1
|
Gao J, Wei Y, Wang H, Song S, Xu H, Feng Y, Shi G, Russell AG. Multiphase Buffering: A Mechanistic Regulator of Aerosol Sulfate Formation and Its Dominant Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8073-8084. [PMID: 40237285 DOI: 10.1021/acs.est.4c13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Sulfate formation in the aerosol aqueous phase represents a pH-sensitive atmospheric chemical process, with the formation pathways significantly influenced by the fluctuations in aerosol acidity. Buffer capacity, stemming from conjugate acid-base pairs, can resist pH changes in aerosol multiphase systems under external perturbations. However, the regulating role of multiphase buffering in pH-dependent aqueous sulfate formation mechanisms remains unexplored. Here, we propose that multiphase buffering can stabilize aerosol pH and further regulate dominant sulfate formation pathways. In this work, we delve into the instantaneous buffer capacity β and sulfate formation pathways based on field observation and theoretical calculation and further introduce the total buffer capacity α in the aerosol multiphase system to quantify the buffer-constrained pH change after the external acid/base variation during the entire buffering process. The NH4+/NH3 agent (average β 30.8 mol kg-1) shows a superior buffering effect in stabilizing aerosol pH and regulating sulfate formation pathway transition compared with the HNO3/NO3- agent (average β 15.1 mol kg-1). Geos-Chem simulation and machine learning results also validate the buffer capacity as a pivotal factor in sulfate formation. In addition to reactants, the buffer agents and acid/base can also be factors of concern for the sulfate formation mechanism. The diverse sensitivities to acid/base variation and the region-specific responses to pH change can provide insight into regulating acid and base emission measures, modulating regional aerosol acidity, and understanding pH-related atmospheric chemical processes.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Urban Air Particulate Pollution Prevention and Control of Ministry of Ecology and Environment, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuting Wei
- Key Laboratory of Urban Air Particulate Pollution Prevention and Control of Ministry of Ecology and Environment, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Haoqi Wang
- Key Laboratory of Urban Air Particulate Pollution Prevention and Control of Ministry of Ecology and Environment, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaojie Song
- Key Laboratory of Urban Air Particulate Pollution Prevention and Control of Ministry of Ecology and Environment, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Han Xu
- Key Laboratory of Urban Air Particulate Pollution Prevention and Control of Ministry of Ecology and Environment, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinchang Feng
- Key Laboratory of Urban Air Particulate Pollution Prevention and Control of Ministry of Ecology and Environment, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guoliang Shi
- Key Laboratory of Urban Air Particulate Pollution Prevention and Control of Ministry of Ecology and Environment, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Liu P, Jia S, Li S, Ma P, Ma Y, Liu Y, Liao Z, Wang Y, Chu B, Ma Q, Quan J, Mu Y, He H. Unexpectedly High Levels of H 2O 2 Drive Sulfate Formation over the Residual Layer in Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4551-4559. [PMID: 39893672 DOI: 10.1021/acs.est.4c09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Hydrogen peroxide (H2O2) plays a key role in atmospheric chemistry, but knowledge of its variation, sources, and impact on sulfate formation remains incomplete, especially in the urban boundary layer aloft. Here, we conducted a field campaign with measurements of H2O2 and related species at a tower-based site (∼528 m above the ground surface) of Beijing in spring of 2022. The observed hourly H2O2 concentration reached up to 21.2 ppbv with an average value of 3.4 ± 3.7 ppbv during the entire observation period, which was higher than values from previous observations throughout the world. The H2O2 budget revealed that the two known sources (self-reaction of HO2 radicals and ozonolysis of alkenes) could not account for the significant formation of H2O2, leading to a considerable unknown source strength (∼0.14-0.53 ppbv h-1) of H2O2 at noon and after sunset. Based on the levoglucosan signal, distribution of fire points, and backward trajectories, biomass burning emissions from the southwest of Beijing (e.g., North China Plain) were found to contribute greatly to H2O2 formation. Besides, photochemical aging of PM2.5 might also have a potential impact on H2O2 production at noon. The unexpectedly high concentrations of H2O2 aloft made a vital contribution to sulfate production (0.2-1.1 μg m-3 h-1), which could be transported to the ground surface during the turbulent mixing. Our findings provide an improved understanding of the H2O2 chemistry in the boundary layer aloft in a megacity, as well as its impact on sulfate formation.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuyuan Jia
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuying Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengkun Ma
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Yongjing Ma
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yuan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiheng Liao
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiannong Quan
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Wei Y, Zhao D, Zhang Z, Li M, Wang F, Pei C, Liang D, Feng Y, Shi G. The response of daytime nitrate formation to source emissions reduction based on chemical kinetic and thermodynamic model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176002. [PMID: 39233082 DOI: 10.1016/j.scitotenv.2024.176002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Particulate nitrate is an important component of particulate matter and poses a significant threat to the ecosystem and human health. The gas-phase formation pathway of nitrate is extremely important, which mainly comprises the NO2 oxidation process triggered by OH radicals and the nitrate partitioning process. The response of nitrate to source emission reduction during different pollution periods remains unclear. Here, we applied the chemical kinetic and thermodynamics model to explore the importance oxidation process and partitioning process during different pollution periods based on high-time resolution observation data. The result indicated that with the aggravation of pollution, the partitioning process gradually ceases to be a limiting step in the formation of nitrates. The results of the influencing factor analysis indicate that NO2 concentration and aerosol pH values play a more significant role in the formation of nitrates. Specifically, during the clean period, nitrate formation is sensitive to both NO2 concentration and pH values, but during the pollution period, it becomes sensitive only to NO2 concentration. By combining source apportionment, we explored the response of nitrate formation to source emission reduction, and the results showed that the control of vehicle exhaust emissions and coal combustion sources is more effective in mitigating nitrate pollution. Additionally, this study also emphasized the importance of early prevention and control of pollution sources. This research provides scientific evidence for the precise management and control of nitrates.
