1
|
Zhao Y, Chen P, Wang X, Hlushko H, LaVerne JA, Liu L, Pearce CI, Wang Z, Rosso KM, Zhang X. Effect of 60Co Irradiation on Boehmite Dissolution in Caustic Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21760-21769. [PMID: 39589262 DOI: 10.1021/acs.est.4c07544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Here, we examine how radiation impacts the dissolution behavior of boehmite by subjecting dry nanoparticles of different sizes to 60Co γ radiation and subsequently analyzing their dissolution behavior in caustic solutions as a function of temperature. The measured kinetics show that irradiation with an amount 228.24 Mrad significantly slows the dissolution rate, particularly for smaller sizes at lower temperatures. Specifically, the temperature-dependent dissolution rates of irradiated 20 nm boehmite versus pristine material in 3 M NaOH solutions were several times lower (e.g., rate constant of 0.026 vs 0.075 h-1 at 60 °C), with an apparent activation energy 40 kJ mol-1 higher. Although various imaging techniques and X-ray diffraction measurements consistently revealed no obvious differences between pristine and irradiated samples, after irradiation significant binding energy shifts were detected in the X-ray photoelectron Spectroscopy peaks of Al 2p and O 1s, and a change in their relative intensities indicated a lower O/Al ratio. This suggests that γ-irradiation may stabilize boehmite particle surfaces by driving their chemistry and structure toward more stable aluminum oxide forms. This finding may help explain slower dissolution rates of boehmite in nuclear waste and may be useful for the development of more robust predictive models and effective strategies for waste processing.
Collapse
Affiliation(s)
- Yatong Zhao
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ping Chen
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xiang Wang
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Hanna Hlushko
- Radiation Laboratory and Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jay A LaVerne
- Radiation Laboratory and Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Lili Liu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Carolyn I Pearce
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Zheming Wang
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Kevin M Rosso
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xin Zhang
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
2
|
Wang Y, Rastogi D, Malek KA, Sun J, Ahn MC, Asa-Awuku AA, Woehl TJ. Imaging Dissolution Dynamics of Individual NaCl Nanoparticles during Deliquescence with In Situ Transmission Electron Microscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15551-15561. [PMID: 39160682 DOI: 10.1021/acs.est.4c02356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Water vapor condensation on hygroscopic aerosol particles plays an important role in cloud formation, climate change, secondary aerosol formation, and aerosol aging. Conventional understanding considers deliquescence of nanosized hygroscopic aerosol particles a nearly instantaneous solid to liquid phase transition. However, the nanoscale dynamics of water condensation and aerosol particle dissolution prior to and during deliquescence remain obscure due to a lack of high spatial and temporal resolution single particle measurements. Here we use real time in situ transmission electron microscopy (TEM) imaging of individual sodium chloride (NaCl) nanoparticles to demonstrate that water adsorption and aerosol particle dissolution prior to and during deliquescence is a multistep dynamic process. Water condensation and aerosol particle dissolution was investigated for lab generated NaCl aerosols and found to occur in three distinct stages as a function of increasing relative humidity (RH). First, a < 100 nm water layer adsorbed on the NaCl cubes and caused sharp corners to dissolve and truncate. The water layer grew to several hundred nanometers with increasing RH and was rapidly saturated with solute, as evidenced by halting of particle dissolution. Adjacent cube corners displayed second-scale curvature fluctuations with no net particle dissolution or water layer thickness change. We propose that droplet solute concentration fluctuations drove NaCl transport from regions of high local curvature to regions of low curvature. Finally, we observed coexistence of a liquid water droplet and aerosol particle immediately prior to deliquescence. Particles dissolved discretely along single crystallographic directions, separated by few second lag times with no dissolution. This work demonstrates that deliquescence of simple pure salt particles with sizes in the range of 100 nm to several microns is not an instantaneous phase transition and instead involves a range of complex dissolution and water condensation dynamics.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Dewansh Rastogi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Kotiba A Malek
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Jiayue Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Martin Changman Ahn
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Akua A Asa-Awuku
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, Maryland 20742, United States
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
- Department of Civil and Environmental Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, A. James College of Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Taylor J Woehl
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, Maryland 20742, United States
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Davletshin A, Song W. Operando scanning electron microscopy platform for in situ imaging of fluid evolution in nanoporous shale. LAB ON A CHIP 2024; 24:2920-2926. [PMID: 38660746 DOI: 10.1039/d3lc01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Fluid-solid interactions in nanoporous materials underlie processes fundamental to natural and engineered processes, including the thermochemical transformation of argillaceous materials during high-level nuclear waste disposal. Operando fluid-solid resolution at the nanoscale, however, is still not possible with existing optical and electron microscopy approaches that are constrained by the diffraction limit of light and by vacuum-fluid incompatibility, respectively. In this work, we develop an operando scanning electron microscopy (SEM) platform that enables the first direct in situ imaging of dynamic fluid-solid interactions in nanoporous materials with spatio-temporal-chemical resolutions of ∼2.5 nm per pixel and 10 fps, along with elemental distributions. Using this platform, we reveal necessary conditions for thermochemical pore and fracture generation in shales and measure their surface wetting characteristics that constrain the feasibility of high-level nuclear waste containment. Notably, we show that low heating-rate conditions typical of radioactive decay produce hydrocarbon liquids that wet fracture and pore surfaces in a self-sealing manner to impede aqueous radionuclide advection.
