1
|
Li Y, Lv B, Wu L, Xue J, He X, Li B, Huang M, Yang L. Understanding the impact of soil components on the environmental existence of Nonylphenol:From the perspective of soil aggregates. ENVIRONMENTAL RESEARCH 2024; 261:119750. [PMID: 39111649 DOI: 10.1016/j.envres.2024.119750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Nonylphenol (4-NP) has significant adverse effects on the male reproductive system. 4-NP is commonly used in agriculture as a plasticizer and pesticide emulsifier. In the current study, two soil samples with different textures were collected to evaluate the impact of soil components on the environmental existence of 4-NP among soil aggregates. It was found that the presence of soil POM resulted in 4-NP exhibiting a significantly polarized distribution in soil aggregates, instead of the expected increase in content with decreasing particle size. High levels of organic matter and metal oxides result in a high carrying capacity of small aggregates for 4-NP in both soil textures, while POM results in a higher carrying capacity of large aggregates for 4-NP in clay soil. Another important finding is that the existence of 4-NP in soil was regulated by the percentage of aggregates. The results of contribution shown that although small aggregates in sand presented stronger 4-NP carrying capacity, whereas 4-NP was mainly distributed in large aggregates in sand. For clay soil, 4-NP was predominantly located in small aggregates with the 4-NP contributions of small aggregates amounting to 63.17%, despite the highest carrying capacity of 4-NP was observed in large aggregates. These results provide a theoretical basis to investigate the transport and transformation of 4-NP in the soil environment.
Collapse
Affiliation(s)
- Yulong Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bowei Lv
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Li Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Forest System, POB 29237, Christchurch, 8440, New Zealand
| | - Xiaoman He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bolin Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Min Huang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
2
|
Liu C, Zhao X, Guo L, Yu Q, Zhang W, Peng Z, Gao Y, Gong X, Li P, Jiao H, Zhou T, Zhang Q, Song S, Jiang G. Emerging N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and 6PPD quinone in paired human plasma and urine from Tianjin, China: Preliminary assessment with demographic factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134818. [PMID: 38901252 DOI: 10.1016/j.jhazmat.2024.134818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
With increasing concerns about N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and 6PPD-quinone (6PPD-Q), relevant environmental investigations and toxicological research have sprung up in recent years. However, limited information could be found for human body burden assessment. This work collected and analyzed 200 samples consisting of paired urine and plasma samples from participants (50 male and 50 female) in Tianjin, China. Low detection frequencies (DF, <15 %) were found except for urinary 6PPD-Q (86 %), which suggested the poor residue tendency of 6PPD and 6PPD-Q in blood. The low DFs also lead to no substantial association between two chemicals. Data analysis based on urinary 6PPD-Q showed a significant difference between males and females (p < 0.05). No significant correlation was found for other demographic factors (Body Mass Index (BMI), age, drinking, and smoking). The mean values of daily excretion (ng/kg bw/day) calculated using urinary 6PPD-Q for females and males were 7.381 ng/kg bw/day (female) and 3.360 ng/kg bw/day (male), and apparently female suffered higher daily exposure. Further analysis with daily excretion and ALT (alanine aminotransferase)/TSH (thyroid stimulating hormone)/ blood cell analysis indicators found a potential correlation with 6PPD-Q daily excretion and liver/immune functions. Considering this preliminary assessment, systematic research targeting the potential organs at relevant concentrations is required.