Collapse
Affiliation(s)
- Yuting Wei
- The State Environment Protection Key Laboratory of Urban Particulate Air Pollution Prevention, Tianjin Key Laboratory of Urban Transport Emission Research, CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Cooperative Laboratory for Atmospheric Environment-Health Research, Nankai University, Tianjin 300350, PR China
| | - Dongheng Zhao
- The State Environment Protection Key Laboratory of Urban Particulate Air Pollution Prevention, Tianjin Key Laboratory of Urban Transport Emission Research, CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Cooperative Laboratory for Atmospheric Environment-Health Research, Nankai University, Tianjin 300350, PR China
| | - Zhang Zhang
- The State Environment Protection Key Laboratory of Urban Particulate Air Pollution Prevention, Tianjin Key Laboratory of Urban Transport Emission Research, CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Cooperative Laboratory for Atmospheric Environment-Health Research, Nankai University, Tianjin 300350, PR China
| | - Mei Li
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on line source apportionment system of air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China.
| | - Feng Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chenglei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510006, China
| | - Danni Liang
- The State Environment Protection Key Laboratory of Urban Particulate Air Pollution Prevention, Tianjin Key Laboratory of Urban Transport Emission Research, CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Cooperative Laboratory for Atmospheric Environment-Health Research, Nankai University, Tianjin 300350, PR China
| | - Yinchang Feng
- The State Environment Protection Key Laboratory of Urban Particulate Air Pollution Prevention, Tianjin Key Laboratory of Urban Transport Emission Research, CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Cooperative Laboratory for Atmospheric Environment-Health Research, Nankai University, Tianjin 300350, PR China
| | - Guoliang Shi
- The State Environment Protection Key Laboratory of Urban Particulate Air Pollution Prevention, Tianjin Key Laboratory of Urban Transport Emission Research, CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Cooperative Laboratory for Atmospheric Environment-Health Research, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
4
|
Thiagarajan V, Nah T, Xin X. Impacts of atmospheric particulate matter deposition on phytoplankton: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175280. [PMID: 39122032 DOI: 10.1016/j.scitotenv.2024.175280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
In many rapidly urbanizing and industrializing countries, atmospheric pollution causes severe environmental problems and compromises the health of humans and ecosystems. Atmospheric emissions, which encompass gases and particulate matter, can be transported back to the earth's surface through atmospheric deposition. Atmospheric deposition supplies chemical species that can serve as nutrients and/or toxins to aquatic ecosystems, resulting in wide-ranging responses of aquatic organisms. Among the aquatic organisms, phytoplankton is the basis of the aquatic food web and is a key player in global primary production. Atmospheric deposition alters nutrient availability and thus influences phytoplankton species abundance and composition. This review provides a comprehensive overview of the physiological responses of phytoplankton resulting from the atmospheric deposition of trace metals, nitrogen-containing compounds, phosphorus-containing compounds, and sulfur-containing compounds in particulate matter into aquatic ecosystems. Knowledge gaps and critical areas for future studies are also discussed.
Collapse
Affiliation(s)
- Vignesh Thiagarajan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Theodora Nah
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Xiaying Xin
- Beaty Water Research Centre, Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
5
|
Zhang Y, Wang S, Kang P, Sun C, Yang W, Wang M, Yin S, Zhang R. Atmospheric H 2O 2 during haze episodes in a Chinese megacity: Concentration, source, and implication on sulfate production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174391. [PMID: 38955272 DOI: 10.1016/j.scitotenv.2024.174391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Atmospheric hydrogen peroxide (H2O2), as an important oxidant, plays a key role in atmospheric chemistry. To reveal its characteristics in polluted areas, comprehensive observations were conducted in Zhengzhou, China from February 22 to March 4, 2019, including heavy pollution days (HP) and light pollution days (LP). High NO concentrations (18 ± 26 ppbv) were recorded in HP, preventing the recombination reaction of two HO2• radicals. Surprisingly, higher concentrations of H2O2 were observed in HP (1.5 ± 0.6 ppbv) than those in LP (1.2 ± 0.6 ppbv). In addition to low wind speed and relative humidity, the elevated H2O2 in HP could be mainly attributed to intensified particle-phase photoreactions and biomass burning. In terms of sulfate formation, transition-metal ions (TMI)-catalyzed oxidation emerged as the predominant oxidant pathway in both HP and LP. Note that the average H2O2 oxidation rate increased from 3.6 × 10-2 in LP to 1.1 × 10-1 μg m-3 h-1 in HP. Moreover, the oxidation by H2O2 might exceed that of TMI catalysis under specific conditions, emerging as the primary driver of sulfate formation.
