1
|
Gao H, Qian H, Meng Z, Chang S, Wang X, Han Z, Liu Y. Biomimetic materials for efficient emulsion separation: Based on the perspective of energy. Adv Colloid Interface Sci 2025; 341:103486. [PMID: 40163905 DOI: 10.1016/j.cis.2025.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/07/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Purifying emulsified oily wastewater is particularly crucial for solving environmental pollution and water scarcity. Membrane separation shows great potential for emulsified wastewater treatment. However, realizing continued effective emulsion separation remains a significant challenge. Fortunately, various kinds of creative schemes have been proposed to overcome the current dilemma. In this paper, biomimetic emulsion separation materials with unique wettability are introduced. Besides, This article summarizes the recently advanced emulsion separation strategies. First, we analyze the typical wettability theory and explore the trade-off between separation flux and efficiency. After that, based on emulsion types, the current common emulsion separation materials are summarized and analyzed. Notably, the integration of natural biological inspiration has made separation materials full of potential. Further, from the perspective of external energy input or no-external energy input, this article provides an overview of advanced emulsion separation materials and analyzes the potential separation mechanism. Encouragingly, efficient emulsion separation can be realized by membrane characteristics (microstructure, superwettability, electrostatic interaction) or the appropriate external stimulus (photo, electricity, magnetic). Finally, the challenges and trends are summarized. We hope that this article will provide inspiration for the advancement of novel generations of separation materials.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Haiyu Qian
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siyu Chang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Xi Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, PR China.
| |
Collapse
|
2
|
Gebreslassie G, Desta HG, Dong Y, Zheng X, Zhao M, Lin B. Advanced membrane-based high-value metal recovery from wastewater. WATER RESEARCH 2024; 265:122122. [PMID: 39128331 DOI: 10.1016/j.watres.2024.122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Considering the circular economy and environmental protection, sustainable recovery of high-value metals from wastewater has become a prominent concern. Unlike conventional methods featuring extensive chemicals or energy consumption, membrane separation technology plays a crucial role in facilitating the sustainable and efficient recovery of valuable metals from wastewater due to its attractive features. In this review, we first briefly summarize the sustainable supply chain and significance of sustainable recovery of aqueous high-value metals. Then, we review the most recent advances and application potential in promising state-of-the-art membrane-based technologies for recovery of high-value metals (silver, gold, rhenium, platinum, ruthenium, palladium, iridium, osmium, and rhodium) from wastewater effluents. In particular, pressure-based membranes, liquid membranes, membrane distillation, forward osmosis, electrodialysis and membrane-based hybrid technologies and their mechanism of high-value metal recovery is thoroughly discussed. Then, engineering application and economic sustainability are also discussed for membrane-based high-value metal recovery. The review finally concludes with a critical and insightful overview of the techno-economic viability and future research direction of membrane technologies for efficient high-value metal recovery from wastewater.
Collapse
Affiliation(s)
- Gebrehiwot Gebreslassie
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China; Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Halefom G Desta
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingchao Dong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.
| | - Bin Lin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Jing J, Liu Z, Fu Y, Liu H, Zhang X, Li M, Liu L, Wang H. Interfacial charge demulsification endowed dual-network photocatalytic hydrogen-bonded PVA@agarose membranes for oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135569. [PMID: 39178775 DOI: 10.1016/j.jhazmat.2024.135569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
Hydrogel materials with hydrophilic cross-linked network exhibit remarkable super-wettability, enabling their widespread application in oily wastewater treatment. However, the single and loose structure lacks sufficient strength and porosity to resist long-term degradation. Herein, a structural synergistic molecular strategy was reported to introduce reinforcing phase structures and interfacial active sites into the polymer networks for long-term oil-water emulsion separation. The carbon skeleton was uniformly interspersed through the strongly hydrogen-bonded polymer chains via covalent bonds, resulting in a hydrogel network with high mechanical strength and exceptional flow conductivity, which maintained a separation flux of 1233 L m-2 h-1 after 20 separation cycles under gravitational force. Dense negative charges on the surface disrupted the internal charge stability of the oil-water emulsion, leading to remarkable demulsification with a separation efficiency exceeding 99 %. Simultaneously, the strong redox reaction of the photoheterojunction effectively removed organic dyes under visible light, enhancing the overall antifouling performance. This study provided a feasible strategy at the molecular level for optimizing the suitability of hydrogels for oil-water emulsion separation.
