1
|
Cho M. Time-resolved nonlinear microspectroscopy with Gaussian beams. J Chem Phys 2025; 162:124201. [PMID: 40130798 DOI: 10.1063/5.0256032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
Time-resolved nonlinear microspectroscopy bridges high-resolution imaging and ultrafast spectroscopy, enabling the investigation of spatially localized molecular excited state and exciton dynamics on ultrafast timescales. By integrating ultrafast techniques such as pump-probe and coherent multidimensional spectroscopy with microscopy techniques utilizing high numerical aperture objective lenses and structured beams, these approaches provide label-free chemical contrast and reveal transient phenomena critical to understanding complex systems. Recent advancements, including adaptive optics and tailored beam profiles, have further enhanced spatial and temporal control, unlocking new possibilities for studying heterogeneous systems. This work explores time-resolved nonlinear microspectroscopy using Laguerre-Gaussian beams with orbital angular momentum. Analytical expressions for pump-probe microspectroscopy signals are derived to elucidate how beam parameters influence nonlinear responses reflecting spatial diffusion and ultrafast relaxation processes. The results demonstrate the potential of customized ultrafast pulses and spatial light fields to improve both resolution and sensitivity, advancing dynamic studies in materials science, chemistry, and biology.
Collapse
Affiliation(s)
- Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea and Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Kwak JI, Rhee H, Kim L, An YJ. In vivo visualization of environmentally relevant microplastics and evaluation of gut barrier damages in Artemia franciscana. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135596. [PMID: 39178784 DOI: 10.1016/j.jhazmat.2024.135596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Although irregularly-shaped label-free microplastics (MPs) are predominantly distributed in the environment, non-destructive analysis of environmentally relevant MPs in organisms is still challenging. The purpose of the study is to suggest in vivo visual evidence of the uptake and effect of environmentally relevant MPs in organism. Transparent irregularly-shaped high-density polyethylene was selected as an environmentally relevant model MP and exposed to brine shrimp (Artemia franciscana). As a result, we suggest the application of SEM/EDX and coherent anti-Stokes Raman scattering (CARS) microspectroscopy as complementary tools to secure in vivo visual evidence of irregularly-shaped unlabeled MPs in living organisms without chemical digestion for biodistribution observations. Biological transmission electron microscopy also provides how ingested MPs physically affects the digestive tract in the brine shrimp which is rarely reported. In terms of environmental implications, this study would advance ecotoxicological research on microplastic pollution by providing a cutting-edge tool for investigating the bioavailability and ecotoxicity of environmentally relevant MPs in ecosystems.
Collapse
Affiliation(s)
- Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Hanju Rhee
- Metropolitan Seoul Center, Korea Basic Science Institute, Seoul 02841, Republic of Korea
| | - Lia Kim
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Park JS, Lee IB, Hong SC, Cho M. Label-Free Interference Imaging of Intracellular Trafficking. Acc Chem Res 2024; 57:1565-1576. [PMID: 38781567 DOI: 10.1021/acs.accounts.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Intracellular cargo trafficking is a highly regulated process responsible for transporting vital cellular components to their designated destinations. This intricate journey has been a central focus of cellular biology for many years. Early investigations leaned heavily on biochemical and genetic approaches, offering valuable insight into molecular mechanisms of cellular trafficking. However, while informative, these methods lack the capacity to capture the dynamic nature of intracellular trafficking. The advent of fluorescent protein tagging techniques transformed our ability to monitor the complete lifecycle of intracellular cargos, advancing our understanding. Yet, a central question remains: How do these cargos manage to navigate through traffic challenges, such as congestion, within the crowded cellular environment? Fluorescence-based imaging, though valuable, has inherent limitations when it comes to addressing the aforementioned question. It is prone to photobleaching, making long-term live-cell imaging challenging. Furthermore, they render unlabeled cellular constituents invisible, thereby missing critical environmental information. Notably, the unlabeled majority likely exerts a significant influence on the observed behavior of labeled molecules. These considerations underscore the necessity of developing complementary label-free imaging methods to overcome the limitations of fluorescence imaging or to integrate them synergistically.In this Account, we outline how label-free interference-based imaging has the potential to revolutionize the study of intracellular traffic by offering unprecedented levels of detail. We begin with a brief introduction to our previous findings in live-cell research enabled by interferometric scattering (iSCAT) microscopy, showcasing its aptitude and adeptness in elucidating intricate nanoscale intracellular structures. As we delved deeper into our exploration, we succeeded in the label-free visualization of the entire lifespan of nanoscale protein complexes known as nascent adhesions (NAs) and the dynamic events associated with adhesions within living cells. Our continuous efforts have led to the development of Dynamic Scattering-particle Localization Interference Microscopy (DySLIM), a generalized concept of cargo-localization iSCAT (CL-iSCAT). This label-free, high-speed imaging method, armed with iSCAT detection sensitivity, empowers us to capture quantitative and biophysical insights into cargo transport, providing a realistic view of the intricate nanoscale logistics occurring within living cells. Our in vivo studies demonstrate that intracellular cargos regularly contend with substantial traffic within the crowded cellular environment. Simultaneously, they employ inherent strategies for efficient cargo transport, such as collective migration and hitchhiking, to enhance overall transport rates─intriguingly paralleling the principle and practice of urban traffic management. We also highlight the synergistic benefits of combining DySLIM with chemical-selective fluorescent methods. This Account concludes with a "Conclusions and Outlook" section, outlining promising directions for future research and developments, with a particular emphasis on the functional application of iSCAT live-cell imaging. We aim to inspire further investigation into the efficient transport strategies employed by cells to surmount transportation challenges, shedding light on their significance in cellular phenomena.