Collapse
Affiliation(s)
- Yunxiang Zhang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Shenbo Wang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China.
| | - Panru Kang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chuifu Sun
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Wenjuan Yang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Mingkai Wang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Shasha Yin
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Ruiqin Zhang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
6
|
Wang F, Zhang C, Ge Y, Zhang Z, Shi G, Feng Y. Multi-scale analysis of the chemical and physical pollution evolution process from pre-co-pollution day to PM 2.5 and O 3 co-pollution day. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173729. [PMID: 38839009 DOI: 10.1016/j.scitotenv.2024.173729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
PM2.5 and O3 are two of the main air pollutants that have adverse impacts on climate and human health. The evolution process of PM2.5 and O3 co-pollution are of concern because of the increased frequency of PM2.5 and O3 co-pollution days. Here, we examined the chemical coupling and revealed the driving factors of the PM2.5 and O3 co-pollution evolution process from cleaning day, PM2.5 pollution day, or O3 pollution day, applied by theoretical analysis and model calculation methods. The results demonstrate that PM2.5 and O3 co-pollution day frequently occurred with high concentrations of gaseous precursors and higher sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR), which we attribute to the enhancement of atmospheric oxidation capacity (AOC). The AOC is positively correlated with O3 and weakly correlated with PM2.5. In addition, we found that the correlation coefficients of PM2.5-NO2 (0.62) were higher than that of PM2.5-SO2 (0.32), highlighting the priority of NOx controlling to mitigate PM2.5 pollution. Overall, our discovery can provide scientific evidence to design feasible solutions for the controlling PM2.5 and O3 co-pollution process.
Collapse
Affiliation(s)
- Feng Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chun Zhang
- Shaanxi Province Environmental Monitoring Center, Xi'an 710054, China
| | - Yi Ge
- Shaanxi Province Environmental Monitoring Center, Xi'an 710054, China
| | - Zhang Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Kim Y, Yi SM, Heo J, Kim H, Lee W, Kim H, Hopke PK, Lee YS, Shin HJ, Park J, Yoo M, Jeon K, Park J. Is replacing missing values of PM 2.5 constituents with estimates using machine learning better for source apportionment than exclusion or median replacement? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124165. [PMID: 38759749 DOI: 10.1016/j.envpol.2024.124165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
East Asian countries have been conducting source apportionment of fine particulate matter (PM2.5) by applying positive matrix factorization (PMF) to hourly constituent concentrations. However, some of the constituent data from the supersites in South Korea was missing due to instrument maintenance and calibration. Conventional preprocessing of missing values, such as exclusion or median replacement, causes biases in the estimated source contributions by changing the PMF input. Machine learning (ML) can estimate the missing values by training on constituent data, meteorological data, and gaseous pollutants. Complete data from the Seoul Supersite in 2018 was taken, and a random 20% was set as missing. PMF was performed by replacing missing values with estimates. Percent errors of the source contributions were calculated compared to those estimated from complete data. Missing values were estimated using a random forest analysis. Estimation accuracy (r2) was as high as 0.874 for missing carbon species and low at 0.631 when ionic species and trace elements were missing. For the seven highest contributing sources, replacing the missing values of carbon species with estimates minimized the percent errors to 2.0% on average. However, replacing the missing values of the other chemical species with estimates increased the percent errors to more than 9.7% on average. Percent errors were maximal at 37% on average when missing values of ionic species and trace elements were replaced with estimates. Missing values, except for carbon species, need to be excluded. This approach reduced the percent errors to 7.4% on average, which was lower than those due to median replacement. Our results show that reducing the biases in source apportionment is possible by replacing the missing values of carbon species with estimates. To improve the biases due to missing values of the other chemical species, the estimation accuracy of the ML needs to be improved.
Collapse
Affiliation(s)
- Youngkwon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Muk Yi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jongbae Heo
- Busan Development Institute, Busan, 47210, Republic of Korea
| | - Hwajin Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Woojoo Lee
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ho Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, 13699, USA; Department of Public Health Sciences, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Young Su Lee
- Department of Energy and Environmental Engineering, Soonchunhyang University, Soonchunhyang-ro, Sinchang-myeon, Asan-si, Chungcheongnam-do, 31538, Republic of Korea
| | - Hye-Jung Shin
- Air Quality Research Division, Department of Climate and Air Quality Research, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Jungmin Park
- Air Quality Research Division, Department of Climate and Air Quality Research, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Myungsoo Yoo
- Department of Climate and Air Quality Research, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Kwonho Jeon
- Global Environment Research Division, Department of Climate and Air Quality Research, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Jieun Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Boston, MA, 02215, USA.
