dispersion by vessels. We analyze the potential migration pathways of iron and PTMs (e.g., nickel and chromium) after their release, and their interactions with manganese oxides in sediments, potentially causing secondary contamination. Additionally, we propose mitigation strategies to prevent PTM concentrations from exceeding local environmental quality standards, including the use of alkalization equipment to control PTM levels. This Perspective underscores the need for thorough environmental assessments prior to large-scale implementation to ensure the sustainability and efficacy of mCDR efforts.
Collapse
Affiliation(s)
- Wen Zhuang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Tianqiang Zhu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China
| | - Feng Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China
| | - Hermano Melo Queiroz
- Department of Geography, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Qinglin Yan
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaojie Zhao
- Weifang Marine Development Research Institute, Weifang, Shandong 261100, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Zhang D, Zeng Q, Chen H, Guo D, Li G, Dong H. Enhanced Rock Weathering as a Source of Metals to Promote Methanogenesis and Counteract CO 2 Sequestration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19679-19689. [PMID: 39432802 DOI: 10.1021/acs.est.4c04751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Enhanced weathering of (ultra)mafic rocks has been proposed as a promising approach to sequester atmospheric CO2 and mitigate climate change. However, these silicate rocks contain varying amounts of trace metals, which are essential cofactors of metallaenzymes in methanogens. We found that weathering of crushed peridotite and basalt significantly promoted the growth and methanogenesis of a model methanogen─Methanosarcina acetivorans C2A under the condition of excess substrate. The released trace metals from peridotite and basalt, especially Fe, Ni, and Co, accounted for the promotion effect. Observation at different spatial scales showed a close association between the rocks and cells. Proteomic analysis revealed that rock amendment significantly enhanced the expression of core metalloenzymes in the methylotrophic methanogenesis pathway. Our study uncovers a previously unrecognized but important negative effect of enhanced rock weathering on methane production, which may counteract the carbon sequestration effort.
Collapse
Affiliation(s)
- Donglei Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Qiang Zeng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, China
| | - Hongyu Chen
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Dongyi Guo
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Gaoyuan Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
4
|
Hu Y, Chen L, Ren H, Liu J. Potential of CO 2 sequestration by olivine addition in offshore waters: A ship-based deck incubation experiment. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106708. [PMID: 39208767 DOI: 10.1016/j.marenvres.2024.106708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Ocean alkalinity enhancement is considered as an effective atmospheric CO2 removal approach, but currently, little is known about the carbon sequestration potential of implementing olivine addition in offshore waters. We investigated the effect of olivine addition on the seawater carbonate system by carrying out a deck incubation experiment in the Northern Yellow Sea; the dissolution rate of olivine was calculated based on the increase in seawater alkalinity (TA), and the CO2 sequestration potential was evaluated. The results showed that the dissolution of olivine increased seawater TA and decreased partial pressure of CO2, resulting in oceanic CO2 uptake from the atmosphere through sea-air exchange; it also increased seawater pH and mitigated ocean acidification to a certain extent. The addition of 1 ‰ olivine had a more significant effect on the seawater carbonate system than 0.5 ‰ olivine addition. The average dissolution rate constant of olivine was 1.44 ± 0.15 μmol m-2 d-1. Assuming that olivine settles completely on the seabed due to gravity, the theoretically maximum amount of CO2 removed by applying 1 tonne of olivine per square meter area in the Northern Yellow Sea is only 2.0 × 10-4 t/m2. Therefore, when olivine addition is implemented in the offshore waters, it is necessary to consider reducing the olivine size, prolonging the settling time of olivine in the water column; and spreading olivine in well-mixed waters to prolong the residence time through repeated resuspension, thus increasing its potential in carbon sequestration.
