1
|
Dalton EZ, Wang X, Wappes SC, Petersen-Sonn EA, Hagan SN, George C, Raff JD. Photosensitizers Regulate Nitrate Photoproduct Yields in Bulk Aqueous Matrices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6142-6154. [PMID: 40098273 DOI: 10.1021/acs.est.4c09491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Photolysis of nitrate (NO3-) in the presence of photosensitizers is thought to promote the release of atmospherically important reactive nitrogen species (NOy), such as HONO, via mechanisms that are poorly understood. To address this knowledge gap, we conducted photochemistry studies on mixtures of NO3-, a model photosensitizer [4-benzoylbenzoic acid (4-BBA)], and various aliphatic organic matter proxies. We found that aliphatic organic matter enhances the production of NOy and superoxide (O2-) from bulk aqueous nitrate photolysis, while the addition of 4-BBA decreases NOy and O2- yields in most cases. This effect was not observed in heterogeneous systems, where 4-BBA enhanced photochemical NOy production when coadsorbed with NO3- on silica surfaces. This demonstrates that photosensitizers act as both oxidants and reductants, regulating the yields of NOy and reactive oxygen species from nitrate photochemistry. Given sufficient residence time in the bulk aqueous phase, nitrate photoproducts can be scavenged via secondary reactions with photosensitizers. In heterogeneous and aerosol systems with high surface area-to-volume ratios, however, volatilization of NOy photoproducts is favored, and NOy production is less affected by chromophoric organic matter sinks in the bulk phase. This work demonstrates the intricate role of aliphatic and chromophoric moieties in natural organic matter in the photochemical conversion of NO3- to NOy (i.e., renoxification) in the atmosphere.
Collapse
Affiliation(s)
- Evan Z Dalton
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Xinke Wang
- Universite Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, Villeurbanne F-69100, France
- Now at Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Skylar C Wappes
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Emma A Petersen-Sonn
- Universite Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, Villeurbanne F-69100, France
| | - Stephanie N Hagan
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Christian George
- Universite Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, Villeurbanne F-69100, France
| | - Jonathan D Raff
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
- O'Neill School of Public and Environmental Affairs, Indiana University, 1315 East 10th Street, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Yang N, Wang J, Jacob DJ, Ye J, Sheng M, Niu M, Qin Y, Ge X, Sun Y, Wang Z, Wang Y, Wu F, Liu CQ, George C, Fu P. Aqueous production of sulfur-containing aerosols from nitroaromatic compounds and SO 2 in wintertime urban haze. Sci Bull (Beijing) 2025:S2095-9273(25)00241-5. [PMID: 40118726 DOI: 10.1016/j.scib.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 03/23/2025]
Abstract
Nighttime aqueous oxidation of fossil fuel emissions is a significant source of atmospheric secondary organic aerosols. However, the underlying mechanism of the aqueous processing remains unclear. Utilizing ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry of water-soluble organic carbon samples, we present field observations that reveal the aqueous-phase conversion of nitroaromatic compounds (NACs) and sulfur-containing aerosols from fossil fuel combustion at high relative humidity during a severe haze event in Beijing in the winter of 2016. We have confirmed that the ring-breaking oxidation of NACs can generate nitrous acid in the aqueous phase, which rapidly oxidizes sulfur dioxide (SO2) to sulfate. Subsequently, reactions between sulfate and unsaturated compounds contribute to the formation of aliphatic organosulfates. Our results elucidate a molecular-level understanding of the aqueous production of sulfur-containing aerosols from NACs and SO2 in wintertime urban haze.
