1
|
Duan X, Liu L, Jiang Z, Zhang X, Zhang H, Zhang Y, Liu Q. Centennial trends in human and climate influences on sediment-associated microorganisms in an oligotrophic lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125618. [PMID: 40334408 DOI: 10.1016/j.jenvman.2025.125618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Microorganisms in lake ecosystems exhibit sensitive and dynamic changes in response to human activities and climate change. However, studies correlating microbial communities with anthropogenic changes over a century-long timescale are currently lacking. In this study, DNA extracted from sediments and lake sediment environmental proxy analyses were employed to reconstruct a centennial-scale time series of prokaryotic and microeukaryotic community changes, revealing distinct differences in their evolutionary patterns. The results indicated that the heterogeneity of the prokaryotic community was increasing, and the community assembly was consistently influenced by both deterministic and stochastic processes. Microeukaryotes showed significant fluctuations in the relative abundance of the dominant species, a continuous increase in alpha diversity, and stochastic processes as a key mechanism of community assembly. In addition, climate and human activities were identified as key factors influencing microbial communities. It was found that the dynamics of the prokaryotic community were influenced by both biotic and environmental factors, whereas microeukaryotic population dynamics were particularly influenced by external factors. In general, changes in the watershed environment significantly impacted microbial evolutionary patterns, providing new insights into the evolution of lake ecosystems and offering strong support for future lake management and conservation efforts.
Collapse
Affiliation(s)
- Xinlu Duan
- Yunnan Key Laboratory of Ecological Protection and Resource Utilization of River-lake Networks, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Liying Liu
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan, 650500, China
| | - Zhimin Jiang
- Yunnan Key Laboratory of Ecological Protection and Resource Utilization of River-lake Networks, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Xiaonan Zhang
- Yunnan Key Laboratory of Ecological Protection and Resource Utilization of River-lake Networks, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Hucai Zhang
- Yunnan Key Laboratory of Ecological Protection and Resource Utilization of River-lake Networks, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China; Southwest United Graduate School, Kunming, 650500, Yunnan, China
| | - Yang Zhang
- Yunnan Key Laboratory of Ecological Protection and Resource Utilization of River-lake Networks, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China.
| | - Qi Liu
- Yunnan Key Laboratory of Ecological Protection and Resource Utilization of River-lake Networks, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan, 650500, China; Southwest United Graduate School, Kunming, 650500, Yunnan, China.
| |
Collapse
|
2
|
Li Y, Zhang H, Huo S, Zhang J, Ma C, Weng N, Zhang P, Shi Z. Distinct strategies of microeukaryotic generalists and specialists in Qinghai-Tibet plateau sediment driven by salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177900. [PMID: 39667162 DOI: 10.1016/j.scitotenv.2024.177900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/29/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Unraveling how microeukaryotic generalists and specialists assemble and coexist under environmental stress is central to our understanding of the mechanisms maintaining diversity. Here, we explored the biogeographical distributions of microeukaryotic generalists and specialists in lake surface sediments along a salinity gradient on the Qinghai-Tibet Plateau. We found that relative abundances of Chlorophyta (28.6 %) and Dinophyceae (9.5 %) were higher as habitat generalists than as specialists. Conversely, relative abundances of habitat specialists were higher in the Ciliophora (22.2 %) and Cercozoa (11.6 %) than those of generalists. Environmental adaptation analysis showed a broader niche threshold for generalists than for specialists, whereas a stronger phylogenetic signal for environmental factors was observed for specialists. Thus, increases in salinity had stronger effects on specialists than on generalists through environmental selection and diversification processes. However, null model analysis indicated stochastic processes were the primary drivers of both generalists and specialists. Network analysis revealed that with increasing salinity, specialists were more important than generalists in stabilizing networks. In addition, phylogenetic relatedness indicated that microeukaryotic generalists coexisted because of niche differences, whereas specialists coexisted because of average fitness similarity. Our study will help to predict microeukaryotic responses to environmental changes in aquatic ecosystems.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hanxiao Zhang
- School of Environment, Beijing Normal University, Beijing 100080, China.