Collapse
Affiliation(s)
- Chunyu Liu
- National Institute of Metrology, Beijing 100029, China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Fourth Central Hospital, Tianjin 300140, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weifei Zhang
- National Institute of Metrology, Beijing 100029, China
| | - Zijuan Peng
- National Institute of Metrology, Beijing 100029, China
| | - Yan Gao
- National Institute of Metrology, Beijing 100029, China
| | - Xiaoyun Gong
- National Institute of Metrology, Beijing 100029, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Hui Jiao
- National Institute of Metrology, Beijing 100029, China
| | - Tao Zhou
- National Institute of Metrology, Beijing 100029, China
| | - Qinghe Zhang
- National Institute of Metrology, Beijing 100029, China
| | - Shanjun Song
- National Institute of Metrology, Beijing 100029, China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
3
|
Li J, Zhang H, Li J, Qin N, Wei Q, Li Y, Peng Y, Li H. Assessment of nonylphenol exposure based on global urinary concentration data and its risk analysis. ENVIRONMENTAL RESEARCH 2024; 244:117903. [PMID: 38109959 DOI: 10.1016/j.envres.2023.117903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Nonylphenol (NP) has been recognized as a priority hazardous substance because of its estrogenic activity and ubiquity in the environment. Therefore, it is important to understand the daily intake of NP in humans and evaluate the potential health risks of NP. The median or average estimated daily intake (EDI) of NP was estimated based on urinary NP or alkyl-chain-oxidized NP metabolites concentration data from published epidemiological studies. In brief, we acquired 34 peer-reviewed publications, which contained 14235 samples from twelve countries or regions. The global average estimated daily intake of NP was 1.003 μg/(kg bw·day), which was lower than the tolerable daily intake recommended by the Danish Veterinary and Food Authority [5 μg/(kg bw·day)]. Korea had the highest exposure level [3.471 μg/(kg bw·day)] among different countries or regions. Compared with the adult [0.743 μg/(kg bw·day)] and pregnant women [0.806 μg/(kg bw·day)] groups, the children group had the highest estimated daily intake of NP at 2.368 μg/(kg bw·day). Besides, the global NP risk hazard quotient was 0.201, and the risk hazard quotients of all countries or regions were less than 1. However, the global HQ value of the 95th quantile population was 2.299, which was much higher than 1, the potential health risk cannot be ignored and needs to be confirmed by more research. To our knowledge, this is the first study to assess the overall NP exposure levels based on published biomonitoring data, and has important implications for assessing the potential effects of NP exposure on human health. In addition, OH-NP is a robust and sensitive novel biomarker for NP, there are fewer studies on the application of this biomarker, and more studies are needed in the future for quantitative exposure and risk assessment of NP.
Collapse
Affiliation(s)
- Jiemei Li
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hongling Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
| | - Juanhua Li
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, China
| | - Ning Qin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, China
| | - Qiufen Wei
- Division of Neonatology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yang Peng
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, China.
| | - Han Li
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, China.
| |
Collapse
|
4
|
Zhao Y, Ji J, Wu Y, Chen S, Xu M, Cao X, Liu H, Wang Z, Bi H, Guan G, Tang R, Tao H, Zhang H. Nonylphenol and its derivatives: Environmental distribution, treatment strategy, management and future perspectives. CHEMOSPHERE 2024; 352:141377. [PMID: 38346514 DOI: 10.1016/j.chemosphere.2024.141377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
In recent years, emerging pollutants, including nonylphenol (NP) and nonylphenol ethoxylate (NPE), have become a prominent topic. These substances are also classified as persistent organic pollutants. NP significantly affects the hormone secretion of organisms and exhibits neurotoxicity, which can affect the human hippocampus. Therefore, various countries are paying increased attention to NP regulation. NPEs are precursors of NPs and are widely used in the manufacture of various detergents and lubricants. NPEs can easily decompose into NPs, which possess strong biological and environmental toxicity. This review primarily addresses the distribution, toxicity mechanisms and performance, degradation technologies, management policies, and green alternative reagents of NPs and NPEs. Traditional treatment measures have been unable to completely remove NP from wastewater. With the progressively tightening management and regulatory policies, identifying proficient and convenient treatment methods and a sustainable substitute reagent with comparable product effectiveness is crucial.