Collapse
Affiliation(s)
- Ning Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Junfeng Wang
- School of Emergency Management, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Daniel J Jacob
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Jianhuai Ye
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Sheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Mutong Niu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yiming Qin
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yele Sun
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zifa Wang
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yuhang Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 02115, USA
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Christian George
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne, F-69626, France
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
3
|
Zhang H, Wang Y, Yang J, Ju Y, He J, Niu Y, Liu Y, Hou W, Qiao L, Jiang J. Water Microdroplets Promote Spontaneous Oxidation of Amino Acid- and Peptide-related Thiols to Disulfide Bonds. Chemistry 2025; 31:e202404036. [PMID: 39714933 DOI: 10.1002/chem.202404036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/24/2024]
Abstract
Disulfide bonds (S-S) play a critical role in modern biochemistry, organic synthesis and prebiotic chemistry. Traditional methods for synthesizing disulfide bonds often rely on oxygen, alkali, and metal catalysts. Herein, thiol groups involved in amino acids and peptides were spontaneously converted into symmetrical and unsymmetrical disulfide bonds within water microdroplets, without the need for catalysts or oxygen, and under room temperature. Water microdroplets displayed improved selectivity for disulfide bond formation, with minimal production of other oxidative species. Mechanistic investigations revealed that hydroxyl radicals (⋅OH) present on the water microdroplet surface facilitated the oxidation process. Thiols were firstly oxidized to thiyl radicals (RS⋅), which subsequently coupled to form disulfide bonds. This study highlights the potential of microdroplet chemistry as an efficient and mild approach for constructing disulfide bonds.
Collapse
Affiliation(s)
- Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Yanjie Wang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Jiamin Yang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Yuqing Niu
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Yaqi Liu
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Wenhao Hou
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Lina Qiao
- Marine College, Shandong University (Weihai), Weihai, Shandong, 264209, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, China
| |
Collapse
|
4
|
Li Q, Ma S, Ge Q, Wu X, Liu Y, Tu X, Zhang L, Fu H. Surface Nitrate Enrichment and Enhanced HONO Production from Ionic Surfactant Aggregation at the Aqueous-Air Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22257-22266. [PMID: 39636578 DOI: 10.1021/acs.est.4c05967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Significant discrepancies persist between field observations and model simulations regarding the strength of marine-derived HONO sources, underscoring the urgency to resolve unidentified HONO sources. In this study, sodium dodecyl sulfate (SDS) was chosen as a proxy for marine surfactants to investigate its impact on aqueous nitrate photolysis for the first time. Remarkable increases in HONO and NO2 production rates by factors of 3.3 and 5.6, respectively, along with a 1.9-fold rise in NO2- concentration, were observed at a very low SDS concentration of 0.01 mM, strongly illustrating the promoting effect on nitrate photolysis. Furthermore, at an SDS concentration of 2 mM, intriguingly aligned with the critical micelle concentration, there was an additional 41.7% increase in HONO production rates. Vertically resolved Raman measurements indicated that SDS anions at the aqueous-air interface attracted NO3- closer to the aqueous surfaces, increasing the amount of incompletely solvated surface nitrate. Importantly, the anionic surfactant exhibited a greater promoting effect on HONO production compared to other typical nitrate photochemistry systems with the addition of a marine dissolved organic matter proxy, halogen, photosensitizer, or OH scavenger. These findings offer new insights into marine-derived HONO sources and should be considered in model simulations concerning the budgets of NOx, OH, and O3.
Collapse
Affiliation(s)
- Qiong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Shuaishuai Ma
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xinyuan Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Yu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xiang Tu
- Jiangxi Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang 330000, China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, China
- Institute of Eco-Chongming (SIEC), 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai 202162, China
| |
Collapse
|
5
|
Yang W, Xia Z, Zheng J, Li F, Nan X, Du T, Han C. Reactive oxygen species play key roles in the nitrite formation by the inorganic nitrate photolysis in the presence of urban water-soluble organic carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174203. [PMID: 38909793 DOI: 10.1016/j.scitotenv.2024.174203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Inorganic nitrates were considered to be a potential source of atmospheric NO2-/HONO during the daytime. To better evaluate the contribution of nitrate photochemistry on NO2-/HONO formation, the photolysis of nitrates in the real atmospheric environment needs to be further explored. Here, the NO2- generation by the photolysis of inorganic nitrates in the presence of total water-soluble organic carbon (WSOC) was quantified. The physicochemical properties of WSOC were measured to understand the underlying mechanism for the photolysis of inorganic nitrates with WSOC. WSOC enhanced or suppressed the photochemical conversion of nitrates to NO2-, with the quantum yield of NO2- (ΦNO2-) varying from (0.07 ± 0.02)% to (3.11 ± 0.04)% that depended on the light absorption properties of WSOC. Reactive oxygen species (ROS) generated from WSOC, including O2-/HO2 and OH, played a dual role in the NO2- formation. Light-absorbing substances in WSOC, such as N-containing and carbonyl aromatics, produced O2-/HO2 that enhanced the secondary conversion of NO2 to NO2-. On the other hand, OH deriving from the WSOC photochemistry inhibited the nitrate photodegradation and the NO2- formation. HONO source strength by the aqueous photolysis of nitrates with WSOC was estimated to be lower than 100 ppt h-1, which may partly contribute to the atmospheric HONO source in some cases.