Collapse
Affiliation(s)
- Yubin Hu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Lichao Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Hongwei Ren
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan, 250101, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
5
|
Zhu T, Zheng L, Li F, Liu J, Zhuang W. Sustainable carbon sequestration via olivine based ocean alkalinity enhancement in the east and South China Sea: Adhering to environmental norms for nickel and chromium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172853. [PMID: 38685434 DOI: 10.1016/j.scitotenv.2024.172853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Enhancing silicate weathering to increase oceanic alkalinity, thereby facilitating the absorption of atmospheric carbon dioxide (CO2), is considered a highly promising technique for carbon sequestration. This study aims to evaluate the feasibility and potential of olivine-based ocean alkalinity enhancement (OAE) for the removal of atmospheric CO2 and its storage in seawater as bicarbonates in the East and South China Seas (ESCS). A particular focus is placed on the potential ecological impacts arising from the release of nickel (Ni) and chromium (Cr) during the olivine weathering process. We considered two extreme scenarios: one where Ni and Cr are entirely retained in seawater, and another where they are completely deposited in sediments. These scenarios respectively represent the maximum permissible concentrations of Ni and Cr in seawater and sediments during the OAE process. Current marine environmental quality standards (EQS) were utilized as the threshold limits for Ni and Cr in both seawater and sediment, with concentrations exceeding these EQS potentially leading to significant adverse effects on marine life. When all released Ni is retained in seawater, the allowable dosage of olivine varies from 0.05 to 13.7 kg/m2 (depending on olivine particle size, temperature, and water depth); when all released Ni is captured by sediment, the permissible addition of olivine ranges from 0.21 to 2.1 kg/m2 (depending on mixing depth). Given the low solubility of Cr, it is not necessary to consider the scenario where Cr exceeds the limit in seawater. The allowable amount of Cr entirely retained in sediments ranges from 0.69 to 47.2 kg/m2.In most scenarios, the accumulation of metals in sediments preferentially exceeds the corresponding threshold value rather than remaining in seawater. Therefore, we recommend using alkalization equipment to fully dissolve olivine before discharging into the sea, enabling a larger-scale application of olivine without significant negative ecological impacts.
Collapse
Affiliation(s)
- Tianqiang Zhu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| | - Liwen Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Feng Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China.
| | - Wen Zhuang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Jankowska E, Montserrat F, Romaniello SJ, Walworth NG, Andrews MG. Metal bioaccumulation and effects of olivine sand exposure on benthic marine invertebrates. CHEMOSPHERE 2024; 358:142195. [PMID: 38692368 DOI: 10.1016/j.chemosphere.2024.142195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Due to the anthropogenic increase of atmospheric CO2 emissions, humanity is facing the negative effects of rapid global climate change. Both active emission reduction and carbon dioxide removal (CDR) technologies are needed to meet the Paris Agreement and limit global warming to 1.5 °C by 2050. One promising CDR approach is coastal enhanced weathering (CEW), which involves the placement of sand composed of (ultra)mafic minerals like olivine in coastal zones. Although the large-scale placement of olivine sand could beneficially impact the planet through the consumption of atmospheric CO2 and reduction in ocean acidification, it may also have physical and geochemical impacts on benthic communities. The dissolution of olivine can release dissolved constituents such as trace metals that may affect marine organisms. Here we tested acute and chronic responses of marine invertebrates to olivine sand exposure, as well as examined metal accumulation in invertebrate tissue resulting from olivine dissolution. Two different ecotoxicological experiments were performed on a range of benthic marine invertebrates (amphipod, polychaete, bivalve). The first experiment included acute and chronic survival and growth tests (10 and 20 days, respectively) of olivine exposure while the second had longer (28 day) exposures to measure chronic survival and bioaccumulation of trace metals (e.g. Ni, Cr, Co) released during olivine sand dissolution. Across all fauna we observed no negative effects on acute survival or chronic growth resulting solely from olivine exposure. However, over 28 days of exposure, the bent-nosed clam Macoma nasuta experienced reduced burrowing and accumulated 4.2 ± 0.7 μg g ww-1 of Ni while the polychaete Alitta virens accumulated 3.5 ± 0.9 μg g ww-1 of Ni. No significant accumulation of any other metals was observed. Future work should include longer-term laboratory studies as well as CEW field studies to validate these findings under real-world scenarios.