| | - Shouliang Huo
- School of Environment, Beijing Normal University, Beijing 100080, China.
| | - Jingtian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chunzi Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Nanyan Weng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peilian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Beijing Normal University, Beijing 100080, China
| | - Zhanyao Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Beijing Normal University, Beijing 100080, China
| |
Collapse
|
3
|
Cardoso-Silva S, Trevizani TH, Figueira RCL, Pompêo M, Krammer O, Picazo A, Vicente E, Moschini-Carlos V. Biotic homogenization in multisystem cascade reservoirs: insights from sedimentary photopigment analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59012-59026. [PMID: 39331298 DOI: 10.1007/s11356-024-35023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
The existing literature provides limited insights into the dynamics of phytoplankton communities and the spatial heterogeneity of physicochemical parameters in multisystem cascade reservoirs (interconnected reservoirs derived from different rivers). The existing studies are concentrated on cascade reservoirs (interconnected reservoirs derived from the same river). To address this knowledge gap, the aims of the present study were as follows: (1) investigate the spatial heterogeneity, within and between reservoirs, of geochemical parameters associated with the eutrophication process, considering total phosphorus, chlorophyll-a, pheophytin, and metals (chromium, copper, nickel, lead, zinc, iron, and manganese); (2) evaluate sediment quality at the designated locations; (3) assess differences in the richness and concentration of sedimentary photopigments between the reservoirs. Application of principal component analysis revealed discernible gradients for the abiotic variables, although the differences were not statistically significant (one-way PERMANOVA test, p > 0.05). The observations suggested a tendency towards spatial homogeneity within and between the reservoirs. The metal concentrations were consistent with regional reference values, while phosphorus levels in the sediment approached the threshold for classification as pollution (~ 2000 mg/kg). Analysis of pigments indicated low dissimilarity among the reservoirs, which could be mainly attributed to the eutrophication process and high connectivity of the sampled areas. To counteract ongoing biotic homogenization, it is essential to reduce nutrient inputs and invest in ecological protection and restoration programs. The analysis of sedimentary photopigments provides an efficient and cost-effective alternative way to assess phytoplankton communities.
Collapse
Affiliation(s)
- Sheila Cardoso-Silva
- Environmental Sciences Program, Institute of Science and Technology, State University of São Paulo (UNESP), Sorocaba, SP, Brazil.
- Oceanographic Institute, University of São Paulo (USP), São Paulo, SP, Brazil.
- Graduate Program in Environmental Sciences, Institute of Science and Technology, Federal University of Alfenas (UNIFAL), Poços de Caldas, MG, Brazil.
