1
|
Zheng YJ, Luo JJ, Zou HL, Xing K, Luo HQ, Gao ZF, Li NB, Leong DT, Li BL. Exploiting the Tunneling Coffee Ring Effect of Universal Colorimetric Nanomaterials for Ultrafast On-Site Microbial Monitoring. Anal Chem 2024; 96:18161-18169. [PMID: 39480558 DOI: 10.1021/acs.analchem.4c04276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The coffee-ring effect is an eye-catching circle originating from a material-suspended liquid droplet at a solid substrate after liquid evaporation, but the low speediness has restricted practical applications. When nanomaterial aqueous solutions are dropped onto porous nitrocellulose (NC), the liquid is immediately absorbed through the porous tunnels of paper fibers, and nanomaterials are rapidly enriched on the contact lines between droplets and membranes. We called this ultrafast variant of the coffee ring effect the "tunneling coffee ring" (TCR). When nanomaterial sizes are smaller than that of pores, a larger-diameter ring of nanomaterials quickly materializes. The real-time particle size-dependent TCRs and liquid diffusion rings exhibit a dual-ring pattern on the NC membrane. The tunneling speed of the capillary effect is so fast that the pattern appears within seconds. We apply the TCR effect as a size-surface affinity-particle/fluid separation sensor for bacteria. Dextran-modified Au and MoS2 nanostructures are proposed to be antibody-free microbe kits. Our TCR effect is used to distinguish between particles of different sizes and affinities, which are highly relevant in complicated systems without electricity and equipment in resource-poor settings.
Collapse
Affiliation(s)
- Ying Jie Zheng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jun Jiang Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hao Lin Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zhong Feng Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
2
|
Wang XH, Luo MJ, Li X, Yang Q, Guo Z, Zou HL, Luo HQ, Li NB, Li BL. A recyclable hydrogel-based sustained release system for formaldehyde monitoring in foods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7352-7359. [PMID: 39344386 DOI: 10.1039/d4ay01155d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In this work, 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (AHMT) was pre-doped into agarose hydrogels; consequently, sustained hydrogel systems with modulated release performance were constructed for simple operation and recyclability in point-of-care detection of formaldehyde (FA). With the increase in FA concentrations, the absorbance response of the supernatant solutions showed linear relationships and the color of the reaction mixtures gradually increased. The detection limit was calculated to be 0.013 μg mL-1. To verify its practical application, a simple, rapid and low-cost FA detection platform was built on the basis of the optimized conditions, and the method shows the merits of simplicity, high sensitivity and selectivity. More importantly, the developed hydrogels are recyclable and can be used at least five times without any loss in sensing performance. Significantly, the sensory hydrogels can be employed by non-skilled people for monitoring food safety and applied for the practical detection of FA in foods.
Collapse
Affiliation(s)
- Xue Hua Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Mei Ju Luo
- College of Food Science, Southwest University, Chongqing 400715, P. R. China
| | - Xinyu Li
- Key Laboratory of Organic Pollutants in Environmental Chemical Behavior and Ecological Toxicology of Chongqing, Chongqing Ecological and Environmental Monitoring Center, Chongqing, 401147, P. R. China
| | - Qingling Yang
- Key Laboratory of Organic Pollutants in Environmental Chemical Behavior and Ecological Toxicology of Chongqing, Chongqing Ecological and Environmental Monitoring Center, Chongqing, 401147, P. R. China
| | - Zhishun Guo
- Key Laboratory of Organic Pollutants in Environmental Chemical Behavior and Ecological Toxicology of Chongqing, Chongqing Ecological and Environmental Monitoring Center, Chongqing, 401147, P. R. China
| | - Hao Lin Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
3
|
Luo JJ, Guo DY, Qu ZB, Luo HQ, Li NB, Zou HL, Li BL. Engineering in situ growth of Au nanoclusters on hydrophilic paper fibres for fluorescence calligraphy-based chemical logic gates and information encryption. NANOSCALE HORIZONS 2024; 9:2007-2015. [PMID: 39224015 DOI: 10.1039/d4nh00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Gold nanoclusters (AuNCs) are a type of rising-star fluorescence nanomaterials, but their properties and applications are hindered by the multi-step synthesis and purification routes, as well as the lack of desired supporting substrates. To enhance optical performance and working efficiency, the synthesis and applications of AuNCs are suggested to be merged with emerging substrates. Herein, glutathione-modified hydrophilic rice papers are incubated in chloroauric acid aqueous solutions, and the oxidation-reduction reaction between glutathione and Au ions enables the in situ formation of fluorescent AuNCs on the solid fibres of rice papers. The in situ growth of fluorescent AuNCs on rice papers resulted in eye-catching fluorescence tracks, similar to traditional Chinese conventional calligraphy; thus, this fluoresence calligraphy is defined in this work. The entire process, including synthesis and signal responses, is extremely simple, rapid, and repeatable. Moreover, the diversity of additive chemical reagents in the studied rice papers resulted in responsive fluorescence calligraphy, and the as-synthesized AuNC materials exhibited high reliability and optical stability. Significantly, with the integration of synchronous formation and application of Au nanoclusters on hydrophilic paper substrates, high-performance logical gates and information encryption systems were constructed, remarkably facilitating the progress of molecular sensing and important information transmission.