Collapse
Affiliation(s)
- Jing Jing
- College of New Energy & Materials, Northeast Petroleum University, Daqing 163318, PR China
| | - Zhanjian Liu
- College of New Energy & Materials, Northeast Petroleum University, Daqing 163318, PR China.
| | - Yuxin Fu
- College of New Energy & Materials, Northeast Petroleum University, Daqing 163318, PR China
| | - Haonan Liu
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Xiguang Zhang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Meiling Li
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Liyan Liu
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Huaiyuan Wang
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
4
|
Miao R, Ran H, Yang Y, Li Y, Ma Z, Lv Y, Meng X, He M, Wang L. In situ acid production by organic matter induced with trace homogeneous Fenton reagent for membrane fouling control. WATER RESEARCH 2024; 258:121752. [PMID: 38761591 DOI: 10.1016/j.watres.2024.121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
The homogeneous Fenton process involves both coagulation and oxidation, but it requires added acidity, so it is rarely used to control membrane fouling. This work found that the pH of neutral simulated wastewater sharply declined to 4.1 after pre-treatment with 0.1 mM Fenton reagent (Fe2+:H2O2=1:1) without added acidity. This occurred mainly because the trace homogeneous Fenton reagent induced in situ acid production by organic matter in the wastewater, which supplied the acidic conditions required for the Fenton reaction and ensured that the reaction could proceed continuously. Then, oxidation during the pre-Fenton process enhanced the electrostatic repulsion forces and effectively weakened the hydrogen bonds of organic matter at the membrane surface by altering the net charge and hydroxyl content of organic matter, while coagulation caused the foulants to gather and form large aggregates. These changes diminished the deposition of foulants onto the membrane surface and resulted in a looser fouling layer, which eventually caused the membrane fouling rate to decline from 83 % to 24 % and the flux recovery rate to increase from 44 % to 98 % during 2 h of filtration. This membrane fouling mitigation ability is much superior to that of pre-H2O2, pre-Fe2+ or pre-Fe3+ processes with equivalent doses.
Collapse
Affiliation(s)
- Rui Miao
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Haoxue Ran
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Yifan Yang
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Yanfei Li
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Zhuowen Ma
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Yongtao Lv
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Xiaorong Meng
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Miaolu He
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Lei Wang
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China.
| |
Collapse
|
5
|
Zhang T, Wang X, Dong Y, Li J, Yang XY. Effective separation of water-in-oil emulsions using an under-medium superlyophilic membrane with hierarchical pores. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133305. [PMID: 38141309 DOI: 10.1016/j.jhazmat.2023.133305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Separating water-in-oil emulsions is important in terms of environmental protection and resource recovery. To address the challenges posed by the water-oil interface, superwetting materials have been designed to accomplish separation through filtration and adsorption. Superhydrophobic membranes prevent the permeation of water droplets owing to extreme repellence and their size-sieving abilities. However, their use in remediating water-contaminated oil is limited by high oil viscosities. Meanwhile, in-air superhydrophilic sorbents are rarely employed for the separation of water-in-oil emulsions due to the thermodynamic and kinetic limitations of water adsorption in oil. Herein, the integration of an under-medium superlyophilic membrane with the hierarchical porous structure of wood is presented for filtration-driven selective adsorption of water from surfactant-stabilized (10 g/L) water-in-oil emulsions. Compared to filtration through a natural wood membrane or direct adsorption using an under-oil superhydrophilic wood membrane, the under-medium superlyophilic wood membrane demonstrated high separation efficiencies of > 99.95% even when applied to the regeneration of high-viscosity lubricating (6.3 mPa s) and edible (50.5 mPa s) oils, exhibiting viscosity-dependent fluxes and excellent stability. Moreover, the cost of purifying 200 mL of lubricating oil using the modified wood membrane was much lower than the oil's market price and required a low energy consumption of ca. 1.72 kWh. ENVIRONMENTAL IMPLICATION: The ever-growing use of petroleum and industrial/domestic oil products has led to excessive (estimated at a million tons per year) output of waste oils. Because direct discharge of waste oils into the environment causes serious pollution problems, separating water-in-oil emulsions is important in terms of environmental protection and resource recovery. Here filtration-driven water adsorption has been demonstrated to be a feasible method for the remediation of water-contaminated waste oils, even those that are highly viscous.