| | | | | | - Marcelo Pompêo
- Environmental Sciences Program, Institute of Science and Technology, State University of São Paulo (UNESP), Sorocaba, SP, Brazil
- Ecology Department, Biosciences Institute, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Olga Krammer
- Microbiology and Ecology Department, Valencia University, Burjassot, Valencia, Spain
| | - Antonio Picazo
- Microbiology and Ecology Department, Valencia University, Burjassot, Valencia, Spain
| | - Eduardo Vicente
- Microbiology and Ecology Department, Valencia University, Burjassot, Valencia, Spain
| | - Viviane Moschini-Carlos
- Environmental Sciences Program, Institute of Science and Technology, State University of São Paulo (UNESP), Sorocaba, SP, Brazil
| |
Collapse
|
4
|
Liu Q, Duan X, Zhang Y, Duan L, Zhang X, Liu F, Li D, Zhang H. Rainfall seasonality shapes microbial assembly and niche characteristics in Yunnan Plateau lakes, China. ENVIRONMENTAL RESEARCH 2024; 257:119410. [PMID: 38871273 DOI: 10.1016/j.envres.2024.119410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Microorganisms are crucial components of freshwater ecosystems. Understanding the microbial community assembly processes and niche characteristics in freshwater ecosystems, which are poorly understood, is crucial for evaluating microbial ecological roles. The Yunnan Plateau lakes in China represent a freshwater ecosystem that is experiencing eutrophication due to anthropogenic activities. Here, variation in the assembly and niche characteristics of both prokaryotic and microeukaryotic communities was explored in Yunnan Plateau lakes across two seasons (dry season and rainy season) to determine the impacts of rainfall and environmental conditions on the microbial community and niche. The results showed that the environmental heterogeneity of the lakes decreased in the rainy season compared to the dry season. The microbial (bacterial and microeukaryotic) α-diversity significantly decreased during the rainy season. Deterministic processes were found to dominate microbial community assembly in both seasons. β-Diversity decomposition analysis revealed that microbial community compositional dissimilarities were dominated by species replacement processes. The co-occurrence networks indicated reduced species complexity for microbes and a destabilized network for prokaryotes prior to rainfall, while the opposite was found for microeukaryotes following rainfall. Microbial niche breadth decreased significantly in the rainy season. In addition, lower prokaryotic niche overlap, but greater microeukaryotic niche overlap, was observed after rainfall. Rainfall and environmental conditions significantly affected the microbial community assembly and niche characteristics. It can be concluded that rainfall and external pollutant input during the seasonal transition alter the lake environment, thereby regulating the microbial community and niche in these lakes. Our findings offer new insight into microbiota assembly and niche patterns in plateau lakes, further deepening the understanding of freshwater ecosystem functioning.
Collapse
Affiliation(s)
- Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Xinlu Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Fengwen Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China; Southwest United Graduate School, Kunming, 650500, Yunnan, China.
| |
Collapse
|
5
|
Liu X, Pan B, Liu X, Han X, Zhu P, Li G, Li D. Trophic level plays an enhanced role in shaping microbiota structure and assembly in lakes with decreased salinity on the Qinghai-Tibet and Inner Mongolia Plateaus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171316. [PMID: 38423321 DOI: 10.1016/j.scitotenv.2024.171316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Plateau lakes characterized by salinization and eutrophication are essential aquatic ecosystems. A myriad of microorganisms serve as crucial biological resources in plateau lakes and drive the elemental cycles of these ecosystems. Currently, there is a paucity of knowledge regarding the impacts of salinization and eutrophication dynamics on the microbiota in plateau lakes. Here, high-throughput sequencing of the 16S ribosomal RNA genes (V4 region) was used to characterize microbial community structure and assembly in plateau lakes with different salinities and trophic levels. Water samples were collected at 191 sites across 24 lakes on the Qinghai-Tibet and Inner Mongolia Plateaus in northern China. The results showed that high salinity considerably reduced microbial alpha-diversity and niche breadth while increasing within-group similarity among various lake types. High salinity additionally decreased the complexity of microbial networks and enhanced network robustness. The assembly of microbial communities was primarily governed by deterministic processes in high-salinity and eutrophic low-salinity lakes. At decreased salinity, trophic level played a leading role in shaping microbial community structure, and the ecological processes shifted from deterministic processes driven by high salinity to eutrophication-driven deterministic processes. The biomarkers also varied from taxa adapted to high-salinity environments (e.g., Nanoarchaeaeota, Rhodothermia) to those suited for living in freshwater and low-salinity habitats (e.g., Alphaproteobacteria, Actinobacteria). In the case of eutrophication, Actinobacteria, Chloroflexi, and Cyanobacteria became the dominant taxa. Our findings indicate that decreased salinity enables trophic level to play an enhanced role in shaping microbial community structure and assembly in plateau lakes. This study enriches our knowledge about the ecological impacts of salinization and eutrophication in plateau lakes.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China.