Collapse
Affiliation(s)
- Artur Davletshin
- Center for Subsurface Energy and the Environment, University of Texas at Austin, USA.
| | - Wen Song
- Center for Subsurface Energy and the Environment, University of Texas at Austin, USA.
| |
Collapse
|
4
|
Adams FT, Bauer M, Levard C, Michel FM. Multivariate regression analysis of factors regulating the formation of synthetic aluminosilicate nanoparticles. NANOSCALE 2024. [PMID: 38381522 DOI: 10.1039/d4nr00473f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Interest is growing in nanoparticles made of earth abundant materials, like alumino(silicate) minerals. Their applications are expanding to include catalysis, carbon sequestration reactions, and medical applications. It remains unclear, however, what factors control their formation and abundance during laboratory synthesis or on a larger industrial scale. This work investigates the complex system of physicochemical conditions that influence the formation of nanosized alumino(silicate) minerals. Samples were synthesized and analyzed by powder X-ray diffraction, in situ and ex situ small angle X-ray scattering, and transmission electron microscopy. Regression analyses combined with linear combination fitting of powder diffraction patterns was used to model the influence of different synthesis conditions including concentration, hydrolysis ratio and rate, and Al : Si elemental ratio on the particle size of the initial precipitate and on the phase abundances of the final products. These models show that hydrolysis ratio has the strongest control on the overall phase composition, while the starting reagent concentration also plays a vital role. For imogolite nanotubes, we determine that increasing concentration, and relatively high or low hydrolysis limit nanotube production. A strong relationship is also observed between the distribution of nanostructured phases and the size of precursor particles. The confidences were >99% for all linear regression models and explained up to 85% of the data variance in the case of imogolite. Additionally, the models consistently predict resulting data from other experimental studies. These results demonstrate the use of an approach to understand complex chemical systems with competing influences and provide insight into the formation of several nanosized alumino(silicate) phases.
Collapse
Affiliation(s)
- Faisal T Adams
- Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - McNeill Bauer
- Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - F Marc Michel
- Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
5
|
Zhao Y, Guo Q, Xue S, Chen P, Zhao Q, Liu L, Hlushko H, LaVerne J, Pearce CI, Miao A, Wang Z, Rosso KM, Zhang X. Effect of Adsorbed Carboxylates on the Dissolution of Boehmite Nanoplates in Highly Alkaline Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2017-2026. [PMID: 38214482 DOI: 10.1021/acs.est.3c06595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Understanding the dissolution of boehmite in highly alkaline solutions is important to processing complex nuclear waste stored at the Hanford (WA) and Savannah River (SC) sites in the United States. Here, we report the adsorption of model carboxylates on boehmite nanoplates in alkaline solutions and their effects on boehmite dissolution in 3 M NaOH at 80 °C. Although expectedly lower than at circumneutral pH, adsorption of oxalate occurred at pH 13, with adsorption decreasing linearly to 3 M NaOH. Classical molecular dynamics simulations suggest that the adsorption of oxalate dianions onto the boehmite surface under high pH can occur through either inner- or outer-sphere complexation mechanisms depending on adsorption sites. However, both adsorption models indicate relatively weak binding, with an energy preference of 1.26 to 2.10 kcal/mol. By preloading boehmite nanoplates with oxalate or acetate, we observed suppression of dissolution rates by 23 or 10%, respectively, compared to pure solids. Scanning electron microscopy and transmission electron microscopy characterizations revealed no detectable difference in the morphologic evolution of the dissolving boehmite materials. We conclude that preadsorbed carboxylates can persist on boehmite surfaces, decreasing the density of dissolution-active sites and thereby adding extrinsic controls on dissolution rates.