Collapse
Affiliation(s)
- Tianyue Zhang
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Shenzhen Huazhong University of Science and Technology Research Institute, 9 Yuexing Third Road, Nanshan District, Shenzhen 518000, China
| | - Xuejiao Wang
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China
| | - Ying Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, 9 Yuexing Third Road, Nanshan District, Shenzhen 518000, China
| | - Jing Li
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China.
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
6
|
Yang L, Xu D, Luo X, Zhu X, Zhao J, Song J, Han Y, Li G, Gao X, Liu L, Liang H. Fe(II)-Modulated Microporous Electrocatalytic Membranes for Organic Microcontaminant Oxidation and Fouling Control: Mechanisms of Regulating Electron Transport toward Enhanced Reactive Oxygen Species Activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19000-19011. [PMID: 37162466 DOI: 10.1021/acs.est.3c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Regulation of the fast electron transport process for the generation and utilization of reactive oxygen species (ROS) by achieving fortified electron "nanofluidics" is effective for electrocatalytic oxidation of organic microcontaminants. However, limited available active sites and sluggish mass transfer impede oxidation efficiency. Herein, we fabricated a conductive electrocatalytic membrane decorated with hierarchical porous vertically aligned Fe(II)-modulated FeCo layered double hydroxide nanosheets (Fe(II)-FeCo LDHs) in an electro-Fenton system to maximize exposure of active sites and expedite mass transfer. The nanospaced interlayers of Fe(II)-FeCo LDHs within the microconfined porous structure formed by its vertical nanosheets highly boost the micro/nanofluidic distribution of target pollutants to active centers/species, achieving accelerated mass transferability. Aliovalent substitution by Fe(II) activates in-plane metallics to maximize the available active sites and makes each Fe(II)-FeCo LDH nanosheet a geometrical nanocarrier for constructing a fast electron "nanofluidic" to accelerate Fe(II) regeneration in Fe(III)/Fe(II) cycles. As a result, the Fe(II)-FeCo LDHs exhibited improved reactivity in catalyzing H2O2 to •OH and 1O2. Accordingly, the membrane exhibited a higher atrazine degradation kinetic (0.0441 min-1) and degradation rate (93.2%), which were 4.7 and 2.1 times more than those of the bare carbon nanotube membrane, respectively. Additionally, the enhanced hydrophilic and strongly oxidized reactivity synergistically mitigated the organic fouling occurring in the pores and surface of the membrane. These findings clarify the activation mechanism of ROS over an innovative electrocatalytic membrane reactor design for organic microcontaminant treatment.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jialin Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yonghui Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xinlei Gao
- National Engineering Research Center of Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, China
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China
| | - Luming Liu
- National Engineering Research Center of Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, China
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
7
|
Wu Y, Gu Z, Lu C, Hu C, Qu J. In situ regulation of selectivity and permeability by electrically tuning pore size in trans-membrane ion process. WATER RESEARCH 2023; 244:120478. [PMID: 37634453 DOI: 10.1016/j.watres.2023.120478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Regulating ion transport behavior through pore size variation is greatly attractive for membrane to meet the need for precise separation, but fabricating nanofiltration (NF) membranes with tunable pore size remains a huge challenge. Herein, a NF membrane with electrically tunable pores was fabricated by intercalating polypyrrole into reduced graphene oxide interlayers. As the potential switches from reduction to oxidation, the membrane pore size shrinks by 11%, resulting in a 16.2% increase in salt rejection. The membrane pore size expands/contracts at redox potentials due to the polypyrrole volume swelling/shrinking caused by the insertion/desertion of cations, respectively. In terms of the inserted cation, Na+ and K+ induce larger pore-size stretching range for the membrane than Ca2+ due to greater binding energy and larger doping amount. Such an electrical response characteristic remained stable after multiple cycles and enabled application in ion selective separation; e.g., the Na+/Mg2+ separation factor in the reduced state is increased by 41% compared to that in the oxide state. This work provides electrically tunable nanochannels for high-precision separation applications such as valuable substance purification and resource recovery from wastewater.