Collapse
Affiliation(s)
- Jun Jiang Luo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Dun Ying Guo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zi Bo Qu
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Hong Qun Luo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Nian Bing Li
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Hao Lin Zou
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Bang Lin Li
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
4
|
Xu K, Ren J, Shan X, Zhang M, Jing C. Detecting antimony(III) on-site using novel gel-based techniques: Colorimetric diffusive equilibrium in thin films for two-dimensional imaging and surface-enhanced Raman scattering for sensitive quantification. Talanta 2024; 278:126502. [PMID: 38968653 DOI: 10.1016/j.talanta.2024.126502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Antimony (Sb) pollution has raised increasing public concerns and its rapid on-site screening is central for the risk assessment. Herein, we proposed two gel-based methods based on colorimetric diffusive equilibrium in thin films (DET) and surface-enhanced Raman scattering (SERS), for two-dimensional imaging and sensitive detection of Sb(III) by revisiting the phenylfluorone (PhF) complexation reaction. PhF was well dispersed in the polyvinyl alcohol (PVA) hydrogel and reacted with Sb(III) in the DET gel to form a strong PhF-Sb(III) complex. The distribution of Sb(III) was easily visualized at a submillimeter resolution using computer imaging densitometry, with a detection limit (LOD) of ∼100 nmol L-1. Field application in the Sb mine area reveals limited dissolved Sb(III) penetrating the redox barrier below the sediment-water interface by 20 mm in rivers and tailing pond sediments. To improve the detection sensitivity and apply the principle to trace Sb quantification, a SERS platform was established by anchoring PhF on the hydrogel-stabilized Ag nanoparticles via C-O-Ag bonding to specifically detect Raman-inactive Sb(III). Benefiting from the high SERS activity of PhF and enrichment ability of hydrogel, Sb(III) was quantified with a LOD of 1.2-10.7 nmol L-1 depending on the sample volume. The coexisting ions at a 100-fold higher concentration than Sb(III) resulted in only 3.3-10.4 % variation in SERS intensity, indicating a negligible interference on the SERS platform. The platform exhibited a RSD of 6.6-13.1 % and acceptable recoveries for various environmental matrices, highlighting its promise in on-site application.
Collapse
Affiliation(s)
- Kun Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Junjie Ren
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiangcheng Shan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Min Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
5
|
Burratti L, Sgreccia E, Bertelà F, Galiano F. Metal nanostructures in polymeric matrices for optical detection and removal of heavy metal ions, pesticides and dyes from water. CHEMOSPHERE 2024; 362:142636. [PMID: 38885767 DOI: 10.1016/j.chemosphere.2024.142636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Water pollutants such as heavy metal ions, pesticides, and dyes pose a worldwide issue. Their presence in water resources interferes with the normal growth mechanisms of living beings and causes long or short-term diseases. For this reason, research continuously tends to develop innovative, selective, and efficient processes or technologies to detect and remove pollutants from water. This review provides an up-to-date overview on metal nanoparticles loaded in polymeric matrices, such as hydrogels and membranes, and employed as optical sensors and as removing materials for water pollutants. The synthetic pathways of nanomaterials loading into polymeric matrices have been analyzed, particularly focusing on noble metal nanoparticles, noble metal nanoclusters, and metal oxide nanoparticles. Moreover, the sensing properties of modified matrices towards water pollutants have been discussed in addition to the interaction mechanisms between the sensors and the toxic compounds. The last part of the review has been devoted to illustrating the separation mechanism and removal performance of membranes loaded with nanomaterials in the treatment and purification of water streams from different contaminants (heavy metals, dyes and pesticides).
