1
|
Knight J, Forsythe JEM, Zhang X, Rafferty A, Orr-Ewing AJ, Cotterell MI. Wavelength- and pH-Dependent Optical Properties of Aqueous Aerosol Particles Containing 4-Nitrocatechol. ACS EARTH & SPACE CHEMISTRY 2024; 8:2198-2208. [PMID: 39600321 PMCID: PMC11587064 DOI: 10.1021/acsearthspacechem.4c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
The radiative forcing caused by atmospheric aerosol represents one of the largest uncertainties in climate models. In part, these uncertainties derive from poor characterizations of the optical properties of light-absorbing brown carbon (BrC) containing aerosols. Here, single particle cavity ring-down spectroscopy (SP-CRDS) is used to determine the complex refractive index at the optical wavelength of 405 nm for aqueous particles composed of an abundant BrC species, 4-nitrocatechol. Moreover, the effect of acidity on the complex refractive index of 4-nitrocatechol is explored. UV/visible spectroscopy allows measurement of the wavelength-dependent (from 200 to 800 nm) imaginary refractive index for bulk aqueous solutions of 4-nitrocatechol, for which the pH is adjusted between ∼1 and 13. Applying a physically based refractive index mixing rule, wavelength-dependent imaginary refractive index values are estimated for the fully protonated, singly deprotonated and doubly deprotonated forms of 4-nitrocatechol. A Kramers-Kronig analysis constrained by the 405 nm SP-CRDS and 632.8 nm elastic light scattering measurements gives the wavelength-dependent real refractive index values. The real and imaginary refractive indices are essential for computing the radiative properties of these abundant BrC chromophores in aerosol plumes and cloudwater.
Collapse
Affiliation(s)
- Jamie
W. Knight
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | | | - Xu Zhang
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Aidan Rafferty
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
| | | | | |
Collapse
|
2
|
Curchod BFE, Orr-Ewing AJ. Perspective on Theoretical and Experimental Advances in Atmospheric Photochemistry. J Phys Chem A 2024; 128:6613-6635. [PMID: 39021090 PMCID: PMC11331530 DOI: 10.1021/acs.jpca.4c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Research that explores the chemistry of Earth's atmosphere is central to the current understanding of global challenges such as climate change, stratospheric ozone depletion, and poor air quality in urban areas. This research is a synergistic combination of three established domains: earth observation, for example, using satellites, and in situ field measurements; computer modeling of the atmosphere and its chemistry; and laboratory measurements of the properties and reactivity of gas-phase molecules and aerosol particles. The complexity of the interconnected chemical and photochemical reactions which determine the composition of the atmosphere challenges the capacity of laboratory studies to provide the spectroscopic, photochemical, and kinetic data required for computer models. Here, we consider whether predictions from computational chemistry using modern electronic structure theory and nonadiabatic dynamics simulations are becoming sufficiently accurate to supplement quantitative laboratory data for wavelength-dependent absorption cross-sections, photochemical quantum yields, and reaction rate coefficients. Drawing on presentations and discussions from the CECAM workshop on Theoretical and Experimental Advances in Atmospheric Photochemistry held in March 2024, we describe key concepts in the theory of photochemistry, survey the state-of-the-art in computational photochemistry methods, and compare their capabilities with modern experimental laboratory techniques. From such considerations, we offer a perspective on the scope of computational (photo)chemistry methods based on rigorous electronic structure theory to become a fourth core domain of research in atmospheric chemistry.
Collapse
|
3
|
Freedman MA, Huang Q, Pitta KR. Phase Transitions in Organic and Organic/Inorganic Aerosol Particles. Annu Rev Phys Chem 2024; 75:257-281. [PMID: 38382569 DOI: 10.1146/annurev-physchem-083122-115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The phase state of aerosol particles can impact numerous atmospheric processes, including new particle growth, heterogeneous chemistry, cloud condensation nucleus formation, and ice nucleation. In this article, the phase transitions of inorganic, organic, and organic/inorganic aerosol particles are discussed, with particular focus on liquid-liquid phase separation (LLPS). The physical chemistry that determines whether LLPS occurs, at what relative humidity it occurs, and the resultant particle morphology is explained using both theoretical and experimental methods. The known impacts of LLPS on aerosol processes in the atmosphere are discussed. Finally, potential evidence for LLPS from field and chamber studies is presented. By understanding the physical chemistry of the phase transitions of aerosol particles, we will acquire a better understanding of aerosol processes, which in turn impact human health and climate.