Collapse
Affiliation(s)
- Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Zhifu Xia
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Jianwei Zheng
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Fu Li
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Xiangli Nan
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Tao Du
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
6
|
Yang W, Ji H, Li F, He X, Zhang S, Nan X, Du T, Li K, Han C. Important yet Overlooked HONO Source from Aqueous-phase Photochemical Oxidation of Nitrophenols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15722-15731. [PMID: 39175437 DOI: 10.1021/acs.est.4c05048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Nitrites (NO2-/HONO), as the primary source of hydroxyl radicals (•OH) in the atmosphere, play a key role in atmospheric chemistry. However, the current understanding of the source of NO2-/HONO is insufficient and therefore hinders the accurate quantification of atmospheric oxidation capacity. Herein, we highlighted an overlooked HONO source by the reaction between nitrophenols (NPs) and •OH in the aqueous phase and provided kinetic data to better evaluate the contribution of this process to atmospheric HONO. Three typical NPs, including 4-nitrophenol (4NP), 2-nitrophenol (2NP), and 4-nitrocatechol (4NC), underwent a denitration process to form aqueous NO2- and gaseous HONO through the •OH oxidation, with the yield of NO2-/HONO varied from 15.0 to 33.5%. According to chemical composition and structure analysis, the reaction pathway, where the ipso addition of •OH to the NO2 group on 4NP generated hydroquinone, can contribute to more than 61.9% of the NO2-/HONO formation. The aqueous photooxidation of NPs may account for HONO in the atmosphere, depending on the specific conditions. The results clearly suggest that the photooxidation of NPs should be considered in the field observation and calculation to better evaluate the HONO budget in the atmosphere.
Collapse
Affiliation(s)
- Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Hui Ji
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Fu Li
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Xue He
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Shan Zhang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiangli Nan
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Tao Du
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Kun Li
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
7
|
Mora García S, Gutierrez I, Nguyen JV, Navea JG, Grassian VH. Enhanced HONO Formation from Aqueous Nitrate Photochemistry in the Presence of Marine Relevant Organics: Impact of Marine-Dissolved Organic Matter (m-DOM) Concentration on HONO Yields and Potential Synergistic Effects of Compounds within m-DOM. ACS ES&T AIR 2024; 1:525-535. [PMID: 38898933 PMCID: PMC11184552 DOI: 10.1021/acsestair.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/21/2024]
Abstract
Nitrous acid (HONO) is a key molecule in the reactive nitrogen cycle. However, sources and sinks for HONO are not fully understood. Particulate nitrate photochemistry has been suggested to play a role in the formation of HONO in the marine boundary layer (MBL). Here we investigate the impact of marine relevant organic compounds on HONO formation from aqueous nitrate photochemistry. In particular, steady-state, gas-phase HONO yields were measured from irradiated nitrate solutions at low pH containing marine-dissolved organic matter (m-DOM). m-DOM induces a nonlinear increase in HONO yield across all concentrations compared to that for pure nitrate solutions, with rates of HONO formation increasing by up to 3-fold when m-DOM is present. Furthermore, to understand the potential synergistic effects that may occur within complex samples such as m-DOM, mixtures of chromophoric (light-absorbing) and aliphatic (non-light-absorbing) molecular proxies were utilized. In particular, mixtures of 4-benzoylbenzoic acid (4-BBA) and ethylene glycol (EG) in acidic aqueous solutions containing nitrate showed more HONO upon irradiation compared to solutions containing only one of the molecular proxies. This suggests that synergistic effects in the HONO formation can occur in complex organic samples. Atmospheric implications of the results presented here are discussed.