Collapse
Affiliation(s)
- Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
| | - Il-Buem Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
- Department of Physics, Korea University, Seoul 02841, Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
4
|
Huang X, Xue Z, Zhang D, Lee HJ. Pinpointing Fat Molecules: Advances in Coherent Raman Scattering Microscopy for Lipid Metabolism. Anal Chem 2024; 96:7945-7958. [PMID: 38700460 DOI: 10.1021/acs.analchem.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Xiangjie Huang
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Zexin Xue
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Delong Zhang
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, and School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Hyeon Jeong Lee
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Xin L, Huang M, Huang Z. Quantitative assessment and monitoring of microplastics and nanoplastics distributions and lipid metabolism in live zebrafish using hyperspectral stimulated Raman scattering microscopy. ENVIRONMENT INTERNATIONAL 2024; 187:108679. [PMID: 38657405 DOI: 10.1016/j.envint.2024.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Microplastics (MP) and nanoplastics (NP) pollutions pose a rising environmental threat to humans and other living species, given their escalating presence in essential resources that living subjects ingest and/or inhale. Herein, to elucidate the potential health implications of MP/NP, we report for the first time by using label-free hyperspectral stimulated Raman scattering (SRS) imaging technique developed to quantitatively monitor the bioaccumulation and metabolic toxicity of MP/NP within live zebrafish larvae during their early developmental stages. Zebrafish embryos are exposed to environmentally related concentrations (3-60 μg/ml) of polystyrene (PS) beads with two typical sizes (2 μm and 50 nm). Zebrafish are administered isotope-tagged fatty acids through microinjection and dietary intake for in vivo tracking of lipid metabolism dynamics. In vivo 3D quantitative vibrational imaging of PS beads and intrinsic biomolecules across key zebrafish organs reveals that gut and liver are the primary target organs of MP/NP, while only 50 nm PS beads readily aggregate and adhere to the brain and blood vessels. The 50 nm PS beads are also found to induce more pronounced hepatic inflammatory response compared to 2 μm counterparts, characterized by increased biogenesis of lipid droplets and upregulation of arachidonic acid detected in zebrafish liver. Furthermore, Raman-tagged SRS imaging of fatty acids uncovers that MP/NP exposure significantly reduces yolk lipid utilization and promotes dietary lipid storage in zebrafish, possibly associated with developmental delays and more pronounced food dilution effects in zebrafish larvae exposed to 2 μm PS beads. The hyperspectral SRS imaging in this work shows that MP/NP exposure perturbs the development and lipid metabolism in zebrafish larvae, furthering the understanding of MP/NP ingestions and consequent toxicity in different organs in living species.