| |
Collapse
|
8
|
Wang Y, Kong L, Tan J, Liu B, An Y, Xia L, Lu Y, Li Q, Wang L. Photochemistry of Imidazole-2-carbaldehyde in Droplets as a Potential Source of H 2O 2 and Its Oxidation of SO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11096-11104. [PMID: 38865480 DOI: 10.1021/acs.est.3c11113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Hydrogen peroxide (H2O2) plays a crucial role as an oxidizing agent within the tropospheric environment, making a substantial contribution to sulfate formation in hydrated aerosols and cloud and fog droplets. Field observations show that high levels of H2O2 are often observed in heavy haze events and polluted air. However, the source of H2O2 remains unclear. Here, using the droplets formed in situ by the deliquescence of hygroscopic compounds under a high relative humidity (RH), the formation of H2O2 by the photochemistry of imidazole-2-carbaldehyde (2-IC) under ultraviolet irradiation was explored. The results indicate that 2-IC produces IM-C•-OH and IM-C•═O radicals via H transfer itself to its excited triplet state and generates H2O2 and organic peroxides in the presence of O2, which has an evident oxidizing effect on SO2, suggesting the potential involvement of this pathway in the formation of atmospheric sulfate. H2O2 formation is limited in acidic droplets or droplets containing ammonium ions, and no H2O2 is detected in droplets containing nitrate, whereas droplets containing citric acid have an obvious promotion effect on H2O2 formation. These findings provide valuable insights into the behaviors of atmospheric photosensitizers, the source of H2O2, and the formation of sulfate in atmospheric droplets.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lingdong Kong
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
- Shanghai Institute of Eco-Chongming (SIEC), 3663 Northern Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Jie Tan
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Beibei Liu
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yixuan An
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lianghai Xia
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yu Lu
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Qing Li
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lin Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
9
|
Gao J, Wang H, Liu W, Xu H, Wei Y, Tian X, Feng Y, Song S, Shi G. Hydrogen peroxide serves as pivotal fountainhead for aerosol aqueous sulfate formation from a global perspective. Nat Commun 2024; 15:4625. [PMID: 38816351 PMCID: PMC11139875 DOI: 10.1038/s41467-024-48793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Traditional atmospheric chemistry posits that sulfur dioxide (SO2) can be oxidized to sulfate (SO42-) through aqueous-phase reactions in clouds and gas-phase oxidation. Despite adequate knowledge of traditional mechanisms, several studies have highlighted the potential for SO2 oxidation within aerosol water. Given the widespread presence of tropospheric aerosols, SO42- production through aqueous-phase oxidation in aerosol water could have a pervasive global impact. Here, we quantify the potential contributions of aerosol aqueous pathways to global sulfate formation based on the GEOS-Chem simulations and subsequent theoretical calculations. Hydrogen peroxide (H2O2) oxidation significantly influences continental regions both horizontally and vertically. Over the past two decades, shifts in the formation pathways within typical cities reveal an intriguing trend: despite reductions in SO2 emissions, the increased atmospheric oxidation capacities, like rising H2O2 levels, prevent a steady decline in SO42- concentrations. Abating oxidants would facilitate the benefit of SO2 reduction and the positive feedback in sulfate mitigation.
Collapse
Affiliation(s)
- Jie Gao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Haoqi Wang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Wenqi Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Han Xu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuting Wei
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiao Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shaojie Song
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
10
|
Ye Q, Yao M, Wang W, Li Z, Li C, Wang S, Xiao H, Zhao Y. Multiphase interactions between sulfur dioxide and secondary organic aerosol from the photooxidation of toluene: Reactivity and sulfate formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168736. [PMID: 37996034 DOI: 10.1016/j.scitotenv.2023.168736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
There is growing evidence that the interactions between sulfur dioxide (SO2) and organic peroxides (POs) in aerosol and clouds play an important role in atmospheric sulfate formation and aerosol aging, yet the reactivity of POs arising from anthropogenic precursors toward SO2 remains unknown. In this study, we investigate the multiphase reactions of SO2 with secondary organic aerosol (SOA) formed from the photooxidation of toluene, a major type of anthropogenic SOA in the atmosphere. The reactive uptake coefficient of SO2 on toluene SOA was determined to be on the order of 10-4, depending strikingly on aerosol water content. POs contribute significantly to the multiphase reactivity of toluene SOA, but they can only explain a portion of the measured SO2 uptake, suggesting the presence of other reactive species in SOA that also contribute to the particle reactivity toward SO2. The second-order reaction rate constant (kII) between S(IV) and toluene-derived POs was estimated to be in the range of the kII values previously reported for commercially available POs (e.g., 2-butanone peroxide and 2-tert-butyl hydroperoxide) and the smallest (C1-C2) and biogenic POs. In addition, unlike commercial POs that can efficiently convert S(IV) into both inorganic sulfate and organosulfates, toluene-derived POs appear to mainly oxidize S(IV) to inorganic sulfate. Our study reveals the multiphase reactivity of typical anthropogenic SOA and POs toward SO2 and will help to develop a better understanding of the formation and evolution of atmospheric secondary aerosol.
Collapse
Affiliation(s)
- Qing Ye
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wei Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenxi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Huayun Xiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Zhang S, Li D, Ge S, Wu C, Xu X, Liu X, Li R, Zhang F, Wang G. Elucidating the Mechanism on the Transition-Metal Ion-Synergetic-Catalyzed Oxidation of SO 2 with Implications for Sulfate Formation in Beijing Haze. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2912-2921. [PMID: 38252977 DOI: 10.1021/acs.est.3c08411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Currently, atmospheric sulfate aerosols cannot be predicted reliably by numerical models because the pathways and kinetics of sulfate formation are unclear. Here, we systematically investigated the synergetic catalyzing role of transition-metal ions (TMIs, Fe3+/Mn2+) in the oxidation of SO2 by O2 on aerosols using chamber experiments. Our results showed that the synergetic effect of TMIs is critically dependent on aerosol pH due to the solubility of Fe(III) species sensitive to the aqueous phase acidity, which is effective only under pH < 3 conditions. The sulfate formation rate on aerosols is 2 orders of magnitude larger than that in bulk solution and increases significantly on smaller aerosols, suggesting that such a synergetic-catalyzed oxidation occurs on the aerosol surface. The kinetic reaction rate can be described as R = k*[H+]-2.95[Mn(II)][Fe(III)][S(IV)] (pH ≤ 3.0). We found that TMI-synergetic-catalyzed oxidation is the dominant pathway of sulfate formation in Beijing when haze particles are very acidic, while heterogeneous oxidation of SO2 by NO2 is the most important pathway when haze particles are weakly acidic. Our work for the first time clarified the role and kinetics of TMI-synergetic-catalyzed oxidation of SO2 by O2 in haze periods, which can be parameterized into models for future studies of sulfate formation.