| | - Xinyuan Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Xu Han
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Penghui Zhu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Gang Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Dianbao Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| |
Collapse
|
6
|
Liu X, Song Y, Ni T, Yang Y, Ma B, Huang T, Chen S, Zhang H. Ecological evolution of algae in connected reservoirs under the influence of water transfer: Algal density, community structure, and assembly processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170086. [PMID: 38232825 DOI: 10.1016/j.scitotenv.2024.170086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Reservoir connectivity provides a solution for regional water shortages. Understanding the water quality of reservoirs and the response of algal communities to water transfer could provide the basis for a long-term evolutionary model of reservoirs. In this study, a water-algal community model was established to study the effects of water transfer on water quality and algal communities in reservoirs. The results showed that water transfer significantly decreased total nitrogen and nitrate concentrations. However, the water transfer resulted in an increase in the CODMn concentration and conductivity in the receiving reservoir. Additionally, the algal density and chlorophyll-a (chl-a) concentration showed an increase with water transfer. Bacillariophyta, Cyanophyta, and Chlorophyta were the dominant algal phyllum in all three reservoirs. Water transfer induced the evolution of the algal community by driving changes in the chemical parameters of the receiving reservoir and led to more complex relationships within the algal community. The effects of stochastic processes on algal communities were also enhanced in the receiving reservoirs. These results provide specific information for water quality safety management and eutrophication prevention in connected reservoirs.
Collapse
Affiliation(s)
- Xiang Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Yutong Song
- School of Future Technology, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tongchao Ni
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Yansong Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Ben Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Shengnan Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| |
Collapse
|
7
|
Song D, Zhang C, Saber A. Integrating impacts of climate change on aquatic environments in inter-basin water regulation: Establishing a critical threshold for best management practices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169297. [PMID: 38103616 DOI: 10.1016/j.scitotenv.2023.169297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Inter-basin water diversion (IBWD) is a viable strategy to tackle water scarcity and quality degradation due to climate change and increasing water demand in headwaters regions. Nevertheless, the capacity of IBWD to mitigate the impacts of climate change on water quality has rarely been quantified, and the underlying processes are not well understood. Therefore, this study aims to elucidate how the IBWD manipulated total phosphorus (TP) loading dilution and conveying patterns under climate change and determine a critical threshold for the quantity of water entering downstream reservoirs (WIN) for operational scheduling. To resolve this issue, climate-driven hydrologic variability over a 60-year period was derived utilizing the least square fitting approach. Subsequently, six scenarios evaluating the response of in-lake TP concentrations (TPL) to increased temperatures and IBWDs of 50 %, 100 %, and 150 % from the baseline water volume in 2030 and 2050 were studied by employing a calibrated hydrological-water quality model (SWAT-YRWQM). In the next stage, three datasets derived from mathematical statistics based on the observed data, the Vollenweider formula, and modeled projections were integrated to formulate best management practices. The results revealed that elevated air temperatures would lead to reduced annual catchment runoff but increased IBWD. Additionally, our study quantified the IBWD potential for mitigating water quality degradation, indicating the adverse effects of climate change on TPL would be weakened by 4.2-14.4 %. A critical threshold for WIN was also quantified at 617 million m3, maintaining WIN at or near 617 million m3 through optimized operational scheduling of IBWD could effectively restrict external inflow TP loading to lower levels. This study clearly illustrates the intricate interactive effects of climate change and IBWD on aquatic environments. The methodology elucidated in this study for determining the critical threshold of WIN could be applied in water management for analogous watershed-receiving waterbody systems.