Collapse
Affiliation(s)
- Stephanie
L. Mora García
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla 92037, California, United States
| | - Israel Gutierrez
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla 92037, California, United States
| | - Jillian V. Nguyen
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla 92037, California, United States
| | - Juan G. Navea
- Department
of Chemistry, Skidmore College, Saratoga Springs 12866, New York, United States
| | - Vicki H. Grassian
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla 92037, California, United States
| |
Collapse
|
8
|
Li Q, Ma S, Liu Y, Wu X, Fu H, Tu X, Yan S, Zhang L, George C, Chen J. Phase State Regulates Photochemical HONO Production from NaNO 3/Dicarboxylic Acid Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7516-7528. [PMID: 38629947 DOI: 10.1021/acs.est.3c10980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Field observations of daytime HONO source strengths have not been well explained by laboratory measurements and model predictions up until now. More efforts are urgently needed to fill the knowledge gaps concerning how environmental factors, especially relative humidity (RH), affect particulate nitrate photolysis. In this work, two critical attributes for atmospheric particles, i.e., phase state and bulk-phase acidity, both influenced by ambient RH, were focused to illuminate the key regulators for reactive nitrogen production from typical internally mixed systems, i.e., NaNO3 and dicarboxylic acid (DCA) mixtures. The dissolution of only few oxalic acid (OA) crystals resulted in a remarkable 50-fold increase in HONO production compared to pure nitrate photolysis at 85% RH. Furthermore, the HONO production rates (PHONO) increased by about 1 order of magnitude as RH rose from <5% to 95%, initially exhibiting an almost linear dependence on the amount of surface absorbed water and subsequently showing a substantial increase in PHONO once nitrate deliquescence occurred at approximately 75% RH. NaNO3/malonic acid (MA) and NaNO3/succinic acid (SA) mixtures exhibited similar phase state effects on the photochemical HONO production. These results offer a new perspective on how aerosol physicochemical properties influence particulate nitrate photolysis in the atmosphere.
Collapse
Affiliation(s)
- Qiong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Shuaishuai Ma
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, PR China
| | - Yu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Xinyuan Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, PR China
- Institute of Eco-Chongming (SIEC), 20 Cuiniao Road, Shanghai 202162, PR China
| | - Xiang Tu
- Jiangxi Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang 330000, PR China
| | - Shuwen Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
9
|
Tang MX, He LY, Xia SY, Jiang Z, He DY, Guo S, Hu RZ, Zeng H, Huang XF. Coarse particles compensate for missing daytime sources of nitrous acid and enhance atmospheric oxidation capacity in a coastal atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170037. [PMID: 38232856 DOI: 10.1016/j.scitotenv.2024.170037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
Large missing sources of daytime atmospheric nitrous acid (HONO), a vital source of hydroxyl radicals (OH) through its photolysis, frequently exist in global coastal regions. In this study, ambient HONO and relevant species were measured at a coastal site in the Pearl River Delta (PRD), China, during October 2019. Relatively high concentrations (0.32 ± 0.19 ppbv) and daytime peaks at approximately 13:00 of HONO were observed, and HONO photolysis was found to be the dominant (55.5 %) source of the primary OH production. A budget analysis of HONO based on traditional sources suggested large unknown sources during the daytime (66.4 %), which had a significant correlation with the mass of coarse particles (PM2.5-10) and photolysis frequency (J(NO2)). When incorporating photolysis of the abundant nitrate measured in coarse particles with a reasonable enhancement factor relative to fine particles due to favorable aerosol conditions, the missing daytime sources of HONO could be fully compensated by coarse particles serving as the largest source at this coastal site. Our study revealed great potential of coarse particles as a strong daytime HONO source, which has been ignored before but can efficiently promote NOx recycling and thus significantly enhance atmospheric oxidation capacity.