Collapse
Affiliation(s)
- Yatong Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Qing Guo
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sichuang Xue
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ping Chen
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Qian Zhao
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Lili Liu
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Hanna Hlushko
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jay LaVerne
- Radiation Laboratory and Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Carolyn I Pearce
- Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Aijun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Zheming Wang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kevin M Rosso
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xin Zhang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
6
|
Kang Z, Zhang J, Guo X, Mao Y, Yang Z, Kankala RK, Zhao P, Chen AZ. Observing the Evolution of Metal Oxides in Liquids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304781. [PMID: 37635095 DOI: 10.1002/smll.202304781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Indexed: 08/29/2023]
Abstract
Metal oxides with diverse compositions and structures have garnered considerable interest from researchers in various reactions, which benefits from transmission electron microscopy (TEM) in determining their morphologies, phase, structural and chemical information. Recent breakthroughs have made liquid-phase TEM a promising imaging platform for tracking the dynamic structure, morphology, and composition evolution of metal oxides in solution under work conditions. Herein, this review introduces the recent advances in liquid cells, especially closed liquid cell chips. Subsequently, the recent progress including particle growth, phase transformation, self-assembly, core-shell nanostructure growth, and chemical etching are introduced. With the late technical advances in TEM and liquid cells, liquid-phase TEM is used to characterize many fundamental processes of metal oxides for CO2 reduction and water-splitting reactions. Finally, the outlook and challenges in this research field are discussed. It is believed this compilation inspires and stimulates more efforts in developing and utilizing in situ liquid-phase TEM for metal oxides at the atomic scale for different applications.
Collapse
Affiliation(s)
- Zewen Kang
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Junyu Zhang
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Xiaohua Guo
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Yangfan Mao
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Zhimin Yang
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Peng Zhao
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| |
Collapse
|
7
|
Yuan K, Starchenko V, Rampal N, Yang F, Xiao X, Stack AG. Assessing an aqueous flow cell designed for in situ crystal growth under X-ray nanotomography and effects of radiolysis products. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:634-642. [PMID: 37067259 PMCID: PMC10161885 DOI: 10.1107/s1600577523002783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/23/2023] [Indexed: 05/06/2023]
Abstract
Nucleation and growth of minerals has broad implications in the geological, environmental and materials sciences. Recent developments in fast X-ray nanotomography have enabled imaging of crystal growth in solutions in situ with a resolution of tens of nanometres, far surpassing optical microscopy. Here, a low-cost, custom-designed aqueous flow cell dedicated to the study of heterogeneous nucleation and growth of minerals in aqueous environments is shown. To gauge the effects of radiation damage from the imaging process on growth reactions, radiation-induced morphological changes of barite crystals (hundreds of nanometres to ∼1 µm) that were pre-deposited on the wall of the flow cell were investigated. Under flowing solution, minor to major crystal dissolution was observed when the tomography scan frequency was increased from every 30 min to every 5 min (with a 1 min scan duration). The production of reactive radicals from X-ray induced water radiolysis and decrease of pH close to the surface of barite are likely responsible for the observed dissolution. The flow cell shown here can possibly be adopted to study a wide range of other chemical reactions in solutions beyond crystal nucleation and growth where the combination of fast flow and fast scan can be used to mitigate the radiation effects.
Collapse
Affiliation(s)
- Ke Yuan
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Vitalii Starchenko
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Nikhil Rampal
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical Engineering, Columbia University, NY 10027, USA
| | - Fengchang Yang
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xianghui Xiao
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrew G. Stack
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
8
|
Wei Y, Yuan P, Zhou J, Liu J, Losic D, Wu H, Bu H, Tan X, Li Z. Direct Atomic-Scale Insight into the Precipitation Formation at the Lanthanum Hydroxide Nanoparticle/Solution Interface. J Phys Chem Lett 2023; 14:3995-4003. [PMID: 37083499 DOI: 10.1021/acs.jpclett.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding precipitation formation at lanthanum hydroxide (La(OH)3) nanoparticle-solution interfaces plays a crucial role in catalysis, adsorption, and electrochemical energy storage applications. Liquid-phase transmission electron microscopy enables powerful visualization with high resolution. However, direct atomic-scale imaging of the interfacial metal (hydro)oxide nanostructure in solutions has been a major challenge due to their beam-driven dissolution. Combining focused ion beam and aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, we present an atomic-scale study of precipitation formation at La(OH)3 nanoparticle interfaces after reaction with phosphate. The structure transformation is observed to occur at high- and low-crystalline La(OH)3 nanoparticle surfaces. Low-crystalline La(OH)3 mostly transformed and high-crystalline ones partly converted to LaPO4 precipitations on the outer surface. The long-term structure evolution shows the low transformation of high-crystalline La(OH)3 nanoparticles to LaPO4 precipitation. Because precipitation at solid-solution interfaces is common in nature and industry, these results could provide valuable references for their atomic-scale observation.
Collapse
Affiliation(s)
- Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Peng Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Junming Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jing Liu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Honghai Wu
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Hongling Bu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinjie Tan
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zheng Li
- School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|