1
|
Bi H, Wang Z, Yue R, Sui J, Mulligan CN, Lee K, Pegau S, Chen Z, An C. Oil spills in coastal regions of the Arctic and Subarctic: Environmental impacts, response tactics, and preparedness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178025. [PMID: 39689468 DOI: 10.1016/j.scitotenv.2024.178025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Coastal areas of the Arctic and Subarctic are vulnerable to accidental oil spills, impacting the ecosystem, society, and economy. This article provides a comprehensive overview of oil spill pollution issues in cold regions, focusing on environmental impacts, oil transport and fate, coastal/shoreline response measures, and the state of current international policies and regulations. Numerous studies have described the potential effects of oil pollution (crude oil and refined products) on wildlife (invertebrates, fish, birds, and marine mammals) and coastal communities within the Arctic and Subarctic regions. The observed detrimental effects are influenced by the oil fate and transport processes, including physiochemical attenuation and biodegradation, natural dissolution/dispersion following point-source release (surface and subsurface), entrainment by sea ice, and stranding onto shorelines (in which the residual oil may be translocated). Measures such as natural attenuation, bioremediation, manual removal, in situ burning, and washing/flooding are available for spill response in coastal regions. Case studies in cold regions are illustrated for a better analysis of practical response methods, implying that shoreline cleanup operations in the Arctic and Subarctic are more challenging than those in more temperate and populated regions because of environmental and logistical challenges. Regarding preparedness, a number of national and international policies, regulations, and guidelines have been established to advance oil spill prevention and response measures within the Arctic and Subarctic regions. Based on the state of knowledge presented in this review, recommendations are made for future research on oil spill pollution in coastal regions of the Arctic and Subarctic.
Collapse
Affiliation(s)
- Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Rengyu Yue
- Department of Civil and Resource Engineering, Faculty of Engineering, Dalhousie University, Halifax B3H 4R2, Canada
| | - Jiyao Sui
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Catherine N Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa K1A 0E6, Canada
| | - Scott Pegau
- Oil Spill Recovery Institute, Cordova 99574, United States
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada.
| |
Collapse
|
2
|
Wu M, Feng S, Liu Z, Tang S. Bioremediation of petroleum-contaminated soil based on both toxicity risk control and hydrocarbon removal-progress and prospect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59795-59818. [PMID: 39388086 DOI: 10.1007/s11356-024-34614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024]
Abstract
Petroleum contamination remains a worldwide issue requiring cost-effective bioremediation techniques. However, establishing a universal bioremediation strategy for all types of oil-polluted sites is challenging. This difficulty arises from the heterogeneity of soil textures, the complexity of oil products, and the variations in local climate and environment across different oil-contaminated regions. Several factors can impede bioremediation efficacy: (i) differences in bioavailability and biodegradability between aliphatic and aromatic fractions of crude oil; (ii) inconsistencies between hydrocarbon removal efficiency and toxicity attenuation during remediation; (iii) varying adverse effect of aliphatic and aromatic fractions on soil microorganisms. This review examines the ecotoxicity risk of petroleum contamination to soil fauna and flora. It also discusses three primary bioremediation strategies: biostimulation with nutrients, bioaugmentation with petroleum degraders, and phytoremediation with plants. Based on current research and state-of-the-art challenges, we highlighted future research scopes should focus on (i) exploring the ecotoxicity differentiation of aliphatic and aromatic fractions of crude oil, (ii) establishing unified risk factors and indicators for evaluating oil pollution toxicity, (iii) determining the fate and transformation of aliphatic and aromatic fractions of crude oil using advanced analytical techniques, and (iv) developing combined bioremediation techniques that improve petroleum removal and ecotoxicity attenuation.