Collapse
Affiliation(s)
- Meng-Xue Tang
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ling-Yan He
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Shi-Yong Xia
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Jiang
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dong-Yi He
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ren-Zhi Hu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Hui Zeng
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiao-Feng Huang
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
10
|
Jia Y, Zhang C, Zheng H, Zhang G, Zhang S. Organic peroxyl radicals from biacetyl accelerated the visible-light degradation of steroid estrogens in aqueous solution. CHEMOSPHERE 2024; 351:141195. [PMID: 38242516 DOI: 10.1016/j.chemosphere.2024.141195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Indirect photodegradation is an important pathway for the reduction of steroid estrogens in sunlit surface waters. Nevertheless, the kinetics and mechanisms governing the interaction between coexisting carbonyl compounds and estrogens under visible light (Vis) remain unexplored. This study systematically investigates the Vis-induced photodegradation of 17β-estradiol (E2) in the presence of five specific carbonyl compounds-biacetyl (BD), acetone, glyoxal, pyruvic acid, and benzoquinone. The results demonstrate that, among these compounds, only BD significantly enhanced the photodegradation of E2 under Vis irradiation (λ > 400 nm). The pseudo-first order photodegradation rate constants (k1) of E2 in the Vis/BD system were 0.025 min-1 and 0.076 min-1 in ultrapure water and river water, respectively. The enhancing effect of BD was found to be pH-dependent, increasing the pH from 3.0 to 11.0 resulted in a 76% reduction in the k1 value of E2 in the Vis/BD system. Furthermore, the presence of humic acid, NO3-, or HCO3- led to an increase of more than 35% in the k1 value of E2, while NO2- exerted a pronounced inhibitory effect, resulting in a 92% decrease. Peroxyacetyl and peroxymethyl radicals, derived from BD in a yield ratio of 9, played a crucial role in the degradation of E2. These peroxyl radicals primarily targeted electron-rich hydroxyl sites of E2, initiating hydroxylation and ring-opening reactions that culminated in the formation of acidic byproducts. Notably, toxicity evaluation indicates that these hydroxylated and acidic products exhibited lower toxicity than the parent compound E2. This study highlights the important role of peroxyl radicals in estrogen degradation within aquatic environment, and also helps to design efficient visible light-responsive photo-activators for the treatment of estrogen-contaminated waters.
Collapse
Affiliation(s)
- Yulu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Chengyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Hongcen Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
11
|
Kim P, Boothby C, Grassian VH, Continetti RE. Photoinduced Reactions of Nitrate in Aqueous Microdroplets by Triplet Energy Transfer. J Phys Chem Lett 2023; 14:10677-10684. [PMID: 37988598 DOI: 10.1021/acs.jpclett.3c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In-situ Raman spectroscopy of single levitated charged aqueous microdroplets irradiated by dual-beam (266 and 532 nm) lasers demonstrates that the nitrate anion (NO3-) can be depleted in the droplet through an energy transfer mechanism following excitation of sulfanilic acid (SA), a UV-absorbing aromatic organic compound. Upon 266 nm irradiation, a fast decrease of the NO3- concentration was observed when SA is present in the droplet. This photoinduced reaction occurs without the direct photolysis of NO3-. Instead, the rate of NO3- depletion was found to depend on the initial concentration of SA and the pH of the droplet. Based on absorption-emission spectral analysis and excited-state energy calculations, triplet-triplet energy transfer between SA and NO3- is proposed as the underlying mechanism for the depletion of NO3- in aqueous microdroplets. These results suggest that energy transfer mechanisms initiated by light-absorbing organic molecules may play a significant role in NO3- photochemistry.