Collapse
Affiliation(s)
- You Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghai Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Liao X, Lim YJ, Khayet M, Liao Y, Yao L, Zhao Y, Razaqpur AG. Applications of electrically conductive membranes in water treatment via membrane distillation: Joule heating, membrane fouling/scaling/wetting mitigation and monitoring. WATER RESEARCH 2023; 244:120511. [PMID: 37651868 DOI: 10.1016/j.watres.2023.120511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Membrane distillation (MD) is a thermally driven separation process that is driven by phase change. The core of this technology is the hydrophobic microporous membrane that prevents mass transfer of the liquid while allowing the vapor phase to pass through the membrane's pores. Currently, MD is challenged by its high energy consumption and membrane degradation due to fouling, scaling and wetting. The use of electrically conductive membranes (ECMs) is a promising alternative method to overcome these challenges by inducing localized Joule heating, as well as mitigating and monitoring membrane fouling/scaling/wetting. The objective of this review is to consolidate recent advances in ECMs from the standpoint of conductive materials, membrane fabrication methodologies, and applications in MD processes. First, the mechanisms of ECMs-based MD processes are reviewed. Then the current trends in conductive materials and membrane fabrication methods are discussed. Thereafter, a comprehensive review of ECMs in MD applications is presented in terms of the different processes using Joule heating and various works related to membrane fouling, scaling, and wetting control and monitoring. Key insights in terms of energy consumption, economic viability and scalability are furnished to provide readers with a holistic perspective of the ECMs potential to achieve better performances and higher efficiencies in MD. Finally, we illustrate our perspectives on the innovative methods to address current challenges and provide insights for advancing new ECMs designs. Overall, this review sums up the current status of ECMs, looking at the wide range of conductive materials and array of fabrication methods used thus far, and putting into perspective strategies to deliver a more competitive ECMs-based MD process in water treatment.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering, No. 2 Sun Simiao Road, Cangzhou 061108, PR China
| | - Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering, No. 2 Sun Simiao Road, Cangzhou 061108, PR China.
| | - Lei Yao
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yali Zhao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
9
|
Zhang J, Peng K, Xu ZK, Xiong Y, Liu J, Cai C, Huang X. A comprehensive review on the behavior and evolution of oil droplets during oil/water separation by membranes. Adv Colloid Interface Sci 2023; 319:102971. [PMID: 37562248 DOI: 10.1016/j.cis.2023.102971] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/01/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Membrane separation technology has significant advantages for treating oil-in-water emulsions. Understanding the evolution of oil droplets could reveal the interfacial and colloidal interactions, facilitate the design of advanced membranes, and improve the separation performances. This review on the characteristic behavior and evolution of oil droplets focuses on the advanced analytical techniques, and the subsequent fouling as well as demulsification effects during membrane separation. A detailed introduction is provided on microscopic observations and numerical simulations of the dynamic evolution of oil droplets, featuring real-time in-situ visualization and accurate reconstruction, respectively. Characteristic behaviors of these oil droplets include attachment, pinning, wetting, spreading, blockage, intrusion, coalescence, and detachment, which have been quantified by specific proposed parameters and criteria. The fouling process can be evaluated using Hermia and resistance models. The related adhesion force and intrusion pressure as well as droplet-droplet/membrane interfacial interactions can be accurately quantified using various force analysis methods and advanced force measurement techniques. It is encouraging to note that oil coalescence has been achieved through various effects such as electrostatic interactions, mechanical actions, Laplace pressure/surface free energy gradients, and synergistic effects on functional membranes. When oil droplets become destabilized and coalesce into larger ones, the functional membranes can overcome the limitations of size-sieving effect to attain higher separation efficiency. This not only bypasses the trade-off between permeability and rejection, but also significantly reduces membrane fouling. Finally, the challenges and potential research directions in membrane separation are proposed. We hope this review will support the engineering of advanced materials for oil/water separation and research on interface science in general.
Collapse
Affiliation(s)
- Jialu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, No.38 Zheda Road, Hangzhou 310027, PR China
| | - Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Jia Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
10
|
Zhang B, Peng Y, Yao Y, Hong X, Wu Y. Constructing a composite microfiltration carbon membrane by TiO 2 and Fe 2O 3 for efficient separation of oil-water emulsions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92027-92041. [PMID: 37480529 DOI: 10.1007/s11356-023-28728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Membrane-based separation technology has attracted enormous attention for oil/water emulsion treatment. Here, composite microfiltration carbon membranes (MCMs) were prepared from the precursor of phenolic resin doping with TiO2 and Fe2O3 via the processes of stereotype and pyrolysis. The functional groups, thermal stability, porous structure, microstructure, morphology, and hydrophilicity of the membrane samples were analyzed by Fourier-transform infrared spectroscopy, thermogravimetric analysis, bubble pressure method, X-ray diffraction, scanning electron microscope, and water contact angle, respectively. The effect of dopant amount on the separation performance of MCMs was investigated. The results show that a mixed matrix system is constructed by TiO2 and Fe2O3 in MCMs, which is beneficial for further optimizing the pore size, porosity, and hydrophilicity of MCMs for oily wastewater treatment by varying the dopant amount. The maximum oil rejections are achieved at 98.9% and 99.6% for MCMs with a dopant content of TiO2 and Fe2O3 at 25%, respectively. In brief, this study offers an attractive strategy for improving the separation performance of MCMs for oily wastewater.