Collapse
Affiliation(s)
- Didi Song
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China.
| | - Chen Zhang
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China.
| | - Ali Saber
- School of the Environment, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
| |
Collapse
|
8
|
Zuo J, Xiao P, Heino J, Tan F, Soininen J, Chen H, Yang J. Eutrophication increases the similarity of cyanobacterial community features in lakes and reservoirs. WATER RESEARCH 2024; 250:120977. [PMID: 38128306 DOI: 10.1016/j.watres.2023.120977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/05/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Eutrophication of inland waters is a mostly anthropogenic phenomenon impacting aquatic biodiversity worldwide, and might change biotic community structure and ecosystem functions. However, little is known about the patterns of cyanobacterial community variations and changes both on alpha and beta diversity levels in response to eutrophication. Here, we investigated cyanobacterial communities sampled at 140 sites from 59 lakes and reservoirs along a strong eutrophication gradient in eastern China through using CPC-IGS and 16S rRNA gene amplicon sequencing. We found that taxonomic diversity increased, but phylogenetic diversity decreased significantly along the eutrophication gradient. Both niche width and niche overlap of cyanobacteria significantly decreased from low- to high-nutrient waterbodies. Cyanobacterial community distance-decay relationship became weaker from mesotrophic to hypereutrophic waterbodies, while ecological uniqueness (i.e., local contributions to beta diversity) tended to increase in high-nutrient waterbodies. Latitude and longitude were more important in shaping cyanobacterial community structure than other environmental variables. These findings suggest that eutrophication affects alpha and beta diversity of cyanobacterial communities, leading to increasingly similar community structures in lakes and reservoirs with a higher level of eutrophication. Our work highlights how cyanobacterial communities respond to anthropogenic eutrophication and calls for an urgent need to develop conservation and management strategies to control lake eutrophication and protect freshwater biodiversity.
Collapse
Affiliation(s)
- Jun Zuo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 8000, Oulu FI-90014, Finland
| | - Fengjiao Tan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
9
|
Thorpe AC, Mackay EB, Goodall T, Bendle JA, Thackeray SJ, Maberly SC, Read DS. Evaluating the use of lake sedimentary DNA in palaeolimnology: A comparison with long-term microscopy-based monitoring of the phytoplankton community. Mol Ecol Resour 2024; 24:e13903. [PMID: 37994249 DOI: 10.1111/1755-0998.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/26/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Palaeolimnological records provide valuable information about how phytoplankton respond to long-term drivers of environmental change. Traditional palaeolimnological tools such as microfossils and pigments are restricted to taxa that leave sub-fossil remains, and a method that can be applied to the wider community is required. Sedimentary DNA (sedDNA), extracted from lake sediment cores, shows promise in palaeolimnology, but validation against data from long-term monitoring of lake water is necessary to enable its development as a reliable record of past phytoplankton communities. To address this need, 18S rRNA gene amplicon sequencing was carried out on lake sediments from a core collected from Esthwaite Water (English Lake District) spanning ~105 years. This sedDNA record was compared with concurrent long-term microscopy-based monitoring of phytoplankton in the surface water. Broadly comparable trends were observed between the datasets, with respect to the diversity and relative abundance and occurrence of chlorophytes, dinoflagellates, ochrophytes and bacillariophytes. Up to 20% of genera were successfully captured using both methods, and sedDNA revealed a previously undetected community of phytoplankton. These results suggest that sedDNA can be used as an effective record of past phytoplankton communities, at least over timescales of <100 years. However, a substantial proportion of genera identified by microscopy were not detected using sedDNA, highlighting the current limitations of the technique that require further development such as reference database coverage. The taphonomic processes which may affect its reliability, such as the extent and rate of deposition and DNA degradation, also require further research.