Collapse
Affiliation(s)
- Luca Burratti
- Faculty of Science, Technology and Innovation of the University "Mercatorum", Piazza Mattei 10, 00186, Rome (RM), Italy
| | - Emanuela Sgreccia
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome (RM), Italy
| | - Federica Bertelà
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146, Rome (RM), Italy
| | - Francesco Galiano
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy.
| |
Collapse
|
6
|
Aihaiti A, Wang J, Zhang W, Shen M, Meng F, Li Z, Zhang Y, Ren M, Zhang M. Recent advances and trends in innovative biosensor-based devices for heavy metal ion detection in food. Compr Rev Food Sci Food Saf 2024; 23:e13358. [PMID: 38923121 DOI: 10.1111/1541-4337.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 06/28/2024]
Abstract
Low-cost, reliable, and efficient biosensors are crucial in detecting residual heavy metal ions (HMIs) in food products. At present, based on distance-induced localized surface plasmon resonance of noble metal nanoparticles, enzyme-mimetic reaction of nanozymes, and chelation reaction of metal chelators, the constructed optical sensors have attracted wide attention in HMIs detection. Besides, based on the enrichment and signal amplification strategy of nanomaterials on HMIs and the construction of electrochemical aptamer sensing platforms, the developed electrochemical biosensors have overcome the plague of low sensitivity, poor selectivity, and the inability of multiplexed detection in the optical strategy. Moreover, along with an in-depth discussion of these different types of biosensors, a detailed overview of the design and application of innovative devices based on these sensing principles was provided, including microfluidic systems, hydrogel-based platforms, and test strip technologies. Finally, the challenges that hinder commercial application have also been mentioned. Overall, this review aims to establish a theoretical foundation for developing accurate and reliable sensing technologies and devices for HMIs, thereby promoting the widespread application of biosensors in the detection of HMIs in food.
Collapse
Affiliation(s)
- Aihemaitijiang Aihaiti
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Jingkang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Wenrui Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Mingping Shen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Zongda Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Yukun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Mengyao Ren
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| |
Collapse
|
7
|
Zhang H, Luo JJ, Wang RL, He XY, Zou HL, Luo HQ, Li NB, Li BL. Electrophoretic Microplate Protein Identification Based on Gold Staining of Molybdenum Disulfide Hydrogels. Anal Chem 2024; 96:10074-10083. [PMID: 38848224 DOI: 10.1021/acs.analchem.4c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Numerous high-performance nanotechnologies have been developed, but their practical applications are largely restricted by the nanomaterials' low stabilities and high operation complexity in aqueous substrates. Herein, we develop a simple and high-reliability hydrogel-based nanotechnology based on the in situ formation of Au nanoparticles in molybdenum disulfide (MoS2)-doped agarose (MoS2/AG) hydrogels for electrophoresis-integrated microplate protein recognition. After the incubation of MoS2/AG hydrogels in HAuCl4 solutions, MoS2 nanosheets spontaneously reduce Au ions, and the hydrogels are remarkably stained with the color of as-synthetic plasmonic Au hybrid nanomaterials (Au staining). Proteins can precisely mediate the morphologies and optical properties of Au/MoS2 heterostructures in the hydrogels. Consequently, Au staining-based protein recognition is exhibited, and hydrogels ensure the comparable stabilities and sensitivities of protein analysis. In comparison to the fluorescence imaging and dye staining, enhanced sensitivity and recognition performances of proteins are implemented by Au staining. In Au staining, exfoliated MoS2 semiconductors directly guide the oriented growth of plasmonic Au nanostructures in the presence of formaldehyde, showing environment-friendly features. The Au-stained hydrogels merge the synthesis and recognition applications of plasmonic Au nanomaterials. Significantly, the one-step incubation of the electrophoretic hydrogels leads to high simplicity of operation, largely challenging those multiple-step Ag staining routes which were performed with high complexity and formaldehyde toxicity. Due to its toxic-free, simple, and sensitive merits, the Au staining integrated with electrophoresis-based separation and microplate-based high-throughput measurements exhibits highly promising and improved practicality of those developing nanotechnologies and largely facilitates in-depth understanding of biological information.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jun Jiang Luo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Lan Wang