Collapse
Affiliation(s)
- Bing Zhang
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China.
| | - Yao Peng
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| | - Yanhu Yao
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| | - Xueqian Hong
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| | - Yonghong Wu
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| |
Collapse
|
11
|
Sun Q, Chen J, Zhao Z, Yang D, Xiao Y, Zhang H, Ma X, Zhong H, Zeng H. Tailored pH-triggered surfactant for stepwise separation of a three-component mineral system. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
12
|
Wang X, Liu X, Liu Z, Cui W, Gao S, Zhang J, Fan T, Ramakrishna S, Long YZ. Superhydrophobic aerogel blanket with magnetic and solar heating effect enables efficient continuous cleanup of highly viscous crude oil. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130594. [PMID: 37055951 DOI: 10.1016/j.jhazmat.2022.130594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 06/19/2023]
Abstract
Rapid cleanup of highly-viscous oil spills the sea is eagerly desired while still remains a great challenge. Hydrophobic and lipophilic adsorbents are regarded as ideal candidate for oil spill remediation. However, traditional adsorbents are not suitable for viscous crude oil, which would block the porous structure and lead to poor adsorption efficiency. In this work, a non-contact responsive superhydrophobic SiO2 aerogel blankets (SAB) with excellent magnetic and solar heating effect for efficient removal of viscosity oils under harsh environments was developed, via assembled MXene and Fe3O4/polydimethylsiloxane layer-by-layer along the SAB skeleton (Fe3O4/MXene@SAB). The Fe3O4/MXene@SAB exhibited excellent compression tolerance (compression stress 70.69 kPa), superhydrophobic performance (water contact angle 166°), and corrosion resistance (weak acid/strong base). Due to high water repellency and stable porous structure, the Fe3O4/MXene@SAB could successfully separate oil-water mixture, while with remarkable separation flux (1.50-3.19 × 104 L m-2 h-1), and separation efficiency (99.91-99.98 %). Furthermore, the responsive Fe3O4/MXene@SAB also showed outstanding magnetic-heating and solar-heating conversion efficiency, which could continuously separate high viscosity crude oil from seawater by pump even under relatively low magnetic fields and mild sun. The superhydrophobic blankets hold great promise for efficient treatment of heavy oil spills.
Collapse
Affiliation(s)
- Xueyan Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Xianfeng Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Zhong Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Wenying Cui
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Shilong Gao
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Tingting Fan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 2266071, China.
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao 266071, China.