Collapse
Affiliation(s)
- Amy C Thorpe
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, UK
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Tim Goodall
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, UK
| | - James A Bendle
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | | | - Daniel S Read
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, UK
| |
Collapse
|
10
|
Lin Q, Zhang K, McGowan S, Huang S, Xue Q, Capo E, Zhang C, Zhao C, Shen J. Characterization of lacustrine harmful algal blooms using multiple biomarkers: Historical processes, driving synergy, and ecological shifts. WATER RESEARCH 2023; 235:119916. [PMID: 37003114 DOI: 10.1016/j.watres.2023.119916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Harmful algal blooms (HABs) producing toxic metabolites are increasingly threatening environmental and human health worldwide. Unfortunately, long-term process and mechanism triggering HABs remain largely unclear due to the scarcity of temporal monitoring. Retrospective analysis of sedimentary biomarkers using up-to-date chromatography and mass spectrometry techniques provide a potential means to reconstruct the past occurrence of HABs. By combining aliphatic hydrocarbons, photosynthetic pigments, and cyanotoxins, we quantified herein century-long changes in abundance, composition, and variability of phototrophs, particularly toxigenic algal blooms, in China's third largest freshwater Lake Taihu. Our multi-proxy limnological reconstruction revealed an abrupt ecological shift in the 1980s characterized by elevated primary production, Microcystis-dominated cyanobacterial blooms, and exponential microcystin production, in response to nutrient enrichment, climate change, and trophic cascades. The empirical results from ordination analysis and generalized additive models support climate warming and eutrophication synergy through nutrient recycling and their feedback through buoyant cyanobacterial proliferation, which sustain bloom-forming potential and further promote the occurrence of increasingly-toxic cyanotoxins (e.g., microcystin-LR) in Lake Taihu. Moreover, temporal variability of the lake ecosystem quantified using variance and rate of change metrics rose continuously after state change, indicating increased ecological vulnerability and declined resilience following blooms and warming. With the persistent legacy effects of lake eutrophication, nutrient reduction efforts mitigating toxic HABs probably be overwhelmed by climate change effects, emphasizing the need for more aggressive and integrated environmental strategies.
Collapse
Affiliation(s)
- Qi Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ke Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Suzanne McGowan
- Department of Aquatic Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708PB Wageningen, Netherlands
| | - Shixin Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Eric Capo
- Department of Marine Biology, Institut de Ciències del Mar, CSIC, DC 08003 Barcelona, Spain
| | - Can Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cheng Zhao
- School of Geography and Oceanography Sciences, Nanjing University, Nanjing 210023, China
| | - Ji Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Geography and Oceanography Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Lin Y, Zhong W, Zhang X, Zhou X, He L, Lv J, Zhao Z. Environmental DNA metabarcoding revealed the impacts of anthropogenic activities on phytoplankton diversity in Dianchi Lake and its three inflow rivers. Ecol Evol 2023; 13:e10088. [PMID: 37214604 PMCID: PMC10196938 DOI: 10.1002/ece3.10088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Phytoplankton diversity is closely related to environmental variables and has been widely used in ecological health assessment of rivers and lakes. Combining advantages of DNA-based identification and high-throughput sequencing technology, environmental DNA (eDNA) metabarcoding permits a new measurement for biodiversity monitoring in aquatic ecosystems. However, it had rarely been used to explore the variability and similarity of phytoplankton diversity between lake and its inflow rivers and the effects of environmental variables on phytoplankton. This study utilized eDNA metabarcoding to investigate the spatial distribution of phytoplankton and the impacts of environmental variables on the phytoplankton diversity in Dianchi Lake (one of the most polluted urban lakes in China) and its main inflow rivers (Panlong River, Baoxiang River, and Chai River). A total of 243 distinct phytoplankton taxa were detected, covering 9 phyla, 30 classes, 84 orders, and 132 families, and the taxonomic richness of rivers was higher than that of Dianchi Lake. Distinct biodiversity patterns (e.g., community structure, dominant taxon, ɑ-diversity) were exhibited among Dianchi Lake and its three inflow rivers, but similar biodiversity patterns were also observed in Dianchi Lake and the estuarine sites. The patterns of phytoplankton diversity were closely related to environmental variables, which were associated with pollution sources from different anthropogenic activities (e.g., urbanization, water diversion, industrial and agricultural activities). The primary environmental variables correlated with phytoplankton diversity varied in different habitats. The total phosphorus (TP) and chemical oxygen demand (COD) positively correlated with the phytoplankton community structures in Dianchi Lake, whereas negatively correlated in Panlong River and Baoxiang River. The total nitrogen (TN) positively correlated with the phytoplankton community structures in Baoxiang River and Chai River but negatively correlated in Dianchi Lake. Overall, this study provides insights on the phytoplankton diversity monitoring and the conservation of its diversity and healthy management of Dianchi Lake.