Collapse
Affiliation(s)
- Manli Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China.
| | - Shuang Feng
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Zeliang Liu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Shiwei Tang
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| |
Collapse
|
3
|
Góngora E, Lirette AO, Freyria NJ, Greer CW, Whyte LG. Metagenomic survey reveals hydrocarbon biodegradation potential of Canadian high Arctic beaches. ENVIRONMENTAL MICROBIOME 2024; 19:72. [PMID: 39294752 PMCID: PMC11411865 DOI: 10.1186/s40793-024-00616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Decreasing sea ice coverage across the Arctic Ocean due to climate change is expected to increase shipping activity through previously inaccessible shipping routes, including the Northwest Passage (NWP). Changing weather conditions typically encountered in the Arctic will still pose a risk for ships which could lead to an accident and the uncontrolled release of hydrocarbons onto NWP shorelines. We performed a metagenomic survey to characterize the microbial communities of various NWP shorelines and to determine whether there is a metabolic potential for hydrocarbon degradation in these microbiomes. RESULTS We observed taxonomic and functional gene evidence supporting the potential of NWP beach microbes to degrade various types of hydrocarbons. The metagenomic and metagenome-assembled genome (MAG) taxonomy showed that known hydrocarbon-degrading taxa are present in these beaches. Additionally, we detected the presence of biomarker genes of aerobic and anaerobic degradation pathways of alkane and aromatic hydrocarbons along with complete degradation pathways for aerobic alkane degradation. Alkane degradation genes were present in all samples and were also more abundant (33.8 ± 34.5 hits per million genes, HPM) than their aromatic hydrocarbon counterparts (11.7 ± 12.3 HPM). Due to the ubiquity of MAGs from the genus Rhodococcus (23.8% of the MAGs), we compared our MAGs with Rhodococcus genomes from NWP isolates obtained using hydrocarbons as the carbon source to corroborate our results and to develop a pangenome of Arctic Rhodococcus. Our analysis revealed that the biodegradation of alkanes is part of the core pangenome of this genus. We also detected nitrogen and sulfur pathways as additional energy sources and electron donors as well as carbon pathways providing alternative carbon sources. These pathways occur in the absence of hydrocarbons allowing microbes to survive in these nutrient-poor beaches. CONCLUSIONS Our metagenomic analyses detected the genetic potential for hydrocarbon biodegradation in these NWP shoreline microbiomes. Alkane metabolism was the most prevalent type of hydrocarbon degradation observed in these tidal beach ecosystems. Our results indicate that bioremediation could be used as a cleanup strategy, but the addition of adequate amounts of N and P fertilizers, should be considered to help bacteria overcome the oligotrophic nature of NWP shorelines.
Collapse
Affiliation(s)
- Esteban Góngora
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada.
| | - Antoine-O Lirette
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| | - Nastasia J Freyria
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| | - Charles W Greer
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
- Energy, Mining and Environment Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, Canada
| | - Lyle G Whyte
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
4
|
Lirette AO, Chen YJ, Freyria NJ, Góngora E, Greer CW, Whyte LG. Characterization of hydrocarbon degraders from Northwest Passage beach sediments and assessment of their ability for bioremediation. Can J Microbiol 2024; 70:163-177. [PMID: 38350082 DOI: 10.1139/cjm-2023-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Global warming-induced sea ice loss in the Canadian Northwest Passage (NWP) will result in more shipping traffic, increasing the risk of oil spills. Microorganisms inhabiting NWP beach sediments may degrade hydrocarbons, offering a potential bioremediation strategy. In this study, the characterization and genomic analyses of 22 hydrocarbon-biodegradative bacterial isolates revealed that they contained a diverse range of key alkane and aromatic hydrocarbon-degradative genes, as well as cold and salt tolerance genes indicating they are highly adapted to the extreme Arctic environment. Some isolates successfully degraded Ultra Low Sulfur Fuel Oil (ULSFO) at temperatures as low as -5 °C and high salinities (3%-10%). Three isolates were grown in liquid medium containing ULSFO as sole carbon source over 3 months and variation of hydrocarbon concentration was measured at three time points to determine their rate of hydrocarbon biodegradation. Our results demonstrate that two isolates (Rhodococcus sp. R1B_2T and Pseudarthrobacter sp. R2D_1T) possess complete degradation pathways and can grow on alkane and aromatic components of ULSFO under Arctic conditions. Overall, these results demonstrate that diverse hydrocarbon-degrading microorganisms exist in the NWP beach sediments, offering a potential bioremediation strategy in the events of a marine fuel spill reaching the shores of the NWP.