Collapse
Affiliation(s)
- Si Zhang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Dapeng Li
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Energy Construction Group Co., Ltd, Shanghai 200434, China
| | | | - Can Wu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Xinbei Xu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodi Liu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Rui Li
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Fan Zhang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| |
Collapse
|
12
|
Wang C, Luo L, Xu Z, Liu S, Li Y, Ni Y, Kao SJ. Assessment of Secondary Sulfate Aqueous-Phase Formation Pathways in the Tropical Island City of Haikou: A Chemical Kinetic Perspective. TOXICS 2024; 12:105. [PMID: 38393200 PMCID: PMC10892436 DOI: 10.3390/toxics12020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Sulfate (SO42-) is an essential chemical species in atmospheric aerosols and plays an influential role in their physical-chemical characteristics. The mechanisms of secondary SO42- aerosol have been intensively studied in air-polluted cities. However, few studies have focused on cities with good air quality. One-year PM2.5 samples were collected in the tropical island city of Haikou, and water-soluble inorganic ions, as well as water-soluble Fe and Mn, were analyzed. The results showed that non-sea-salt SO42- (nss-SO42-) was the dominant species of water-soluble inorganic ions, accounting for 40-57% of the total water-soluble inorganic ions in PM2.5 in Haikou. The S(IV)+H2O2 pathway was the main formation pathway for secondary SO42- in wintertime in Haikou, contributing to 57% of secondary SO42- formation. By contrast, 54% of secondary SO42- was produced by the S(IV)+Fe×Mn pathway in summer. In spring and autumn, the S(IV)+H2O2, S(IV)+Fe×Mn, and S(IV)+NO2 pathways contributed equally to secondary SO42- formation. The ionic strength was the controlling parameter for the S(IV)+NO2 pathway, while pH was identified as a key factor that mediates the S(IV)+H2O2 and S(IV)+Fe×Mn pathways to produce secondary SO42-. This study contributes to our understanding of secondary SO42- production under low PM2.5 concentrations but high SO42- percentages.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Li Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- College of Marine Science and Engineering, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Zifu Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361104, China
| | - Shuhan Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- College of Marine Science and Engineering, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Yuxiao Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yuanzhe Ni
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Cao Y, Liu J, Ma Q, Zhang C, Zhang P, Chen T, Wang Y, Chu B, Zhang X, Francisco JS, He H. Photoactivation of Chlorine and Its Catalytic Role in the Formation of Sulfate Aerosols. J Am Chem Soc 2024; 146:1467-1475. [PMID: 38186050 DOI: 10.1021/jacs.3c10840] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
We present a novel mechanism for the formation of photocatalytic oxidants in deliquescent NaCl particles, which can greatly promote the multiphase photo-oxidation of SO2 to produce sulfate. The photoexcitation of the [Cl--H3O+-O2] complex leads to the generation of Cl and OH radicals, which is the key reason for enhancing aqueous-phase oxidation and accelerating SO2 oxidation. The mass normalization rate of sulfate production from the multiphase photoreaction of SO2 on NaCl droplets could be estimated to be 0.80 × 10-4 μg·h-1 at 72% RH and 1.33 × 10-4 μg·h-1 at 81% RH, which is equivalent to the known O3 liquid-phase oxidation mechanism. Our findings highlight the significance of multiphase photo-oxidation of SO2 on NaCl particles as a non-negligible source of sulfate in coastal areas. Furthermore, this study underscores the importance of Cl- photochemistry in the atmosphere.
Collapse
Affiliation(s)
- Yiqun Cao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chunyan Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia,Pennsylvania 19104, United States
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
14
|
Han X, Dong X, Liu CQ, Wei R, Lang Y, Strauss H, Guo Q. Multiple Sulfur Isotopic Evidence for Sulfate Formation in Haze Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20647-20656. [PMID: 38033251 DOI: 10.1021/acs.est.3c05072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The mechanism of sulfate formation during winter haze events in North China remains largely elusive. In this study, the multiple sulfur isotopic composition of sulfate in different grain-size aerosol fractions collected seasonally from sampling sites in rural, suburban, urban, industrial, and coastal areas of North China are used to constrain the mechanism of SO2 oxidation at different levels of air pollution. The Δ33S values of sulfate in aerosols show an obvious seasonal variation, except for those samples collected in the rural area. The positive Δ33S signatures (0‰ < Δ33S < 0.439‰) observed on clean days are mainly influenced by tropospheric SO2 oxidation and stratospheric SO2 photolysis. The negative Δ33S signatures (-0.236‰ < Δ33S < ∼0‰) observed during winter haze events (PM2.5 > 200 μg/m3) are mainly attributed to SO2 oxidation by H2O2 and transition metal ion catalysis (TMI) in the troposphere. These results reveal that both the H2O2 and TMI pathways play critical roles in sulfate formation during haze events in North China. Additionally, these new data provide evidence that the tropospheric oxidation of SO2 can produce significant negative Δ33S values in sulfate aerosols.