Collapse
Affiliation(s)
- Yuanyuan Lin
- Academician Workstation for Ecological Health Assessment and Rehabilitation of Rivers and Lakes in Kunming, Key Laboratory of River and Lake Ecological Health Assessment and Restoration in Yunnan Province, Kunming Dianchi Lake Environmental Protection Collaborative Research CenterKunming UniversityKunmingChina
| | - Wenjun Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the EnvironmentNanjing UniversityNanjingChina
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the EnvironmentNanjing UniversityNanjingChina
| | - Xiaohua Zhou
- Academician Workstation for Ecological Health Assessment and Rehabilitation of Rivers and Lakes in Kunming, Key Laboratory of River and Lake Ecological Health Assessment and Restoration in Yunnan Province, Kunming Dianchi Lake Environmental Protection Collaborative Research CenterKunming UniversityKunmingChina
| | - Liwei He
- Academician Workstation for Ecological Health Assessment and Rehabilitation of Rivers and Lakes in Kunming, Key Laboratory of River and Lake Ecological Health Assessment and Restoration in Yunnan Province, Kunming Dianchi Lake Environmental Protection Collaborative Research CenterKunming UniversityKunmingChina
| | - Jiacheng Lv
- Academician Workstation for Ecological Health Assessment and Rehabilitation of Rivers and Lakes in Kunming, Key Laboratory of River and Lake Ecological Health Assessment and Restoration in Yunnan Province, Kunming Dianchi Lake Environmental Protection Collaborative Research CenterKunming UniversityKunmingChina
| | - Zheng Zhao
- Academician Workstation for Ecological Health Assessment and Rehabilitation of Rivers and Lakes in Kunming, Key Laboratory of River and Lake Ecological Health Assessment and Restoration in Yunnan Province, Kunming Dianchi Lake Environmental Protection Collaborative Research CenterKunming UniversityKunmingChina
| |
Collapse
|
12
|
Wu S, Dong Y, Stoeck T, Wang S, Fan H, Wang Y, Zhuang X. Geographic characteristics and environmental variables determine the diversities and assembly of the algal communities in interconnected river-lake system. WATER RESEARCH 2023; 233:119792. [PMID: 36868116 DOI: 10.1016/j.watres.2023.119792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Algal blooms in lakes are a major hazard worldwide. Although various geographical and environmental patterns affect algal communities during river-lake transit, a thorough understanding of what patterns shape the algal communities is still rarely researched, particularly in complex interconnected river-lake systems. In this study, focusing on the most typical interconnected river-lake system in China, the Dongting Lake, we collected paired water and sediment samples in summer, when algal biomass and growth rate are at high levels. Based on 23S rRNA gene sequencing, we investigated the heterogeneity and the differences in assembly mechanisms of planktonic and benthic algae in Dongting Lake. Planktonic algae contained more Cyanobacteria and Cryptophyta, while sediment harbored higher proportions of Bacillariophyta and Chlorophyta. For planktonic algae, stochastic dispersal dominated the assembly of the communities. Upstream rivers and confluences were important sources of planktonic algae in lakes. Meanwhile, for benthic algae, deterministic environmental filtering shaped the communities, and the proportion of benthic algae exploded with increasing N:P ratio and Cu concentration until reaching thresholds of 1.5 and 0.013 g/kg respectively, and then started falling, showing non-linear responses. This study revealed the variability of different aspects of algal communities in different habitats, traced the main sources of planktonic algae, and identified the thresholds for benthic algal shifts in response to environmental filters. Hence, upstream and downstream monitoring as well as thresholds of environmental factors should be considered in further aquatic ecological monitoring or regulatory programs of harmful algal blooms in these complex systems.