Collapse
Affiliation(s)
- Antoine-O Lirette
- Department of Natural Resource Sciences, McGill University, QC, Canada
| | - Ya-Jou Chen
- Department of Natural Resource Sciences, McGill University, QC, Canada
| | | | - Esteban Góngora
- Department of Natural Resource Sciences, McGill University, QC, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, McGill University, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, QC, Canada
| |
Collapse
|
5
|
Zhao J, Cao L, Wang X, Huo H, Lin H, Wang Q, Yang X, Vogel F, Li W, Lin Z, Zhang P. MOF@Polydopamine-incorporated membrane with high permeability and mechanical property for efficient fouling-resistant and oil/water separation. ENVIRONMENTAL RESEARCH 2023; 236:116685. [PMID: 37467944 DOI: 10.1016/j.envres.2023.116685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Metal organic frameworks (MOFs) have demonstrated great potential for their favorable impacts on the performance of water treatment membranes. Herein, the novel nanoparticles based on both nanoporous MOFs and organic PDA layer was exploited as a novel dopant for the fabrication of PES ultrafiltration (UF) membranes. The PDA was synthesized via oxidative self-polymerization under alkaline conditions and formed adhesive coatings on dispersed MOF. The properties of resulting membranes on the porosity, membrane morphology, hydrophilicity, permeability and anti-fouling performance were adequately investigated. The membranes incorporated with MOF@PDA exhibited exceptionally high permeability (209.02 L m-2·h-1), which is approximately 6 times higher than that of the pure PES membrane, and high BSA rejection (99.12%). Notably, the mechanical property and hydrophilicity of the PES membrane were both enhanced by MOF@PDA, and it has been demonstrated that greater hydrophilicity prevents fouling under practical conditions, which results in significant improvements in flux recovery ratio (FRR) (82%). In addition, the modified PES membranes were used to purify the oil/water emulsion, and the results indicates that the membranes have high permeability and rejection of oil/water emulsion, showing its great promise in practical oily sewage remediation.
Collapse
Affiliation(s)
- Jiahui Zhao
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Lin Cao
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Xiao Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Haoling Huo
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Huaijun Lin
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Qiwei Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Xusheng Yang
- Department of Industrial and Systems Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Florian Vogel
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Zhidan Lin
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China.
| | - Peng Zhang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Dai X, Lv J, Fu P, Guo S. Microbial remediation of oil-contaminated shorelines: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93491-93518. [PMID: 37572250 DOI: 10.1007/s11356-023-29151-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Frequent marine oil spills have led to increasingly serious oil pollution along shorelines. Microbial remediation has become a research hotspot of intertidal oil pollution remediation because of its high efficiency, low cost, environmental friendliness, and simple operation. Many microorganisms are able to convert oil pollutants into non-toxic substances through their growth and metabolism. Microorganisms use enzymes' catalytic activities to degrade oil pollutants. However, microbial remediation efficiency is affected by the properties of the oil pollutants, microbial community, and environmental conditions. Feasible field microbial remediation technologies for oil spill pollution in the shorelines mainly include the addition of high-efficiency oil degrading bacteria (immobilized bacteria), nutrients, biosurfactants, and enzymes. Limitations to the field application of microbial remediation technology mainly include slow start-up, rapid failure, long remediation time, and uncontrolled environmental impact. Improving the environmental adaptability of microbial remediation technology and developing sustainable microbial remediation technology will be the focus of future research. The feasibility of microbial remediation techniques should also be evaluated comprehensively.
Collapse
Affiliation(s)
- Xiaoli Dai
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 10089, China.
| | - Jing Lv
- China University of Petroleum-Beijing, Beijing, 102249, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Hainan, 570228, China
| | - Shaohui Guo
- China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
7
|
Bi H, Mulligan CN, Lee K, An C, Wen J, Yang X, Lyu L, Qu Z. Preparation, characteristics, and performance of the microemulsion system in the removal of oil from beach sand. MARINE POLLUTION BULLETIN 2023; 193:115234. [PMID: 37399736 DOI: 10.1016/j.marpolbul.2023.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Oil deposited on shoreline substrates has serious adverse effects on the coastal environment and can persist for a long time. In this study, a green and effective microemulsion (ME) derived from vegetable oil was developed as a washing fluid to remove stranded oil from beach sand. The pseudo-ternary phase diagrams of the castor oil/water (without or without NaCl)/Triton X-100/ethanol were constructed to determine ME regions, and they also demonstrated that the phase behaviors of ME systems were almost independent of salinity. ME-A and ME-B exhibited high oil removal performance, low surfactant residues, and economic benefits, which were determined to be the W/O microstructure. Under optimal operation conditions, the oil removal efficiencies for both ME systems were 84.3 % and 86.8 %, respectively. Moreover, the reusability evaluation showed that the ME system still had over 70 % oil removal rates, even though it was used six times, implying its sustainability and reliability.