| |
Collapse
|
13
|
Zheng W, Xu J, Wang L, Zhang J, Chu W, Liu J, Lu L, Cai C, Peng K, Huang X. Electro-enhanced Rapid Separation of Nanosized Oil Droplets from Emulsions via the Superhydrophilic Micro-sized Pore Membrane. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
14
|
Gao Y, Xu G, Zhao P, Liu L, Zhang E. One step co-sintering synthesis of gradient ceramic microfiltration membrane with mullite/alumina whisker bi-layer for high permeability oil-in-water emulsion treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Wang L, Niu J, Gao S, Liu Z, Wu S, Huang M, Li H, Zhu M, Yuan R. Breakthrough in controlling membrane fouling and complete demulsification via electro-fenton pathway: Principle and mechanisms. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Jiang L, Rastgar M, Wang C, Ke S, He L, Chen X, Song Y, He C, Wang J, Sadrzadeh M. Robust PANI-entangled CNTs Electro-responsive membranes for enhanced In-situ generation of H2O2 and effective separation of charged contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Mills R, Baldridge KC, Bernard M, Bhattacharyya D. Recent Advances in Responsive Membrane Functionalization Approaches and Applications. SEP SCI TECHNOL 2022; 58:1202-1236. [PMID: 37063489 PMCID: PMC10103845 DOI: 10.1080/01496395.2022.2145222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022]
Abstract
In recent years, significant advances have been made in the field of functionalized membranes. With the functionalization using various materials, such as polymers and enzymes, membranes can exhibit property changes in response to an environmental stimulation, such as heat, light, ionic strength, or pH. The resulting responsive nature allows for an increased breadth of membrane uses, due to the developed functionalization properties, such as smart-gating filtration for size-selective water contaminant removal, self-cleaning antifouling surfaces, increased scalability options, and highly sensitive molecular detection. In this review, new advances in both fabrication and applications of functionalized membranes are reported and summarized, including temperature-responsive, pH-responsive, light-responsive, enzyme-functionalized, and two-dimensional material-functionalized membranes. Specific emphasis was given to the most recent technological improvements, current limitations, advances in characterization techniques, and future directions for the field of functionalized membranes.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Kevin C. Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Matthew Bernard
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| |
Collapse
|
18
|
Wang Y, Ma B, Ulbricht M, Dong Y, Zhao X. Progress in alumina ceramic membranes for water purification: Status and prospects. WATER RESEARCH 2022; 226:119173. [PMID: 36252299 DOI: 10.1016/j.watres.2022.119173] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Ceramic membranes have gained increasing attention in recent years for the removal of various contaminants from water. Alumina membrane is considered as one of the most important ceramic membranes, which plays important roles not only in separation processes such as microfiltration, ultrafiltration, and nanofiltration, but also in catalysis- and adsorption- enhanced separation applications in water purification and wastewater treatment. However, there is currently still lack of a comprehensive critical review about alumina membranes for water purification. In this review, we first discuss recent developments of alumina membranes, and then critically introduce the state-of-the-art strategies for lowering fabrication cost, improving membrane performances and mitigating membrane fouling. Especially, aiming to improve membrane performance, some emerging methods are summarized such as tailoring membrane structure, developing flexible membranes, designing nano-pores for precise separation, and enhancing multi-functionalities. In addition, engineering applications of alumina membranes for water purification are also briefly introduced. Finally, the prospects for future research on alumina membranes are proposed, such as economic preparation/application, challenging precise separation, enriching multi-functionalities, and clarifying separation mechanisms.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Duisburg-Essen Department of Technical Chemistry II, Essen 45117, Germany
| | - Mathias Ulbricht
- University of Duisburg-Essen Department of Technical Chemistry II, Essen 45117, Germany
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
19
|
Ding J, Wang J, Luo X, Xu D, Liu Y, Li P, Li S, Wu R, Gao X, Liang H. A passive-active combined strategy for ultrafiltration membrane fouling control in continuous oily wastewater purification. WATER RESEARCH 2022; 226:119219. [PMID: 36242937 DOI: 10.1016/j.watres.2022.119219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Membrane-based technology has been confirmed as an effective way to treat emulsified oily wastewater, however, membrane fouling is still one of practical challenges in long-term operation. Herein, a novel passive-active combined strategy was proposed to control membrane fouling in continuous oily wastewater purification, where the δ-MnO2 decoration layer helped to reduce the total fouling ratio (passive strategy for fouling mitigation) and the catalytic cleaning effectively removed the irreversible oil fouling (active strategy for fouling removal). The functional membrane was prepared via in-situ modification, referred to as δ-MnO2@TA-PES. The morphology, crystalline phase, chemical structure and surface properties of the membranes were systematically characterized. Compared with PES, the δ-MnO2@TA-PES possessed superhydrophilicity, enhanced electronegativity and narrowed pore size. The δ-MnO2@TA-PES achieved high water permeation flux of 723.9 L·m - 2·h - 1·bar-1, excellent oil rejection with separation efficiency above 98.5% for various emulsions, and durable anti-oil-fouling performance with FRRb of 98.0%. Notably, the oil cake layer fouling on δ-MnO2@TA-PES was greatly alleviated owing to its enhanced surface properties. In addition, δ-MnO2@TA-PES showed high cleaning efficiency in the peroxymonosulfate (PMS) cleaning process, where the radical and nonradical pathways occurred simultaneously. And the active substances generated in the nonradical process (especially 1O2) were considered as the main contributor to the reduction of irreversible fouling. Overall, the novel strategy of fouling control ensured the efficient operation of ultrafiltration membranes for the continuous oily wastewater purification.