Collapse
Affiliation(s)
- Le Xin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Meizhen Huang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
6
|
Rhee H, Jeong S, Lee H, Cho MG, Choi DS. Rapid detection and identification of microplastics from nonchemically treated soil with CARS microspectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123080. [PMID: 38043768 DOI: 10.1016/j.envpol.2023.123080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
In conventional microplastic (MP) analysis, acid or alkaline digestion is a necessary pretreatment step to remove residual organic matter from environmental samples. However, such a digestion process is not only cumbersome and time-consuming, but also possibly cause severe chemical damage to the MP itself, often making accurate MP characterization difficult. This study demonstrates that broadband coherent anti-Stokes Raman scattering (CARS) microspectroscopy is useful for rapidly detecting and identifying MPs in natural soil without any digestion process. A feasibility test is performed with soil samples, which are known to require the most complicated chemical pretreatment for MP analysis, deliberately mixed with various MP particles. The C-H bond-specific CARS imaging and spectral analysis allow rapid MP particle search and chemical identification even in the presence of other residual particles and strongly fluorescent substances from the soil. It is anticipated that this nondestructive, chemical pretreatment-free CARS approach will be a beneficial tool for studying the ecological impacts of MPs absorbed by terrestrial life, such as plants and soil organisms, as well as for complementary analysis of MPs subject to chemical degradation by digestion in investigating the environmental contamination of the MPs.
Collapse
Affiliation(s)
- Hanju Rhee
- Seoul Center, Korea Basic Science Institute, Seoul, 02841, Republic of Korea.
| | - Seulki Jeong
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Hayeong Lee
- Seoul Center, Korea Basic Science Institute, Seoul, 02841, Republic of Korea
| | - Min Gyu Cho
- Seoul Center, Korea Basic Science Institute, Seoul, 02841, Republic of Korea
| | - Dae Sik Choi
- R&D Center, Uniotech, Daejeon, 34013, Republic of Korea
| |
Collapse
|
7
|
Park JS, Lee IB, Moon HM, Hong SC, Cho M. Long-term cargo tracking reveals intricate trafficking through active cytoskeletal networks in the crowded cellular environment. Nat Commun 2023; 14:7160. [PMID: 37963891 PMCID: PMC10645962 DOI: 10.1038/s41467-023-42347-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/29/2023] [Indexed: 11/16/2023] Open
Abstract
A eukaryotic cell is a microscopic world within which efficient material transport is essential. Yet, how a cell manages to deliver cellular cargos efficiently in a crowded environment remains poorly understood. Here, we used interferometric scattering microscopy to track unlabeled cargos in directional motion in a massively parallel fashion. Our label-free, cargo-tracing method revealed not only the dynamics of cargo transportation but also the fine architecture of the actively used cytoskeletal highways and the long-term evolution of the associated traffic at sub-diffraction resolution. Cargos frequently run into a blocked road or experience a traffic jam. Still, they have effective strategies to circumvent those problems: opting for an alternative mode of transport and moving together in tandem or migrating collectively. All taken together, a cell is an incredibly complex and busy space where the principle and practice of transportation intriguingly parallel those of our macroscopic world.
Collapse
Affiliation(s)
- Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea
| | - Il-Buem Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea
| | - Hyeon-Min Moon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea.
- Department of Physics, Korea University, Seoul, Korea.
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea.
- Department of Chemistry, Korea University, Seoul, Korea.
| |
Collapse
|
8
|
Autofluorescence of Model Polyethylene Terephthalate Nanoplastics for Cell Interaction Studies. NANOMATERIALS 2022; 12:nano12091560. [PMID: 35564269 PMCID: PMC9100011 DOI: 10.3390/nano12091560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023]
Abstract
This work contributes to fill one of the gaps regarding nanoplastic interactions with biological systems by producing polyethylene terephthalate (PET) model nanoplastics, similar to those found in the marine environment, by means of a fast top-down approach based on mechanical fragmentation. Their size distribution and morphology were characterized by laser diffraction and atomic force microscopy (AFM). Their autofluorescence was studied by spectrofluorimetry and fluorescence imaging, being a key property for the evaluation of their interaction with biota. The emission spectra of label-free nanoplastics were comparable with those of PET nanoplastics labeled with Nile red. Finally, the suitability of label-free nanoplastics for biological studies was assessed by in vitro exposure with Mytilus galloprovincialis hemolymphatic cells in a time interval up to 6 h. The nanoplastic internalization into these cells, known to be provided with phagocytic activity, was assessed by fluorescence microscopy. The obtained results underlined that the autofluorescence of the model PET nanoplastics produced in the laboratory was adequate for biological studies having the potential to overcome the disadvantages commonly associated with several fluorescent dyes, such as the tendency to also stain other organic materials different from plastics, to form aggregates due to intermolecular interactions at high concentrations with a consequent decrease in fluorescence intensity, and to dye desorption from nanoparticles. The results of the autofluorescence study provide an innovative approach for plastic risk assessment.
Collapse
|