Collapse
Affiliation(s)
- Pyeongeun Kim
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0340, United States
| | - Christian Boothby
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0340, United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0340, United States
| | - Robert E Continetti
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0340, United States
| |
Collapse
|
12
|
Sommariva R, Alam MS, Crilley LR, Rooney DJ, Bloss WJ, Fomba KW, Andersen ST, Carpenter LJ. Factors Influencing the Formation of Nitrous Acid from Photolysis of Particulate Nitrate. J Phys Chem A 2023; 127:9302-9310. [PMID: 37879076 PMCID: PMC10641842 DOI: 10.1021/acs.jpca.3c03853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Enhanced photolysis of particulate nitrate (pNO3) to form photolabile species, such as gas-phase nitrous acid (HONO), has been proposed as a potential mechanism to recycle nitrogen oxides (NOx) in the remote boundary layer ("renoxification"). This article presents a series of laboratory experiments aimed at investigating the parameters that control the photolysis of pNO3 and the efficiency of HONO production. Filters on which artificial or ambient particles had been sampled were exposed to the light of a solar simulator, and the formation of HONO was monitored under controlled laboratory conditions. The results indicate that the photolysis of pNO3 is enhanced, compared to the photolysis of gas-phase HNO3, at low pNO3 levels, with the enhancement factor reducing at higher pNO3 levels. The presence of cations (Na+) and halides (Cl-) and photosensitive organic compounds (imidazole) also enhance pNO3 photolysis, but other organic compounds such as oxalate and succinic acid have the opposite effect. The precise role of humidity in pNO3 photolysis remains unclear. While the efficiency of photolysis is enhanced in deliquescent particles compared to dry particles, some of the experimental results suggest that this may not be the case for supersaturated particles. These experiments suggest that both the composition and the humidity of particles control the enhancement of particulate nitrate photolysis, potentially explaining the variability in results among previous laboratory and field studies. HONO observations in the remote marine boundary layer can be explained by a simple box-model that includes the photolysis of pNO3, in line with the results presented here, although more experimental work is needed in order to derive a comprehensive parametrization of this process.
Collapse
Affiliation(s)
- R. Sommariva
- School
of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, U.K.
| | - M. S. Alam
- School
of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, U.K.
| | - L. R. Crilley
- School
of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, U.K.
| | - D. J. Rooney
- School
of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, U.K.
| | - W. J. Bloss
- School
of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, U.K.
| | - K. W. Fomba
- Atmospheric
Chemistry Department, Leibniz Institute
for Tropospheric Research, Leipzig 04318, Germany
| | - S. T. Andersen
- Wolfson
Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - L. J. Carpenter
- Wolfson
Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K.
| |
Collapse
|
13
|
Zhu T, Tang M, Gao M, Bi X, Cao J, Che H, Chen J, Ding A, Fu P, Gao J, Gao Y, Ge M, Ge X, Han Z, He H, Huang RJ, Huang X, Liao H, Liu C, Liu H, Liu J, Liu SC, Lu K, Ma Q, Nie W, Shao M, Song Y, Sun Y, Tang X, Wang T, Wang T, Wang W, Wang X, Wang Z, Yin Y, Zhang Q, Zhang W, Zhang Y, Zhang Y, Zhao Y, Zheng M, Zhu B, Zhu J. Recent Progress in Atmospheric Chemistry Research in China: Establishing a Theoretical Framework for the "Air Pollution Complex". ADVANCES IN ATMOSPHERIC SCIENCES 2023; 40:1-23. [PMID: 37359906 PMCID: PMC10140723 DOI: 10.1007/s00376-023-2379-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/06/2023] [Accepted: 04/10/2023] [Indexed: 06/28/2023]
Abstract
Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the "air pollution complex" was first proposed by Professor Xiaoyan TANG in 1997. For papers published in 2021 on air pollution (only papers included in the Web of Science Core Collection database were considered), more than 24 000 papers were authored or co-authored by scientists working in China. In this paper, we review a limited number of representative and significant studies on atmospheric chemistry in China in the last few years, including studies on (1) sources and emission inventories, (2) atmospheric chemical processes, (3) interactions of air pollution with meteorology, weather and climate, (4) interactions between the biosphere and atmosphere, and (5) data assimilation. The intention was not to provide a complete review of all progress made in the last few years, but rather to serve as a starting point for learning more about atmospheric chemistry research in China. The advances reviewed in this paper have enabled a theoretical framework for the air pollution complex to be established, provided robust scientific support to highly successful air pollution control policies in China, and created great opportunities in education, training, and career development for many graduate students and young scientists. This paper further highlights that developing and low-income countries that are heavily affected by air pollution can benefit from these research advances, whilst at the same time acknowledging that many challenges and opportunities still remain in atmospheric chemistry research in China, to hopefully be addressed over the next few decades.