Collapse
Affiliation(s)
| | | | | | - Nathan G Walworth
- Vesta, PBC, San Francisco, CA, USA; University of Southern California, Los Angeles, CA, USA; J. Craig Venter Institute, La Jolla, CA, USA
| | | |
Collapse
|
7
|
Li C, Liu X, Li Y, Jiang Y, Guo X, Hutchins DA, Ma J, Lin X, Dai M. The interactions between olivine dissolution and phytoplankton in seawater: Potential implications for ocean alkalinization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168571. [PMID: 37979858 DOI: 10.1016/j.scitotenv.2023.168571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Ocean alkalinity enhancement, one of the ocean-based CO2 removal techniques, has the potential to assist us in achieving the goal of carbon neutrality. Olivine is considered the most promising mineral for ocean alkalinization enhancement due to its theoretically high CO2 sequestration efficiency. Olivine dissolution has been predicted to alter marine phytoplankton communities, however, there is still a lack of experimental evidence. The olivine dissolution process in seawater can be influenced by a range of factors, including biotic factors, which have yet to be explored. In this study, we cultivated two diatoms and one coccolithophore with and without olivine particles to investigate their interactions with olivine dissolution. Our findings demonstrate that olivine dissolution promoted the growth of all phytoplankton species, with the highly silicified diatom Thalassiosira pseudonana benefiting the most. This was probably due to the highly silicified diatom having a higher silicate requirement and, therefore, growing more quickly when silicate was released during olivine dissolution. Based on the structural characteristics and chemical compositions on the exterior surface of olivine particles, T. pseudonana was found to promote olivine dissolution by inhibiting the formation of the amorphous SiO2 layer on the surface of olivine and therefore enhancing the stoichiometric dissolution of olivine. However, the positive effects of T. pseudonana on olivine dissolution were not observed in the coccolithophore Gephyrocapsa oceanica or the non-silicate obligate diatom Phaeodactylum tricornutum. This study provides the first experimental evidence of the interaction between phytoplankton and olivine dissolution, which has important implications for ocean alkalinization research.
Collapse
Affiliation(s)
- Canru Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Xiangdong Liu
- College of Materials, Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, PR China
| | - Yan Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Yuan Jiang
- College of Materials, Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, PR China
| | - Xianghui Guo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | | | - Jian Ma
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China.
| | - Minhan Dai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
8
|
Flipkens G, Dujardin V, Salden J, T'Jollyn K, Town RM, Blust R. Olivine avoidance behaviour by marine gastropods (Littorina littorea L.) and amphipods (Gammarus locusta L.) within the context of ocean alkalinity enhancement. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115840. [PMID: 38104435 DOI: 10.1016/j.ecoenv.2023.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Gigaton scale atmospheric carbon dioxide (CO2) removal (CDR) is needed to keep global warming below 1.5 °C. Coastal enhanced olivine weathering is a CDR technique that could be implemented in coastal management programmes, but its CO2 sequestration potential and environmental safety remain uncertain. Large scale olivine spreading would change the surficial sediment characteristics, which could potentially reduce habitat suitability and ultimately result in community composition changes. To test this hypothesis, we investigated the avoidance response of the marine gastropod Littorina littorea (Linnaeus, 1758) and marine amphipod Gammarus locusta (Linnaeus, 1758) to relatively coarse (83 - 332 µm) olivine and olivine-sediment mixtures during short-term choice experiments. Pure olivine was significantly avoided by both species, while no significant avoidance was observed for sediment with 3% or 30% w/w olivine. For L. littorea, aversion of the light green colour of pure olivine (i.e. positive scototaxis) was the main reason for avoidance. Moreover, olivine was not significantly avoided when it was 7.5 cm (45%) closer to a food source/darker microhabitat (Ulva sp.) compared to natural sediment. It is inferred that the amphipod G. locusta avoided pure olivine to reduce Ni and Cr exposure. Yet, a significant increase in whole body Ni concentrations was observed after 79 h of exposure in the 30% and 100% w/w olivine treatments compared to the sediment control, likely as a result of waterborne Ni uptake. Overall, our results are significant for ecological risk assessment of coastal enhanced olivine weathering as they show that L. littorea and G. locusta will not avoid sediments with up to 30% w/w relatively coarse olivine added and that the degree of olivine avoidance is dependent on local environmental factors (e.g. food or shelter availability).