Collapse
Affiliation(s)
- Xiaokun Han
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xinyuan Dong
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunchao Lang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Harald Strauss
- Institut für Geologie und Paläontologie, Universität Münster, Corrensstrasse 24, 48149 Münster, Germany
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Li T, Zhang Q, Wang X, Peng Y, Guan X, Mu J, Li L, Chen J, Wang H, Wang Q. Characteristics of secondary inorganic aerosols and contributions to PM 2.5 pollution based on machine learning approach in Shandong Province. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122612. [PMID: 37757930 DOI: 10.1016/j.envpol.2023.122612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Primary emissions of particulate matter and gaseous pollutants, such as SO2 and NOx have decreased in China following the implementation of a series of policies by the Chinese government to address air pollution. However, controlling secondary inorganic aerosol pollution requires attention. This study examined the characteristics of the secondary conversion of nitrate (NO3-) and sulfate (SO42-) in three coastal cities of Shandong Province, namely Binzhou (BZ), Dongying (DY), and Weifang (WF), and an inland city, Jinan (JN), during December 2021. Furthermore, the Shapley Additive Explanation (SHAP), an interpretable attribution technique, was adopted to accurately calculate the contributions of secondary formations to PM2.5. The nitrogen oxidation rate exhibited a significant dependence on the concentration of O3. High humidity facilitates sulfur oxidation. Compared to BZ, DY, and WF, the secondary conversion of NO3- and SO42- was more intense in JN. The light-gradient boosting model outperformed the random forest and extreme-gradient boosting models, achieving a mean R2 value of 0.92. PM2.5 pollution events in BZ, DY, and WF were primarily attributable to biomass burning, whereas pollution in Jinan was contributed by the secondary formation of NO3- and vehicle emissions. Machine learning and the SHAP interpretable attribution technique offer a precise analysis of the causes of air pollution, showing high potential for addressing environmental concerns.
Collapse
Affiliation(s)
- Tianshuai Li
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao, 266003, PR China
| | - Qingzhu Zhang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao, 266003, PR China.
| | - Xinfeng Wang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao, 266003, PR China
| | - Yanbo Peng
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao, 266003, PR China; Shandong Academy for Environmental Planning, Jinan, 250101, PR China
| | - Xu Guan
- Shandong Academy for Environmental Planning, Jinan, 250101, PR China
| | - Jiangshan Mu
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao, 266003, PR China
| | - Lei Li
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao, 266003, PR China
| | - Jiaqi Chen
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao, 266003, PR China
| | - Haolin Wang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao, 266003, PR China
| | - Qiao Wang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao, 266003, PR China
| |
Collapse
|
16
|
Yao M, Zhao Y, Chang C, Wang S, Li Z, Li C, Chan AWH, Xiao H. Multiphase Reactions between Organic Peroxides and Sulfur Dioxide in Internally Mixed Inorganic and Organic Particles: Key Roles of Particle Phase Separation and Acidity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15558-15570. [PMID: 37797208 DOI: 10.1021/acs.est.3c04975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Organic peroxides (POs) are ubiquitous in the atmosphere and particularly reactive toward dissolved sulfur dioxide (SO2), yet the reaction kinetics between POs and SO2, especially in complex inorganic-organic mixed particles, remain poorly constrained. Here, we report the first investigation of the multiphase reactions between SO2 and POs in monoterpene-derived secondary organic aerosol internally mixed with different inorganic salts (ammonium sulfate, ammonium bisulfate, or sodium nitrate). We find that when the particles are phase-separated, the PO-S(IV) reactivity is consistent with that measured in pure SOA and depends markedly on the water content in the organic shell. However, when the organic and inorganic phases are miscible, the PO-S(IV) reactivity varies substantially among different aerosol systems, mainly driven by their distinct acidities (not by ionic strength). The second-order PO-S(IV) rate constant decreases monotonically from 5 × 105 to 75 M-1 s-1 in the pH range of 0.1-5.6. Both proton catalysis and general acid catalysis contribute to S(IV) oxidation, with their corresponding third-order rate constants determined to be (6.4 ± 0.7) × 106 and (6.9 ± 4.6) × 104 M-2 s-1 at pH 2-6, respectively. The measured kinetics imply that the PO-S(IV) reaction in aerosol is an important sulfate formation pathway, with the reaction kinetics dominated by general acid catalysis at pH > 3 under typical continental atmospheric conditions.