Collapse
Affiliation(s)
- Junwen Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yatao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Peijie Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shirong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Rui Wu
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd, Shenzhen, 518021, China
| | - Xinlei Gao
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd, Shenzhen, 518021, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
20
|
Dong Y, Wu H, Yang F, Gray S. Cost and efficiency perspectives of ceramic membranes for water treatment. WATER RESEARCH 2022; 220:118629. [PMID: 35609431 DOI: 10.1016/j.watres.2022.118629] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
More robust ceramic membranes with tailorable structures and functions are increasingly employed for water treatment, particularly in some harsh applications for their ultra-long service lifespan due to their high mechanical, structural, chemical and thermal stability and anti-fouling properties. Decreasing cost and enhancing efficiency are two key but quite challenging application-oriented issues for broader and larger-scale engineering application of current ceramic membranes, and are required to make ceramic membranes a highly efficient and economic water treatment technique. In this review, we critically discuss these two significant concerns of both cost and efficiency for water treatment ceramic membranes, focusing on an overview of various advanced strategies and mechanism insights. A brief up-to-date discussion is first introduced about recent developments of ceramic membranes covering the major advances of novel membranes and applications. Then some promising strategies for decreasing the cost of ceramic membranes are discussed, including membrane material cost and processing cost. To fully address the issue of moderate efficiency with single separation function, valuable and considerable insights are provided into recent major progress and mechanism understandings in application with other unit processes, such as advanced oxidation and electrochemistry techniques, to significantly enhance treatment efficiency. Subsequently, a review of recent ceramic membrane applications emphasizing harsh operating environments is presented, such as oil-water separation, saline water, refractory organic and emerging contaminant wastewater treatment. Finally, engineering application, conclusions, and future perspectives of ceramic membrane for water treatment applications are critically discussed offering new insight based on understanding the issues of cost and efficiency.
Collapse
Affiliation(s)
- Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Hui Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Stephen Gray
- Institute for Sustainable Industries & Liveable Cities, Victoria University, PO Box 14428, Melbourne, Australia
| |
Collapse
|
21
|
Chen M, Heijman SGJ, Luiten-Olieman MWJ, Rietveld LC. Oil-in-water emulsion separation: Fouling of alumina membranes with and without a silicon carbide deposition in constant flux filtration mode. WATER RESEARCH 2022; 216:118267. [PMID: 35306459 DOI: 10.1016/j.watres.2022.118267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Ceramic membranes have drawn increasing attention in oily wastewater treatment as an alternative to their traditional polymeric counterparts, yet persistent membrane fouling is still one of the largest challenges. Particularly, little is known about ceramic membrane fouling by oil-in-water (O/W) emulsions in constant flux filtration modes. In this study, the effects of emulsion chemistry (surfactant concentration, pH, salinity and Ca2+) and operation parameters (permeate flux and filtration time) were comparatively evaluated for alumina and silicon carbide (SiC) deposited ceramic membranes, with different physicochemical surface properties. The original membranes were made of 100% alumina, while the same membranes were also deposited with a SiC layer to change the surface charge and hydrophilicity. The SiC-deposited membrane showed a lower reversible and irreversible fouling when permeate flux was below 110 L m-2 h-1. In addition, it exhibited a higher permeance recovery after physical and chemical cleaning, as compared to the alumina membranes. Increasing sodium dodecyl sulfate (SDS) concentration in the feed decreased the fouling of both membranes, but to a higher extent in the alumina membranes. The fouling of both membranes could be reduced with increasing the pH of the emulsion due to the enhanced electrostatic repulsion between oil droplets and membrane surface. Because of the screening of surface charge in a high salinity solution (100 mM NaCl), only a small difference in irreversible fouling was observed for alumina and SiC-deposited membranes under these conditions. The presence of Ca2+ in the emulsion led to high irreversible fouling of both membranes, because of the compression of diffusion double layer and the interactions between Ca2+ and SDS. The low fouling tendency and/or high cleaning efficiency of the SiC-deposited membranes indicated their potential for oily wastewater treatment.
Collapse
Affiliation(s)
- Mingliang Chen
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands.
| | - Sebastiaan G J Heijman
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Mieke W J Luiten-Olieman
- Inorganic Membranes, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Luuk C Rietveld
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|