Collapse
Affiliation(s)
- Yuqing Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Jie Ji
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yao Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Shiqi Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Mengyao Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xiang Cao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hanlin Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zheng Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hengyao Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Guian Guan
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Ruixi Tang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - He Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
| |
Collapse
|
5
|
Suwannarin N, Nishihama Y, Isobe T, Nakayama SF. Urinary concentrations of environmental phenol among pregnant women in the Japan Environment and Children's Study. ENVIRONMENT INTERNATIONAL 2024; 183:108373. [PMID: 38088018 DOI: 10.1016/j.envint.2023.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024]
Abstract
Humans are exposed to various bisphenols, alkylphenols and nitrophenols through dietary intake, food packaging and container materials, indoor and outdoor air/dust. This study aimed to evaluate exposure of Japanese pregnant women to environmental phenols by measuring target compounds in urine samples. From a cohort of the Japan Environment and Children's Study, 4577 pregnant women were selected. Bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), para-nitrophenol (PNP), 3-methyl-4-nitrophenol (PNMC), branched 4-nonylphenol (4-NP), linear 4-nonylphenol and 4-tert-octylphenol (4-t-OP) were analysed using a high-performance liquid chromatograph coupled to a triple-quadrupole mass spectrometer. The urinary metabolite data were combined with a questionnaire to examine the determinants of phenol exposure by machine learning. The estimated daily intake (EDI) and hazard quotient (HQ) of BPA were calculated. PNP (68.2%) and BPA (71.5%) had the highest detection frequencies, with median concentrations of 0.76 and 0.46 μg/g creatinine, respectively. PNMC, BPS, BPF and 4-NP were determined in 24.9%, 11.9%, 1.3% and 0.4% of samples, respectively, whereas BPAF (0.02%) and 4-t-OP (0.02%) were only determined in a few samples. The PNP concentrations measured in this study were comparable with those reported in previous studies, whereas the BPA concentrations were lower than those reported previously worldwide. The EDI of BPA was 0.014 μg/kg body weight/day. Compared with the tolerable daily intake set by the German Federal Institute for Risk Assessment, the median (95th percentile) HQ was 0.044 (0.2). This indicates that the observed levels of BPA exposure pose a negligible health risk to Japanese pregnant women. Determinants of bisphenol and nitrophenol exposure could not be identified by analysing the questionnaire solely, suggesting that biological measurement is necessary to assess exposure of pregnant women to bisphenols and nitrophenols. This is the first study to report environmental phenol exposure of Japanese pregnant women on a nationwide scale.
Collapse
Affiliation(s)
- Neeranuch Suwannarin
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan.
| | - Yukiko Nishihama
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan; Paediatric Environmental Medicine, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Tomohiko Isobe
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan.
| | - Shoji F Nakayama
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan.
| |
Collapse
|
6
|
Repková A, Mišľanová C, Hrabčáková J, Masár M, Slezáková Z, Žemlička L, Valachovičová M. Relationship between Eating Habits and 4-Nonylphenol Concentration in Breast Milk of Women in Slovakia. Life (Basel) 2023; 13:2361. [PMID: 38137962 PMCID: PMC10744535 DOI: 10.3390/life13122361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
4-Nonylphenol belongs to the alkylphenol group of chemicals, and its high occurrence in the environment can cause an adverse effect on human health. Breast milk can serve as a marker to take measure of human exposure to these chemicals through different routes of exposure. In this work, the influence of selected factors (the kind of water drank by the mothers; the consumption of fish, pork, and beef; wearing gloves; using nail polish, gel nails, vitamins, and medication) on the concentration on 4-nonylphenol in 89 breast milk samples was studied. The concentrations of nonylphenol in breast milk were determined by HPLC with fluorescence detection. The lowest and highest concentrations of 4-nonylphenol in breast milk were 0.97 ng/mL and 4.37 ng/mL, respectively. Statistical significance was observed for the consumption of pork (p = 0.048) and fish (0.041) in relation to the 4-nonylphenol concentration. Certain parameters (use of gel nails, beef consumption, and vitamin supplementation) were at the border of statistical significance (p = 0.06). Other parameters did not show any statistical significance. The results showed that breast milk in Slovakia does not contain a harmful dose of 4-nonylphenol and does not cause health problems. But it is necessary to continue this research and perform extended screening on a larger number of samples.