Collapse
Affiliation(s)
- Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongxuan Chang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ziyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenxi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Huayun Xiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
17
|
Zhang X, Tao J, Lei F, Sun T, Lin L, Huang X, Zhang P, Ji YX, Cai J, Zhang XJ, Li H. Association of the components of ambient fine particulate matter (PM 2.5) and chronic kidney disease prevalence in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117885. [PMID: 37086641 DOI: 10.1016/j.jenvman.2023.117885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Previous research has implicated PM2.5 as a potential environmental risk factor for CKD, but little is known about the associations between its components and CKD. We conducted a nationwide cross-sectional study using the updated air pollution data in the nationwide population (N = 2,938,653). Using generalized additive models, we assessed the association between long-term exposure to PM2.5 and its components (i.e., black carbon [BC], organic matter [OM], nitrate [NO3-], ammonium [NH4+], sulfate [SO42-]), and CKD prevalence. The air pollution data was estimated using high-resolution and high-quality spatiotemporal datasets of ground-level air pollutants in China. Besides, we adopted a novel quantile-based g-computation approach to assess the effect of a mixture of PM2.5 constituents on CKD prevalence. The average concentration of PM2.5 was 78.67 ± 22.5 μg/m3, which far exceeded WHO AQG. In the fully adjusted generalized additive model, at a 10 km × 10 km spatial resolution, the ORs per IQR increase in previous 1-year average PM2.5 exposures was 1.380 (95%CI: 1.345-1.415), for NH4+ was 1.094 (95%CI: 1.062-1.126), for BC was 1.604 (95%CI: 1.563-1.646), for NO3- was 1.094 (95%CI: 1.060-1.130), for SO42- was 1.239 (95%CI: 1.208-1.272), and for the OM was 1.387 (95%CI: 1.354-1.421), respectively. Subgroup analysis showed females, younger, and healthier were more vulnerable to this effect. In the further exploration of the joint effect of PM2.5 compositions (OR 1.234 [95%CI 1.222-1.246]) per quartile increase in all 5 PM2.5 components, we found that PM2.5SO42- contributed the most. These findings provide important evidence for the positive relationship between long-term exposure to PM2.5 and its chemical constituents and CKD prevalence in a Chinese health check-up population, and identified PM2.5SO42- has the highest contribution to this relationship. This study provides clinical and public health guidance for reducing specific air particle exposure for those at risk of CKD.
Collapse
Affiliation(s)
- Xingyuan Zhang
- School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jiayi Tao
- Department of Urology, Huanggang Central Hospital of Yangtze University, Huanggang, China; Huanggang Institute of Translation Medicine, Huanggang, China
| | - Fang Lei
- School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Tao Sun
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Lijin Lin
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xuewei Huang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Peng Zhang
- School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Jing Zhang
- School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China.
| |
Collapse
|
18
|
Sun T, Wang Z, Lei F, Lin L, Zhang X, Song X, Ji YX, Zhang XJ, Zhang P, She ZG, Cai J, Jia P, Li H. Long-term exposure to air pollution and increased risk of atrial fibrillation prevalence in China. Int J Cardiol 2023; 378:130-137. [PMID: 36841290 DOI: 10.1016/j.ijcard.2023.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common type of treated heart arrhythmia contributing to adverse cardiovascular events. The association between short-term air pollution exposure and AF episodes has been recognized. But the evidence of the association between long-term air pollution exposure and AF was limited, especially in developing countries. METHODS We performed a nationwide cross-sectional study among 1,374,423 individuals aged ≥35 years from 13 health check-up centers. Using logistic regression models, we assessed the association between long-term exposure to single air pollution and AF prevalence, including particulate matter (PM2.5 and PM10), ozone (O3) and PM2.5 compositions, which were estimated by high-resolution and high-quality spatiotemporal datasets of ground-level air pollutants for China. The quantile g-computation model was used to explore the joint effect of all exposures to air pollution and the contribution of an individual component to the mixture. RESULTS In single-pollutant models, an increase of 10 μg/m3 in PM2.5 (OR 1.031[95%CI 1.010,1.053]) and PM10 (OR = 1.021 [95%CI 1.009,1.033]) was positively associated with AF prevalence. The stratified analyses revealed that these associations were significantly stronger in females, people <65 years old, and those with hypertension and diabetes. In the further exploration of the joint effect of PM2.5 compositions (OR 1.060 [95%CI 1.022,1.101]) per quintile increase in all five PM2.5 components), we found that PM2.5 sulfate contributed the most. CONCLUSIONS These findings provide important evidence for the positive relationship between long-term exposure to air pollution and AF prevalence in China and identify sulfate particles of PM2.5 as having the highest contribution to the overall mixture effects among all PM2.5 chemical constituents.