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xin Yu He
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hao Lin Zou
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hong Qun Luo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Bang Lin Li
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
8
|
Zhu LR, Wang ZY, Luo JJ, Zheng YJ, Zou HL, Luo HQ, Zhao LB, Li NB, Li BL. Mercury-Mediated Epitaxial Accumulation of Au Atoms for Stained Hydrogel-Improved On-Site Mercury Monitoring. Anal Chem 2023; 95:18859-18870. [PMID: 38096265 DOI: 10.1021/acs.analchem.3c04338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Trivalent Au ions are easily reduced to be zerovalent atoms by coexisting reductant reagents, resulting in the subsequent accumulation of Au atoms and formation of plasmonic nanostructures. In the absence of stabilizers or presence of weak stabilizers, aggregative growth of Au nanoparticles (NPs) always occurs, and unregular multidimensional Au materials are consequently constructed. Herein, the addition of nanomole-level mercury ions can efficiently prevent the epitaxial accumulation of Au atoms, and separated Au NPs with mediated morphologies and superior plasmonic characteristics are obtained. Experimental results and theoretical simulation demonstrate the Hg-concentration-reliant formation of plasmonic nanostructures with their mediated sizes and shapes in the presence of weak reductants. Moreover, the sensitive plasmonic responses of reaction systems exhibit selectivity comparable to that of Hg species. As a concept of proof, polymeric carbon dots (CDs) were used as the initial reductant, and the reactions between trivalent Au and CDs were studies. Significantly, Hg atoms prevent the epitaxial accumulation of Au atoms, and plasmonic NPs with decreased sizes were in situ synthesized, corresponding to varied surface plasmonic resonance absorption performance of the CD-induced hybrids. Moreover, with the integration of sensing substrates of CD-doped hydrogels, superior response stabilities, analysis selectivity, and sensitivity of Hg2+ ions were achieved on the basis of the mercury-mediated in situ chemical reactions between trivalent Au ions and reductant CDs. Consequently, a high-performance sensing strategy with the use of Au NP-staining hydrogels (nanostaining hydrogels) was exhibited. In addition to Hg sensing, the nanostaining hydrogels facilitated by doping of emerging materials and advanced chem/biostrategies can be developed as high-performance on-site monitoring routes to various pollutant species.
Collapse
Affiliation(s)
- Liang Rui Zhu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zhao-Yu Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jun Jiang Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Jie Zheng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hao Lin Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Liu-Bin Zhao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
9
|
Zou H, Gong L, Xu Y, Ni H, Jiang Y, Li Y, Huang C, Liu Q. Plasmonic scattering imaging of single Cu 2-xSe nanoparticle for Hg 2+ detection. Talanta 2023; 261:124663. [PMID: 37209587 DOI: 10.1016/j.talanta.2023.124663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
The development of new efficient contrast nanoprobe has been greatly concerned in the field of scattering imaging for sensitive and accurate detection of trace analytes. In this work, the non-stoichiometric Cu2-xSe nanoparticle with typical localized surface plasmon resonance (LSPR) properties originating from their copper deficiency as a plasmonic scattering imaging probe was developed for sensitive and selective detection of Hg2+ under dark-field microscopy. Hg2+ can compete with Cu(I)/Cu(II) which were sources of optically active holes coexisting in these Cu2-xSe nanoparticles for its higher affinity with Se2-. The plasmonic properties of Cu2-xSe were adjusted effectively. Thus, the color scattering images of Cu2-xSe nanoparticles was changed from blue to cyan, and the scattering intensity was obviously enhanced with the dark-field microscopy. There was a linear relationship between the scattering intensity enhancement and the Hg2+ concentration in the range of 10-300 nM with a low detection limit of 1.07 nM. The proposed method has good potential for Hg2+ detection in the actual water samples. This work provides a new perspective on applying new plasmonic imaging probe for the reliable determination of trace heavy metal substances in the environment at a single particle level.
