1
|
Xu T, Shan T, Jiang Y, Xu LH, Zhang H, Chu S. Photocatalytic Upcycling of Plastic Waste into Syngas by ZnS/Ga 2O 3 Z-Scheme Heterojunction. CHEMSUSCHEM 2025; 18:e202402310. [PMID: 39549232 DOI: 10.1002/cssc.202402310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/18/2024]
Abstract
The photocatalytic conversion of plastic waste into value-added products using solar energy presents a promising approach for promoting environmental sustainability. Nonetheless, the emission of CO2 during the conventional photocatalytic degradation process remains a major hurdle that impedes its further development. In this study, we propose an efficient photocatalytic conversion of polyethylene plastic into syngas (CO+H2 mixtures) by using a ZnS/Ga2O3 Z-scheme heterojunction photocatalyst. It is found that the strong redox capability of photogenerated holes and electrons in the Z-scheme heterojunction photocatalyst can promote the oxidative depolymerization of PE plastic, concurrently enabling the efficient reduction of the intermediate product CO2 into syngas. Furthermore, this system also demonstrates applicability in the conversion and upcycling of other polyolefin plastics including polypropylene and polyvinyl chloride. Our findings highlight the potential of polyolefin plastics photoreforming for the production of syngas under environmentally benign conditions.
Collapse
Affiliation(s)
- Tong Xu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Tao Shan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Yuting Jiang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Lian-Hua Xu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Sheng Chu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Xu Q, Wang Q, Yang J, Liu W, Wang A. Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16611-16620. [PMID: 39215385 DOI: 10.1021/acs.est.4c04449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Waste polypropylene (PP) presents a significant environmental challenge, owing to its refractory nature and inert C-C backbone. In this study, we introduce a practical chemical recovery strategy from PP waste using a mild catalyst-free hydrothermal treatment (HT). The treatment converts 64.1% of the processed PP into dissolved organic products within 2 h in an air atmosphere at 160 °C. Higher temperatures increase the PP conversion efficiency. Distinct electron absorption and emission characteristics of the products are identified by spectral analysis. Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) reveals the oxidative cracking of PP into shorter-chain homologues (10-50 carbon atoms) containing carboxylic and carbonyl groups. Density functional theory (DFT) calculations support a reaction pathway involving thermal C-H oxidation at the tertiary carbon sites in the polymer chain. The addition of 1% H2O2 further enhances the oxidation reaction to produce valuable short-chain acetic acids, enabling gram-scale recycling of both pure PP and disposable surgical masks from the real world. Techno-economic analysis (TEA) and environmental life cycle costing (E-LCC) analysis suggest that this hydrothermal oxidation recovery technology is financially viable, which shows significant potential in tackling the ongoing plastic pollution crisis and advancing plastic treatment methodologies toward a circular economy paradigm.
Collapse
Affiliation(s)
- Qiongying Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Qiandi Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiaqi Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
3
|
Zuo Z, Niu C, Zhao X, Lai CY, Zheng M, Guo J, Hu S, Liu T. Biological bromate reduction coupled with in situ gas fermentation in H 2/CO 2-based membrane biofilm reactor. WATER RESEARCH 2024; 254:121402. [PMID: 38461600 DOI: 10.1016/j.watres.2024.121402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Bromate, a carcinogenic contaminant generated in water disinfection, presents a pressing environmental concern. While biological bromate reduction is an effective remediation approach, its implementation often necessitates the addition of organics, incurring high operational costs. This study demonstrated the efficient biological bromate reduction using H2/CO2 mixture as the feedstock. A membrane biofilm reactor (MBfR) was used for the efficient delivery of gases. Long-term reactor operation showed a high-level bromate removal efficiency of above 95 %, yielding harmless bromide as the final product. Corresponding to the short hydraulic retention time of 0.25 d, a high bromate removal rate of 4 mg Br/L/d was achieved. During the long-term operation, in situ production of volatile fatty acids (VFAs) by gas fermentation was observed, which can be regulated by controlling the gas flow. Three sets of in situ batch tests and two groups of ex situ batch tests jointly unravelled the mechanisms underpinning the efficient bromate removal, showing that the microbial bromate reduction was primarily driven by the VFAs produced from in situ gas fermentation. Microbial community analysis showed an increased abundance of Bacteroidota group from 4.0 % to 18.5 %, which is capable of performing syngas fermentation, and the presence of heterotrophic denitrifiers (e.g., Thauera and Brachymonas), which are known to perform bromate reduction. Together these results for the first time demonstrated the feasibility of using H2/CO2 mixture for bromate removal coupled with in situ VFAs production. The findings can facilitate the development of cost-effective strategies for groundwater and drinking water remediation.