Collapse
Affiliation(s)
- Adriana Repková
- Department of Midwifery, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia; (A.R.); (J.H.)
| | - Csilla Mišľanová
- Institute of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia;
| | - Janka Hrabčáková
- Department of Midwifery, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia; (A.R.); (J.H.)
| | - Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia;
| | - Zuzana Slezáková
- Department of Nursing, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia;
| | - Lukáš Žemlička
- Department of Nutrition and Food Quality Assessment, Institute of Food Science and Nutrition, Faculty of Chemical and Food Technology STU, 812 37 Bratislava, Slovakia;
| | - Martina Valachovičová
- Institute of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia;
| |
Collapse
|
7
|
Guo M, Wu L, Tan CL, Cheah JH, Aziz YA, Peng J, Chiu CH, Ren R. The impact of perceived risk of online takeout packaging and the moderating role of educational level. HUMANITIES & SOCIAL SCIENCES COMMUNICATIONS 2023; 10:221. [PMID: 37192947 PMCID: PMC10169167 DOI: 10.1057/s41599-023-01732-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
With the rapid development of e-commerce and the impact of COVID-19, online takeout has become the first choice of more and more consumers. Previous research has indicated that food packaging is of great significance to marketing performance, yet very little is known about the mechanisms through which food packaging pollution risk affects online takeout consumption. This study proposes an expanded model of the Theory of Planned Behavior (TPB) by incorporating the Concept of Perceived Risk (CPR) to analyze the mechanism of consumers' packaging pollution risk perception (PPRP) on their purchasing intention toward online takeout. Online survey was performed to collect data from 336 valid respondents in China, which was analyzed using structural equation modeling. The research findings verify the effectiveness of the TPB in the context of Chinese online takeout. Notably, the PPRP of online takeout was found to have a significant negative impact on consumers' attitudes, subjective norms, and perceived behavioral control (PBC). It was also confirmed that consumers' attitudes, subjective norms, and PBC regarding online takeout partially mediate the negative relationship between PPRP and purchase intention. In addition, the findings corroborate the granular nuances among three groups concerning consumers' education level. The results do not only provide suggestions to the online takeout industry but also contribute theoretical value and practical significance for the improvement of sustainable food consumption.
Collapse
Affiliation(s)
- Meiwen Guo
- School of Management, Guangzhou Xinhua University, Guangzhou, China
- Graduate School of Business, Universiti Sains Malaysia, George Town, Penang Malaysia
- Entrepreneurship Center, Sun Yat-sen University, Guangzhou, China
| | - Liang Wu
- School of Management, Guangzhou Xinhua University, Guangzhou, China
- Entrepreneurship Center, Sun Yat-sen University, Guangzhou, China
- School of Business and Economics, Universiti Putra Malaysia, Serdang, Selangor Malaysia
| | - Cheng Ling Tan
- Graduate School of Business, Universiti Sains Malaysia, George Town, Penang Malaysia
- Department of Information Technology & Management, Daffodil International University, Dhaka, Bangladesh
| | - Jun-Hwa Cheah
- Norwich Business School, University of East Anglia, Norwich, UK
| | - Yuhanis Abdul Aziz
- School of Business and Economics, Universiti Putra Malaysia, Serdang, Selangor Malaysia
| | - Jianping Peng
- School of Marxism, Sun Yat-sen University, Guangzhou, China
| | - Chun-Hung Chiu
- School of Business, Sun Yat-sen University, Guangzhou, China
| | - Rongwei Ren
- Entrepreneurship Center, Sun Yat-sen University, Guangzhou, China
- School of Business, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Al Rashed N, Gerlach C, Guenther K. Determination of Nonylphenol in Selected Foods and Identification of Single Isomers in a Coffee Sample by Comprehensive Two-Dimensional Gas Chromatography-Time of Flight Mass Spectrometry. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2180018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Ringbeck B, Weber T, Bury D, Kasper-Sonnenberg M, Pälmke C, Brüning T, Koch HM, Kolossa-Gehring M. Nonylphenol (NP) exposure in Germany between 1991 and 2021: Urinary biomarker analyses in the German Environmental Specimen Bank (ESB). Int J Hyg Environ Health 2022; 245:114010. [DOI: 10.1016/j.ijheh.2022.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022]
|