Collapse
Affiliation(s)
- Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Dong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Thorsten Stoeck
- Department of Ecology, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaxin Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
13
|
Wan W, Gadd GM, He D, Liu W, Xiong X, Ye L, Cheng Y, Yang Y. Abundance and diversity of eukaryotic rather than bacterial community relate closely to the trophic level of urban lakes. Environ Microbiol 2023; 25:661-674. [PMID: 36527341 DOI: 10.1111/1462-2920.16317] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Scientific understanding of biotic effects on the water trophic level is lacking for urban lakes during algal bloom development stage. Based on the Illumina MiSeq sequencing, quantitative polymerase chain reaction (PCR), and multiple statistical analyses, we estimated distribution patterns and ecological roles of planktonic bacteria and eukaryotes in urban lakes during algal bloom development stage (i.e., April, May, and June). Cyanobacteria and Chlorophyta mainly dominated algal blooms. Bacteria exhibited significantly higher absolute abundance and community diversity than eukaryotes, whereas abundance and diversity of eukaryotic rather than bacterial community relate closely to the water trophic level. Multinutrient cycling (MNC) index was significantly correlated with eukaryotic diversity rather than bacterial diversity. Stronger species replacement, broader environmental breadth, and stronger phylogenetic signal were found for eukaryotic community than for bacterial community. In contrast, bacterial community displayed stronger community stability and environmental constraint than eukaryotic community. Stochastic and differentiating processes contributed more to community assemblies of bacteria and eukaryotes. Our results emphasized that a strong linkage between planktonic diversity and MNC ensured a close relationship between planktonic diversity and the water trophic level of urban lakes. Our findings could be useful to guide the formulation and implementation of environmental lake protection measures.
Collapse
Affiliation(s)
- Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, People's Republic of China
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, People's Republic of China
| | - Donglan He
- College of Life Science, South-Central University for Nationalities, Wuhan, People's Republic of China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, People's Republic of China
| | - Xiang Xiong
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, People's Republic of China
| | - Luping Ye
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, People's Republic of China
| | - Yarui Cheng
- College of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan, People's Republic of China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, People's Republic of China
| |
Collapse
|
14
|
Wan W, Grossart H, He D, Liu W, Wang S, Yang Y. Differentiation strategies for planktonic bacteria and eukaryotes in response to aggravated algal blooms in urban lakes. IMETA 2023; 2:e84. [PMID: 38868338 PMCID: PMC10989909 DOI: 10.1002/imt2.84] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/14/2024]
Abstract
Aggravated algal blooms potentially decreased environmental heterogeneity. Different strategies of planktonic bacteria and eukaryotes in response to aggravated algal blooms. Environmental constraints of plankton showed different patterns over time.
Collapse
Affiliation(s)
- Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical GardenChinese Academy of SciencesWuhanPeople's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research StationChinese Academy of Sciences & Hubei ProvinceWuhanPeople's Republic of China
| | - Hans‐Peter Grossart
- Departent of Plankton and Microbial EcologyLeibniz‐Institute for Freshwater Ecology and Inland Fisheries (IGB)NeuglobsowGermany
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Donglan He
- College of Life ScienceSouth‐Central Minzu UniversityWuhanPeople's Republic of China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical GardenChinese Academy of SciencesWuhanPeople's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research StationChinese Academy of Sciences & Hubei ProvinceWuhanPeople's Republic of China
| | - Shuai Wang
- College of Life ScienceSouth‐Central Minzu UniversityWuhanPeople's Republic of China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical GardenChinese Academy of SciencesWuhanPeople's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research StationChinese Academy of Sciences & Hubei ProvinceWuhanPeople's Republic of China
| |
Collapse
|