Collapse
Affiliation(s)
- Zhiqiang Zuo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chenkai Niu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xinyu Zhao
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| |
Collapse
|
4
|
Zhao X, You F. Cascading Polymer Macro-Debris Upcycling and Microparticle Removal as an Effective Life Cycle Plastic Pollution Mitigation Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6506-6519. [PMID: 37058399 DOI: 10.1021/acs.est.2c08686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Plastic pollution caused by material losses and their subsequent chemical emissions is pervasive in the natural environment and varies with age. Cascading the life cycles of plastic losses with solid waste reclamation via re-manufacturing virgin polymers or producing fuels and energy may extend resource availability while minimizing waste generation and environmental exposure. Here, we systematically investigate this cascaded plastic waste processing over other waste end-of-life management pathways by analyzing the environmental consequences of plastic losses across the entire life cycle. Plastic losses can form volatile organic chemicals via photo-degradation and pose non-negligible global warming, ecotoxicity, and air pollution effects that worsen by at least 189% in the long run. These environmental burdens increase by above 9.96% under high ultraviolet radiation levels and participation rates, which facilitate plastic particulate compartment transport and degradation. Cascaded plastic waste processing aided by fast pyrolysis upcycling technologies can effectively cut environmental losses and outperform landfills and incineration in reducing 23.35% ozone formation and 19.91% air pollution by offsetting the external monomer manufacturing and fuels and energy production while saving at least 25.75% fossil fuels.
Collapse
Affiliation(s)
- Xiang Zhao
- Systems Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fengqi You
- Systems Engineering, Cornell University, Ithaca, New York 14853, United States
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Hussain I, Aitani A, Malaibari Z, Alasiri H, Naseem Akhtar M, Fahad Aldosari O, Ahmed S. Chemical Upcycling of Waste Plastics to High Value-Added Products via Pyrolysis: Current Trends, Future Perspectives, and Techno-Feasibility Analysis. CHEM REC 2023; 23:e202200294. [PMID: 36850030 DOI: 10.1002/tcr.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Chemical upcycling of waste plastics into high-value-added products is one of the most effective, cost-efficient, and environmentally beneficial solutions. Many studies have been published over the past few years on the topic of recycling plastics into usable materials through a process called catalytic pyrolysis. There is a significant research gap that must be bridged in order to use catalytic pyrolysis of waste plastics to produce high-value products. This review focuses on the enhanced catalytic pyrolysis of waste plastics to produce jet fuel, diesel oil, lubricants, aromatic compounds, syngas, and other gases. Moreover, the reaction mechanism, a brief and critical comparison of different catalytic pyrolysis studies, as well as the techno-feasibility analysis of waste plastic pyrolysis and the proposed catalytic plastic pyrolysis setup for commercialization is also covered.
Collapse
Affiliation(s)
- Ijaz Hussain
- Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Abdullah Aitani
- Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Zuhair Malaibari
- Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Hassan Alasiri
- Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Naseem Akhtar
- Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Obaid Fahad Aldosari
- Department of Chemistry, College of Science, Majmaah University, P.O. Box 66, Majmaah, 11952, Saudi Arabia
| | - Shakeel Ahmed
- Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
6
|
Yan J, Lai J, Yin K, Yan Y, Shen L, Yang L. Syngas production and gas-N evolution over heterogeneously doped La-Fe-O perovskite-type oxygen carriers in chemical looping gasification of microalgae. BIORESOURCE TECHNOLOGY 2023; 369:128507. [PMID: 36538961 DOI: 10.1016/j.biortech.2022.128507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Chemical looping gasification (CLG) is a promising technology for syngas production with low pollutant emission. In this study, doped La-Fe-O perovskites including LaFeO3 (LF), LaFe0.5Ni0.5O3 (LN5F5) and La0.3Ba0.7FeO3 (L3B7F) were developed for microalgae CLG. The as-prepared perovskites exhibited an outstanding performance in syngas production with accumulative syngas yield > 33 mol/kg. For gas-N evolution, perovskites were beneficial to the formation of NH3 and HCN, while the iron ore may convert precursors to NO. Below 400 °C, NOx can be stored on the perovskite surface in the form of nitrite/nitrate species. When the temperature was above 700 °C, NOx can be selectively reduced by reducing components in tar or syngas under the catalysis of L3B7F, resulting in the final reduction of NOx emission. Thus, CLG over L3B7F may be a promising way for efficient utilization of microalgae to overcome the intractable nitrogen-related obstacles in the commercial application of biomass gasification technologies.
Collapse
Affiliation(s)
- Jingchun Yan
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junjie Lai
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kehan Yin
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yongbo Yan
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Laihong Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Li Yang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|