Collapse
Affiliation(s)
- Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Catherine N Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada.
| | - Jiyuan Wen
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Zhaonian Qu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| |
Collapse
|
8
|
Abou-Khalil C, Ji W, Prince RC, Coelho GM, Nedwed TJ, Lee K, Boufadel MC. Field fluorometers for assessing oil dispersion at sea. MARINE POLLUTION BULLETIN 2023; 192:115143. [PMID: 37295253 DOI: 10.1016/j.marpolbul.2023.115143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Oil dispersion by the application of chemical dispersants is an important tool in oil spill response, but it is difficult to quantify in the field in a timely fashion that is useful for coordinators and decision-makers. One option is the use of rugged portable field fluorometers that can deliver essentially instantaneous results if access is attainable. The United States Coast Guard has suggested, in their Special Monitoring of Applied Response Technologies (SMART) protocols, that successful oil dispersion can be identified by a five-fold increase in oil fluorescence. Here we test three commercial fluorometers with different excitation/emission windows (SeaOWL, Cyclops 7FO, and Cyclops 7F-G) that might prove useful for such applications. Results show that they have significantly different dynamic ranges for detecting oil and that using them (or similar instruments) in combination is probably the best option for successfully assessing the effectiveness of oil dispersion operations. Nevertheless, the rapid dilution of dispersed oil means that measurements must be made within an hour or two of dispersion, suggesting that one feasible scenario would be monitoring ship-applied dispersants by vessels following close behind the dispersant application vessel. Alternatively, autonomous submersibles might be pre-deployed to monitor aerial dispersant application, although the logistical challenges in a real spill would be substantial.
Collapse
Affiliation(s)
- Charbel Abou-Khalil
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Wen Ji
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | - Gina M Coelho
- Bureau of Safety and Environmental Enforcement, Sterling, VA 20166, USA
| | - Tim J Nedwed
- ExxonMobil Upstream Research Co., Houston, TX 77252, USA
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Michel C Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
9
|
Ji W, Abou-Khalil C, Parameswarappa Jayalakshmamma M, Boufadel M, Lee K. Post-Formation of Oil Particle Aggregates: Breakup and Biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2341-2350. [PMID: 36723450 DOI: 10.1021/acs.est.2c05866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spilled oil slicks are likely to break into droplets in the subtidal and intertidal zones of seashores due to wave energy. The nonliving suspended fine particles in coastal ecosystems can interact with the dispersed oil droplets, resulting in the formation of Oil Particle Aggregates (OPAs). Many investigations assumed that these aggregates will settle due to the particles' high density. Recent studies, however, reported that some particles penetrate the oil droplets, which results in further breakup while forming smaller OPAs that remain suspended in the water column. Here, we investigated the interaction of crude oil droplets with intertidal and subtidal sediments, as well as artificial pure kaolinite, in natural seawater. Results showed that the interaction between oil droplets and intertidal sediments was not particularly stable, with an Oil Trapping Efficiency (OTE) < 25%. When using subtidal sediments, OTE reached 56%. With artificial kaolinite, OPA formation and breakup were more significant (OTE reaching up to 67%) and occurred faster (within 12 h). Oil chemistry analysis showed that the biodegradation of oil in seawater (half-life of 485 h) was significantly enhanced with the addition of sediments, with half-lives of 305, 265, and 150 h when adding intertidal sediments, subtidal sediments, and pure kaolinite, respectively. Such results reveal how the sediments' shape and size affect the various oil-sediment interaction mechanisms, and the subsequent impact on the microbial degradation of petroleum hydrocarbons. Future studies should consider investigating the application of fine (several microns) and sharp (elongated-sheeted) sediments as a nondestructive and nontoxic technique for dispersing marine oil spills.
Collapse
Affiliation(s)
- Wen Ji
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, New Jersey07102, United States
| | - Charbel Abou-Khalil
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, New Jersey07102, United States
| | - Meghana Parameswarappa Jayalakshmamma
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, New Jersey07102, United States
| | - Michel Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, New Jersey07102, United States
| | - Kenneth Lee
- Department of Fisheries and Oceans, Dartmouth, NSB2Y 4A2, Canada
| |
Collapse
|