Collapse
Affiliation(s)
- Miriam Arak Freedman
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA; ,
- Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Qishen Huang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China;
| | - Kiran R Pitta
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA; ,
| |
Collapse
|
4
|
Dalton AB, Fishman DA, Nizkorodov SA. Ultrafast Excited-State Proton Transfer in 4-Nitrocatechol: Implications for the Photochemistry of Nitrophenols. J Phys Chem A 2023; 127:8307-8315. [PMID: 37773630 DOI: 10.1021/acs.jpca.3c04322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Nitrophenols are a class of environmental contaminants that exhibit strong absorption at atmospherically relevant wavelengths, prompting many studies of their photochemical degradation rates and mechanisms. Despite the importance of photochemical reactions of nitrophenols in the environment, the ultrafast processes in electronically excited nitrophenols are not well understood. Here, we present an experimental study of ultrafast electron dynamics in 4-nitrocatechol (4NC), a common product of biomass burning and fossil fuel combustion. The experiments are accompanied by time-dependent quantum mechanical calculations to help assign the observed transitions in static and transient absorption spectra and to estimate the rates of singlet-to-triplet intersystem crossing. Our results suggest that electronic triplet states are not efficiently populated upon 340 nm excitation, as efficient proton transfer occurs in the excited state on a time scale of a few picoseconds in water and tens of picoseconds in 2-propanol. This suggests that triplet states do not play a significant role in the photochemical reactions of 4NC in the environment and, by extension, in nitrophenols in general. Instead, consideration should be given to the idea that this class of molecules may serve as strong photoacids.
Collapse
Affiliation(s)
- Avery B Dalton
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Dmitry A Fishman
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
5
|
Liu X, Wang H, Wang F, Lv S, Wu C, Zhao Y, Zhang S, Liu S, Xu X, Lei Y, Wang G. Secondary Formation of Atmospheric Brown Carbon in China Haze: Implication for an Enhancing Role of Ammonia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11163-11172. [PMID: 37406304 PMCID: PMC10399565 DOI: 10.1021/acs.est.3c03948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Optical characteristics and molecular compositions of brown carbon (BrC) were investigated during winter 2019 at a rural site of China with a focus on nitro-aromatic compounds (NACs) and imidazoles (IMs). The abundance of gaseous nitrophenols relative to CO during the campaign maximized at noontime, being similar to O3, while the particulate NACs during the haze periods strongly correlated with toluene and NO2, suggesting that NACs in the region are largely formed from the gas-phase photooxidation. Strong correlations of particulate IMs in the dry haze periods with the mass ratio of EC/PM2.5 and the concentration of levoglucosan were observed, indicating that IMs during the dry events are largely derived from biomass burning emissions. However, an increase in IMs with the increasing aerosol liquid water content and pH was observed in the humid haze events, along with much lower abundances of levoglucosan and K+ relative to PM2.5, suggesting that IMs were mostly formed from aqueous reactions in the humid haze periods. These IMs exponentially increased with an increasing NH3 owing to an aqueous reaction of carbonyls with free ammonia. Our findings for the first time revealed an enhancing effect of ammonia on BrC formation in China, especially in humid haze periods.