Collapse
Affiliation(s)
- Hongyan Zou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Lijun Gong
- Chongqing Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing Science and Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Yue Xu
- Chongqing Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing Science and Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Huanhuan Ni
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yongjian Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yuanfang Li
- Chongqing Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing Science and Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Chengzhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Qingqing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Zhang D, Yang XA, Jin CZ, Zhang WB. Ultrasonic assisted magnetic solid phase extraction of ultra-trace mercury with ionic liquid functionalized materials. Anal Chim Acta 2023; 1245:340865. [PMID: 36737138 DOI: 10.1016/j.aca.2023.340865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Due to the agglomeration between particles, the inherent adsorption characteristics of magnetic powder materials are usually difficult to fully display. Taking ionic liquid functional materials as an example, the enrichment behavior of these adsorbents for trace mercury (Hg2+) in ultrasonic (US) assisted dispersion mode was systematically studied. The dissociation of protonic ionic liquids (IL) occur in the process of dispersion and the strong electrostatic attraction can improve the diffusion and adhesion of mercury on the adsorbent surface. Spectral measurement data showed that with the help of US, the more uniform dispersion of magnetic materials accelerated the adsorption of trace Hg2+. Ultrasonic intrinsic parameters such as frequency, power and radiation duration significantly affect the dispersion and apparent adsorption properties of magnetic functional materials. In the range of experimental parameters, the dye/paper image experimental results documents that there is a positive correlation between cavitation effect and ultrasonic frequency/power. The enrichment degree of fixed adsorbate (0.1 μg L-1) under high frequency (59 kHz) or high-power input (100%) is 1-2 times higher than that under low frequency (40 kHz) or low power (60%) input. This is a valuable conclusion for the subsequent study of US dispersion of magnetic and even non-magnetic powder materials. In addition, the in-situ desorption and accurate measurement of adsorbed mercury were realized by combining slurry vapor generation atomic fluorescence spectroscopy (SVG-AFS). The constructed US assisted magnetic solid phase extraction (US-MSPE) method has the characteristics of low detection limit (0.36 ng L-1), high recovery (>90%), sustainable utilization (>3) and reasonable measurement deviation (<5%), which can meet the requirements of ultra-trace Hg2+ (0.01-1.0 μg L-1).
Collapse
Affiliation(s)
- Di Zhang
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Xin-An Yang
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| | - Cheng-Zhao Jin
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Wang-Bing Zhang
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| |
Collapse
|
11
|
Luo JJ, Zhang H, Zou HL, Luo HQ, Li NB, Li BL. Tracking the Growth of Chiral Plasmonic Nanocrystals at Molybdenum Disulfide Heterostructural Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3052-3061. [PMID: 36787386 DOI: 10.1021/acs.langmuir.2c03101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The way of accurately regulating the growth of chiral plasmonics is of great importance for exploring the chirality information and improving its potential values. Herein, cysteine enantiomers modulate the anisotropic and epitaxial growth of gold nanoplasmonics on seeds of exfoliated MoS2 nanosheets. The heterostructural Au and MoS2 hybrids induced by enantiomeric cysteine are presented with chiroptical characteristics, dendritic morphologies, and plasmonic performances. Moreover, the synthesis, condition optimization, formation mechanism, and plasmonic properties of Au and MoS2 dendritic nanostructures are studied. The chirality characteristics are identified using the circular dichroism spectra and scanning electron microscopy. Time-resolved transmission electron microscopy and UV-vis spectra of the intermediate products captured are analyzed to confirm the formation mechanism of dendritic plasmonic nanostructures at heterostructural surfaces. The specific dendritic morphologies originate from the synergistic impacts of heterostructural MoS2 interfaces and enantiomeric cysteine-induced anisotropic manipulation. Significantly, the developed synthesis strategy of chiral nanostructures at heterostructural interfaces is highly promising in promoting the understanding of the plasmonic function and crucial chirality bioinformation.