Collapse
Affiliation(s)
- Tao Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhanpeng Wang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Lijin Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xingyuan Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xiaohui Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Peng Jia
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China; Hubei Luojia Laboratory, Wuhan, China; School of Public Health, Wuhan University, Wuhan, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Huanggang Institute of Translational Medicine, Huanggang, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
19
|
Zhu T, Tang M, Gao M, Bi X, Cao J, Che H, Chen J, Ding A, Fu P, Gao J, Gao Y, Ge M, Ge X, Han Z, He H, Huang RJ, Huang X, Liao H, Liu C, Liu H, Liu J, Liu SC, Lu K, Ma Q, Nie W, Shao M, Song Y, Sun Y, Tang X, Wang T, Wang T, Wang W, Wang X, Wang Z, Yin Y, Zhang Q, Zhang W, Zhang Y, Zhang Y, Zhao Y, Zheng M, Zhu B, Zhu J. Recent Progress in Atmospheric Chemistry Research in China: Establishing a Theoretical Framework for the "Air Pollution Complex". ADVANCES IN ATMOSPHERIC SCIENCES 2023; 40:1-23. [PMID: 37359906 PMCID: PMC10140723 DOI: 10.1007/s00376-023-2379-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/06/2023] [Accepted: 04/10/2023] [Indexed: 06/28/2023]
Abstract
Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the "air pollution complex" was first proposed by Professor Xiaoyan TANG in 1997. For papers published in 2021 on air pollution (only papers included in the Web of Science Core Collection database were considered), more than 24 000 papers were authored or co-authored by scientists working in China. In this paper, we review a limited number of representative and significant studies on atmospheric chemistry in China in the last few years, including studies on (1) sources and emission inventories, (2) atmospheric chemical processes, (3) interactions of air pollution with meteorology, weather and climate, (4) interactions between the biosphere and atmosphere, and (5) data assimilation. The intention was not to provide a complete review of all progress made in the last few years, but rather to serve as a starting point for learning more about atmospheric chemistry research in China. The advances reviewed in this paper have enabled a theoretical framework for the air pollution complex to be established, provided robust scientific support to highly successful air pollution control policies in China, and created great opportunities in education, training, and career development for many graduate students and young scientists. This paper further highlights that developing and low-income countries that are heavily affected by air pollution can benefit from these research advances, whilst at the same time acknowledging that many challenges and opportunities still remain in atmospheric chemistry research in China, to hopefully be addressed over the next few decades.
Collapse
Affiliation(s)
- Tong Zhu
- Peking University, Beijing, 100871 China
| | - Mingjin Tang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 China
| | - Meng Gao
- Hong Kong Baptist University, Hong Kong SAR, China
| | - Xinhui Bi
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Huizheng Che
- Chinese Academy of Meteorological Sciences, Beijing, 100081 China
| | | | - Aijun Ding
- Nanjing University, Nanjing, 210023 China
| | | | - Jian Gao
- Chinese Research Academy of Environmental Sciences, Beijing, 100012 China
| | - Yang Gao
- Ocean University of China, Qingdao, 266100 China
| | - Maofa Ge
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Xinlei Ge
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Zhiwei Han
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Hong He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Ru-Jin Huang
- Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 China
| | - Xin Huang
- Nanjing University, Nanjing, 210023 China
| | - Hong Liao
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Cheng Liu
- University of Science and Technology of China, Hefei, 230026 China
| | - Huan Liu
- Tsinghua University, Beijing, 100084 China
| | - Jianguo Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | | | - Keding Lu
- Peking University, Beijing, 100871 China
| | - Qingxin Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Wei Nie
- Nanjing University, Nanjing, 210023 China
| | - Min Shao
- Jinan University, Guangzhou, 510632 China
| | - Yu Song
- Peking University, Beijing, 100871 China
| | - Yele Sun
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Xiao Tang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Tao Wang
- Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Weigang Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | | | - Zifa Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Yan Yin
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | | | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | - Yanlin Zhang
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Yunhong Zhang
- Beijing Institute of Technology, Beijing, 100081 China
| | - Yu Zhao
- Nanjing University, Nanjing, 210023 China
| | - Mei Zheng
- Peking University, Beijing, 100871 China
| | - Bin Zhu
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Jiang Zhu
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| |
Collapse
|
20
|
Gao J, Wei Y, Zhao H, Liang D, Feng Y, Shi G. The role of source emissions in sulfate formation pathways based on chemical thermodynamics and kinetics model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158104. [PMID: 35987245 DOI: 10.1016/j.scitotenv.2022.158104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Sulfate is a major PM2.5 constituent and poses a significant threat to ecosystems and human health, which has attracted lots of attention to the sulfate formation mechanism. In recent years, there has been great scientific interest in the multiphase oxidation of SO2 in aqueous aerosol particles. Many factors are involved in the reaction process, including precursor SO2, oxidants/catalysts, and aerosol acidity, which are three channels closely related to the source emission. The conjoint analysis of source emissions and sulfate aqueous formation can provide a scientific basis for designing effective strategies, though the related research is extremely limited. Here, we applied an improved solute strength-dependent chemical Thermodynamics & Kinetics model (for aqueous pathway contribution) and the Partial Target Transformation-Positive matrix factor model (for source apportionment) to explore the role of source emission in sulfate aqueous formation. The results indicated H2O2 aqueous oxidation was the dominant pathway (65.9 %), and secondary nitrate source may grow together with sulfate formation from H2O2 pathway. H2O2 and TMI pathways were related to higher SOR (sulfur oxidation rate). TMI pathway was significant in summer (54.6 %) and increased with secondary sources and vehicle exhaust. NO2 pathway was more significant at low secondary source and high coal combustion (higher contribution of NO2 pathway appeared in winter, 24.7 %). While high formation rate of the O3 pathway always occurred at low source levels. Coal combustion and vehicle exhaust showed obvious effects on sulfate aqueous formation. Notably, aerosol acidity is a significant factor related to sources and plays a key role in sulfate formation. The result also suggested aerosol pH may be more important than the amounts of substances involved in the oxidation reaction. The findings in this work can provide useful information for better understanding sulfate aqueous formation and offer a scientific basis for designing strategies for air pollution control and sulfate mitigation.
Collapse
Affiliation(s)
- Jie Gao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yuting Wei
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Huan Zhao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Danni Liang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| |
Collapse
|