Collapse
Affiliation(s)
- Xiaodi Liu
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Haoyang Wang
- Laboratory
of Mass Spectrometry Analysis, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fanglin Wang
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Shaojun Lv
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Can Wu
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
- Institute
of Eco-Chongming, Cuiniao
Road, Chenjia Zhen, Chongming, Shanghai 202150, China
| | - Yu Zhao
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Si Zhang
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Shijie Liu
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Xinbei Xu
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Yali Lei
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Gehui Wang
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
- Institute
of Eco-Chongming, Cuiniao
Road, Chenjia Zhen, Chongming, Shanghai 202150, China
| |
Collapse
|
6
|
Rafferty A, Vennes B, Bain A, Preston TC. Optical trapping and light scattering in atmospheric aerosol science. Phys Chem Chem Phys 2023; 25:7066-7089. [PMID: 36852581 DOI: 10.1039/d2cp05301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Aerosol particles are ubiquitous in the atmosphere, and currently contribute a large uncertainty to climate models. Part of the endeavour to reduce this uncertainty takes the form of improving our understanding of aerosol at the microphysical level, thus enabling chemical and physical processes to be more accurately represented in larger scale models. In addition to modeling efforts, there is a need to develop new instruments and methodologies to interrogate the physicochemical properties of aerosol. This perspective presents the development, theory, and application of optical trapping, a powerful tool for single particle investigations of aerosol. After providing an overview of the role of aerosol in Earth's atmosphere and the microphysics of these particles, we present a brief history of optical trapping and a more detailed look at its application to aerosol particles. We also compare optical trapping to other single particle techniques. Understanding the interaction of light with single particles is essential for interpreting experimental measurements. In the final part of this perspective, we provide the relevant formalism for understanding both elastic and inelastic light scattering for single particles. The developments discussed here go beyond Mie theory and include both how particle and beam shape affect spectra. Throughout the entirety of this work, we highlight numerous references and examples, mostly from the last decade, of the application of optical trapping to systems that are relevant to the atmospheric aerosol.
Collapse
Affiliation(s)
| | - Benjamin Vennes
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada.
| | - Alison Bain
- School of Chemistry, University of Bristol, Bristol, UK
| | - Thomas C Preston
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada. .,Department of Chemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Zhang X, Gao J, Wang X, Wang S, Jiang B, Wang W, Wang H. Determining the Local Refractive Index of Single Particles by Optical Imaging Technique. Anal Chem 2022; 94:17741-17745. [PMID: 36520603 DOI: 10.1021/acs.analchem.2c04043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The refractive index points to the interplay between light and objects, which is rarely studied down to micronano scale. Herein, we demonstrated a conventional bright-field imaging technique to determine the local refractive index of single particles combined with a series of refractive index standard solutions. This intrinsic optical property is independent with the particle size and surface roughness with a single chemical component. Furthermore, we accurately tuned refractive index of homemade core-shell nanoparticles by adjusting the ratio of core-to-shell geometry. This simple and effective strategy reveals extensive applications in exploring, designing and optimizing the physical and optical characterizations of composite photonic crystals with high precision. It also indicates potentials in the field of reflective displays, optical identification, and encryption.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Xinyue Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Sa Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Bo Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
8
|
Ying Z, Zhang Z, Zhou Y, Wang Y, Zhang W, Huang Q, Shen Y, Fang H, Hou H, Yan L. Unexpected hygroscopic behaviors of individual sub-50 nm NaNO 3 nanoparticles observed by in situ atomic force microscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158441. [PMID: 36067856 DOI: 10.1016/j.scitotenv.2022.158441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Hygroscopicity is one of the most important physicochemical properties of salt nanoparticles, greatly influencing the environment, climate and human health. However, the hygroscopic properties of salt nanoparticles are poorly understood owing to the great challenges of the preparation, preservation and in situ characterization. Here we show the unexpected shape- and size-dependent hygroscopic behaviors of NaNO3 nanoparticles prepared from molten salts using in situ environment-controlled atomic force microscopy. During the humidifying process, the angular and round sub-50 nm NaNO3 particles display anisotropic and isotropic water adsorption behaviors, respectively. The sub-10 nm NaNO3 nanoparticles abnormally shrink and disappear. The growth factors of the NaNO3 nanoparticles are highly sensitive to their sizes and shapes, and quite different from those of NaNO3 microparticles. These findings show that the hygroscopic behaviors of salt nanoparticles may not be comprehensively described by the traditional growth factors, and open up a new pathway to study the hygroscopic behaviors of salt nanoparticles.
Collapse
Affiliation(s)
- Zhemian Ying
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zejun Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Wei Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qing Huang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yue Shen
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Haiping Fang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Huiqi Hou
- Institute of Environmental Science, Fudan University, Shanghai 200433, China
| | - Long Yan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| |
Collapse
|