Collapse
Affiliation(s)
- Jun Jiang Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hang Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hao Lin Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
12
|
Li BL, Luo JJ, Zou HL, Zhang QM, Zhao LB, Qian H, Luo HQ, Leong DT, Li NB. Chiral nanocrystals grown from MoS 2 nanosheets enable photothermally modulated enantioselective release of antimicrobial drugs. Nat Commun 2022; 13:7289. [PMID: 36435865 PMCID: PMC9701227 DOI: 10.1038/s41467-022-35016-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
The transfer of the concept of chirality from molecules to synthesized nanomaterials has attracted attention amongst multidisciplinary teams. Here we demonstrate heterogeneous nucleation and anisotropic accumulation of Au nanoparticles on multilayer MoS2 planes to form chiroptically functional nanomaterials. Thiol amino acids with chiral conformations modulate asymmetric growth of gold nanoarchitectures on seeds of highly faceted Au/MoS2 heterostructures. Consequently, dendritic plasmonic nanocrystals with partial chiral morphologies are synthesized. The chirality of dendritic nanocrystals inherited from cysteine molecules refers to the structural characteristics and includes specific recognition of enantiomeric molecules. With integration of the intrinsic photothermal properties and inherited enantioselective characteristics, dendritic Au/MoS2 heterostructures exhibit chirality-dependent release of antimicrobial drugs from hydrogel substrates when activated by exogenous infrared irradiation. A three-in-one strategy involving synthesis of chiral dendritic heterostructures, enantioselective recognition, and controlled drug release system is presented, which improves nanomaterial synthetic technology and enhances our understanding of crucial chirality information.
Collapse
Affiliation(s)
- Bang Lin Li
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Jun Jiang Luo
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Hao Lin Zou
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Qing-Meng Zhang
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Liu-Bin Zhao
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Hang Qian
- grid.410570.70000 0004 1760 6682Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037 P. R. China
| | - Hong Qun Luo
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - David Tai Leong
- grid.4280.e0000 0001 2180 6431Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585 Singapore
| | - Nian Bing Li
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| |
Collapse
|
13
|
Kuppusamy S, Deivasigamani P. Chromophoric Ion Receptor-Decorated Porous Monolithic Polymer for the Solid-State Naked Eye Sensing of Hg(II): An Experimental and Theoretical Approach. ACS OMEGA 2022; 7:41461-41471. [PMID: 36406566 PMCID: PMC9670289 DOI: 10.1021/acsomega.2c05239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 05/25/2023]
Abstract
The current work presents a perspective to obliterate toxic Hg(II) from an aqueous environment, a strategic environmental remediation and decontamination measure. We report a simple, efficient, and reusable solid-state visual sensing strategy for the selective detection and quantitative recovery of ultratrace Hg(II). The capture of Hg(II) ions was effectuated using a macro-/mesoporous polymer monolith uniformly decorated with an azo-based chromophoric ion receptor, i.e., 7-((1H-benzo[d]imidazol-2-yl)diazenyl)quinolin-8-ol (BIDQ). The porous polymer template was synthesized through free radical polymerization of gylcidylmethacrylate and ethylene glycol dimethacrylate, leading to distinct structural and surface properties that offer exclusive solid-state colorimetric selectivity for Hg(II) upon restricted spatial dispersion of the ion receptor. The sensor provides a broad linear response range of 1-200 μg/L, with an outstanding detection limit of 0.2 μg/L for Hg(II) ions, thus effectuating reliable and reproducible sensing. Optimizing analytical parameters such as solution pH, receptor concentration, sensor quantity, kinetics, temperature, and matrix interference proved to be promising for the real-time monitoring of toxic mercury ions from aqueous/industrial systems, with maximum response in the pH range of 7.5-8.0, with a response time of ≤80 s. Density functional theory (DFT) calculations were employed to study the electronic structure of BIDQ upon chelating with Hg(II) ions, using 6-311G and LAND2Z basis sets.
Collapse
|