Collapse
Affiliation(s)
- Gunter Flipkens
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Vincent Dujardin
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Jordy Salden
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Kyle T'Jollyn
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Raewyn M Town
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ronny Blust
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
9
|
Zhang Q, Charles PD, Bendif EM, Hester SS, Mohammad S, Rickaby REM. Stimulating and toxic effect of chromium on growth and photosynthesis of a marine chlorophyte. THE NEW PHYTOLOGIST 2024; 241:676-686. [PMID: 37974482 DOI: 10.1111/nph.19376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Marine phytoplankton can interchange trace metals in various biochemical functions, particularly under metal-limiting conditions. Here, we investigate the stimulating and toxicity effect of chromium (Cr) on a marine Chlorophyceae Osetreococcus tauri under Fe-replete and Fe-deficient conditions. We determined the growth, photosynthesis, and proteome expressions of Osetreococcus tauri cultured under different Cr and Fe concentrations. In Fe-replete conditions, the presence of Cr(VI) stimulated significantly the growth rate and the maximum yield of photochemistry of photosystem II (Fv /Fm ) of the phytoplankton, while the functional absorption cross-section of photosystem II (σPSII ) did not change. Minor additions of Cr(VI) partially rescued phytoplankton growth under Fe-limited conditions. Proteomic analysis of this alga grown in Fe-replete normal and Fe-replete with Cr addition media (10 μM Cr) showed that the presence of Cr significantly decreased the expression of phosphate-transporting proteins and photosynthetic proteins, while increasing the expression of proteins related to carbon assimilation. Cr can stimulate the growth and photosynthesis of O. tauri, but the effects are dependent on both the Cr(VI) concentration and the availability of Fe. The proteomic results further suggest that Cr(VI) addition might significantly increase starch production and carbon fixation.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau (CORE), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Tang Qi Road, Zhuhai, 519000, China
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| | - Philip D Charles
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - El Mahdi Bendif
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski, Rimouski, G5L 3A1, QC, Canada
| | - Svenja S Hester
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Shabaz Mohammad
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| |
Collapse
|
10
|
van Genuchten CM, Hamaekers H, Fraiquin D, Hollanders S, Ahmad A. Heavy metal removal potential of olivine. WATER RESEARCH 2023; 245:120583. [PMID: 37708776 DOI: 10.1016/j.watres.2023.120583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/19/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Industrial wastewater containing heavy metals, such as Cd and Pb, must be treated prior to discharge to meet increasingly stringent discharge guidelines and to limit the impact of toxic metals on ecosystems and human health. The application of olivine particles is a natural mineral-based solution to treat heavy metal-laden wastewaters, but little is known about the efficiency and mechanism of metal removal by this solid phase. In this work, we investigate the potential of olivine for heavy metal treatment by combining batch metal removal experiments with solid-phase characterization by synchrotron-based X-ray techniques and electron microscopy. We probed the removal behaviour of a variety of metal contaminants (Co, Ni, Cd, Zn, Cu, Pb; initial concentration = 1500 µg/L) and used Zn specifically to identify the metal removal pathway of olivine. We found that olivine in powdered (0.3 g/L) and granulated (0.5 g/L) forms was able to remove up to >90% of the initial metal, depending on the metal identity, with the efficiency increasing in order of Co ≤ Cd ≤ Ni
Collapse
Affiliation(s)
- C M van Genuchten
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, Copenhagen, Denmark.