Collapse
Affiliation(s)
- Tong Zhu
- Peking University, Beijing, 100871 China
| | - Mingjin Tang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 China
| | - Meng Gao
- Hong Kong Baptist University, Hong Kong SAR, China
| | - Xinhui Bi
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Huizheng Che
- Chinese Academy of Meteorological Sciences, Beijing, 100081 China
| | | | - Aijun Ding
- Nanjing University, Nanjing, 210023 China
| | | | - Jian Gao
- Chinese Research Academy of Environmental Sciences, Beijing, 100012 China
| | - Yang Gao
- Ocean University of China, Qingdao, 266100 China
| | - Maofa Ge
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Xinlei Ge
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Zhiwei Han
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Hong He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Ru-Jin Huang
- Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 China
| | - Xin Huang
- Nanjing University, Nanjing, 210023 China
| | - Hong Liao
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Cheng Liu
- University of Science and Technology of China, Hefei, 230026 China
| | - Huan Liu
- Tsinghua University, Beijing, 100084 China
| | - Jianguo Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | | | - Keding Lu
- Peking University, Beijing, 100871 China
| | - Qingxin Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Wei Nie
- Nanjing University, Nanjing, 210023 China
| | - Min Shao
- Jinan University, Guangzhou, 510632 China
| | - Yu Song
- Peking University, Beijing, 100871 China
| | - Yele Sun
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Xiao Tang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Tao Wang
- Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Weigang Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | | | - Zifa Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Yan Yin
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | | | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | - Yanlin Zhang
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Yunhong Zhang
- Beijing Institute of Technology, Beijing, 100081 China
| | - Yu Zhao
- Nanjing University, Nanjing, 210023 China
| | - Mei Zheng
- Peking University, Beijing, 100871 China
| | - Bin Zhu
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Jiang Zhu
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| |
Collapse
|
14
|
Kodamatani H, Kubo S, Takeuchi A, Kanzaki R, Tomiyasu T. Sensitive Detection of Nitrite and Nitrate in Seawater by 222 nm UV-Irradiated Photochemical Conversion to Peroxynitrite and Ion Chromatography-Luminol Chemiluminescence System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5924-5933. [PMID: 36973229 DOI: 10.1021/acs.est.3c00273] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sensitive detection methods for nitrite (NO2-) and nitrate (NO3-) ions are essential to understand the nitrogen cycle and for environmental protection and public health. Herein, we report a detection method that combines ion-chromatographic separation of NO2- and NO3-, on-line photochemical conversion of these ions to peroxynitrite (ONOO-) by irradiation with a 222 nm excimer lamp, and chemiluminescence from the reaction between luminol and ONOO-. The detection limits for NO2- and NO3- were 0.01 and 0.03 μM, respectively, with linear ranges of 0.010-2.0 and 0.10-3.0 μM, respectively, at an injection volume of 1 μL. The results obtained by the proposed method for seawater analysis corresponded with those of a reference method (AutoAnalyzer based on the Griess reaction). As luminol chemiluminescence can measure ONOO- at picomolar concentrations, our method is expected to be able to detect NO2- and NO3- at picomolar concentrations owing to the high conversion ratio to ONOO- (>60%), assuming that contamination and background chemiluminescence issues can be resolved. This method has the potential to emerge as an innovative technology for NO2- and NO3- detection in various samples.