| | | | - D Fraiquin
- SIBELCO, Ankerpoort NV, Op de Bos 300, Maastricht 6223 EP, the Netherlands
| | | | - A Ahmad
- SIBELCO, Ankerpoort NV, Op de Bos 300, Maastricht 6223 EP, the Netherlands; Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
11
|
Flipkens G, Horoba K, Bostyn K, Geerts LJJ, Town RM, Blust R. Acute bioaccumulation and chronic toxicity of olivine in the marine amphipod Gammarus locusta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106662. [PMID: 37604090 DOI: 10.1016/j.aquatox.2023.106662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
Active atmospheric carbon dioxide removal (CDR) is needed at a gigaton scale in the next decades to keep global warming below 1.5 °C. Coastal enhanced silicate weathering (CESW) aims to increase natural ocean carbon sequestration via chemical weathering of finely ground olivine (MgxFe(1-x)SiO4) rich rock dispersed in dynamic coastal environments. However, the environmental safety of the technique remains in question due to the high Ni and Cr content of olivine. Therefore, we investigated the short term bioaccumulation and chronic toxicity of olivine in the marine amphipod Gammarus locusta. Acute 24-h olivine exposure resulted in significant grain size dependent olivine ingestion and subsequent Ni and Cr accumulation in tissues. Thousands of small (mainly ≤ 10 µm) olivine grains were ingested by G. locusta, but their importance for trace metal bioaccumulation requires additional research. Most olivine grains were egested within 24 h. Chronic 35-day olivine (3-99 µm) exposure reduced amphipod survival, growth, and reproduction, likely as a result of metal induced oxidative stress and disturbance of major cation homeostasis. Amphipod reproduction was significantly reduced at olivine concentrations of 10% w/w and higher. In the context of ecological risk assessment, application of an arbitrary assessment factor of 100 to the highest no observed effect concentration of 1% w/w olivine yields a very low predicted no-effect concentration (PNEC) of 0.01% w/w olivine. This low PNEC value highlights the urgent need for additional marine olivine toxicity data to accurately assess the environmentally safe scale of coastal enhanced weathering for climate change mitigation.
Collapse
Affiliation(s)
- Gunter Flipkens
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Katharina Horoba
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Kobe Bostyn
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Luna J J Geerts
- Geobiology, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Raewyn M Town
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ronny Blust
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
12
|
Foteinis S, Campbell JS, Renforth P. Life Cycle Assessment of Coastal Enhanced Weathering for Carbon Dioxide Removal from Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6169-6178. [PMID: 37011253 PMCID: PMC10116589 DOI: 10.1021/acs.est.2c08633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Coastal enhanced weathering (CEW) is a carbon dioxide removal (CDR) approach whereby crushed silicate minerals are spread in coastal zones to be naturally weathered by waves and tidal currents, releasing alkalinity and removing atmospheric carbon dioxide (CO2). Olivine has been proposed as a candidate mineral due to its abundance and high CO2 uptake potential. A life cycle assessment (LCA) of silt-sized (10 μm) olivine revealed that CEW's life-cycle carbon emissions and total environmental footprint, i.e., carbon and environmental penalty, amount to around 51 kg CO2eq and 3.2 Ecopoint (Pt) units per tonne of captured atmospheric CO2, respectively, and these will be recaptured within a few months. Smaller particle sizes dissolve and uptake atmospheric CO2 even faster; however, their high carbon and environmental footprints (e.g., 223 kg CO2eq and 10.6 Pt tCO2-1, respectively, for 1 μm olivine), engineering challenges in comminution and transportation, and possible environmental stresses (e.g., airborne and/or silt pollution) might restrict their applicability. Alternatively, larger particle sizes exhibit lower footprints (e.g., 14.2 kg CO2eq tCO2-1 and 1.6 Pt tCO2-1, respectively, for 1000 μm olivine) and could be incorporated in coastal zone management schemes, thus possibly crediting CEW with avoided emissions. However, they dissolve much slower, requiring 5 and 37 years before the 1000 μm olivine becomes carbon and environmental net negative, respectively. The differences between the carbon and environmental penalties highlight the need for using multi-issue life cycle impact assessment methods rather than focusing on carbon balances alone. When CEW's full environmental profile was considered, it was identified that fossil fuel-dependent electricity for olivine comminution is the main environmental hotspot, followed by nickel releases, which may have a large impact on marine ecotoxicity. Results were also sensitive to transportation means and distance. Renewable energy and low-nickel olivine can minimize CEW's carbon and environmental profile.
Collapse
|