Collapse
Affiliation(s)
- Hitoshi Kodamatani
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Shotaro Kubo
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Akinori Takeuchi
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Ryo Kanzaki
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Takashi Tomiyasu
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
15
|
Yang J, Au WC, Law H, Leung CH, Lam CH, Nah T. pH affects the aqueous-phase nitrate-mediated photooxidation of phenolic compounds: implications for brown carbon formation and evolution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:176-189. [PMID: 35293417 DOI: 10.1039/d2em00004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Brown carbon (BrC) is known to have important impacts on atmospheric chemistry and climate. Phenolic compounds are a prominent class of BrC precursors that are emitted in large quantities from biomass burning and fossil fuel combustion. Inorganic nitrate is a ubiquitous component of atmospheric aqueous phases such as cloudwater, fog, and aqueous aerosols. The photolysis of inorganic nitrate can lead to BrC formation via the photonitration of phenolic compounds in the aqueous phase. However, the acidity of the atmospheric aqueous phase adds complexity to these photonitration processes and needs to be considered when investigating BrC formation from the nitrate-mediated photooxidation of phenolic compounds. In this study, we investigated the influence of pH on the formation and evolution of BrC from the aqueous-phase photooxidation of guaiacol, catechol, 5-nitroguaiacol, and 4-nitrocatechol initiated by inorganic nitrate photolysis. The reaction rates, BrC composition and quantities were found to depend on the aqueous phase pH. Guaiacol, catechol, and 5-nitroguaiacol reacted substantially faster at lower pH. In contrast, 4-nitrocatechol reacted at slower rates at lower pH. For all four phenolic compounds, the initial stages of photooxidation resulted in an increase in light absorption (i.e., photo-enhancement) in the near-UV and visible range due to the formation of light absorbing products formed via the addition of nitro and/or hydroxyl groups to the phenolic compound. Greater photo-enhancement was observed at lower pH during the nitrate-mediated photooxidation of guaiacol and catechol. In contrast, greater photo-enhancement was observed at higher pH during the nitrate-mediated photooxidation of 5-nitroguaiacol and 4-nitrocatechol. This indicated that the effect that the aqueous phase pH has on the composition and yields of BrC formed is not universal, and will depend on the initial phenolic compound. These results provide new insights into how the atmospheric aqueous phase acidity influences the reactivities of different phenolic compounds and BrC formation/evolution during photooxidation initiated by inorganic nitrate photolysis, which will have significant implications for how the atmospheric fates of phenolic compounds and BrC formation/evolution are modeled for areas with high levels of inorganic nitrate.
Collapse
Affiliation(s)
- Junwei Yang
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Wing Chi Au
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Haymann Law
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Chun Hei Leung
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Chun Ho Lam
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Theodora Nah
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
16
|
Li F, Zhou S, Du L, Zhao J, Hang J, Wang X. Aqueous-phase chemistry of atmospheric phenolic compounds: A critical review of laboratory studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158895. [PMID: 36130630 DOI: 10.1016/j.scitotenv.2022.158895] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds (PhCs) are crucial atmospheric pollutants typically emitted by biomass burning and receive particular concerns considering their toxicity, light-absorbing properties, and involvement in secondary organic aerosol (SOA) formation. A comprehensive understanding of the transformation mechanisms on chemical reactions in atmospheric waters (i.e., cloud/fog droplets and aerosol liquid water) is essential to predict more precisely the atmospheric fate and environmental impacts of PhCs. Laboratory studies play a core role in providing the fundamental knowledge of aqueous-phase chemical transformations in the atmosphere. This article critically reviews recent laboratory advances in SOA formation from the aqueous-phase reactions of PhCs. It focuses primarily on the aqueous oxidation of PhCs driven by two atmospheric reactive species: OH radicals and triplet excited state organics, including the important chemical kinetics and mechanisms. The effects of inorganic components (i.e., nitrate and nitrite) and transition metal ions (i.e., soluble iron) are highlighted on the aqueous-phase transformation of PhCs and on the properties and formation mechanisms of SOA. The review is concluded with the current knowledge gaps and future perspectives for a better understanding of the atmospheric transformation and SOA formation potential of PhCs.
Collapse
Affiliation(s)
- Fenghua Li
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Shengzhen Zhou
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China.
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jun Zhao
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Jian Hang
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Xuemei Wang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510000, China
| |
Collapse
|
17
|
Liu T, Deng J, Yang C, Liu M, Liu Y. Photo-reduction of nitrate to nitrite in aqueous solution in presence of CaO: Selectivity, mechanism and application. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|