1
|
Yang ZC, Peng L, Jing ZB, Wang WL, Cai HY, Jiang YQ, Li LD, Ye B, Wu QY. Superior water disinfection via ozone micro-bubble aeration: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138174. [PMID: 40222060 DOI: 10.1016/j.jhazmat.2025.138174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/16/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Ozone has been widely applied in water disinfection because of its high oxidation potential (2.07 V). However, slow ozone gas-liquid mass transfer results in high ozone requirements and operating costs. Micro-bubble aeration can effectively increase the ozone mass transfer efficiency while reducing ozone dose. Here, we used a ceramic ultrafiltration membrane for ozone micro-bubble aeration. The disinfection performance and mechanism of ozone micro-bubble aeration towards pathogenic microorganisms were studied. Micro-bubble aeration reduced the total ozone dose by > 60 % for 6-log inactivation of Escherichia coli and MS2 coliphage. It also improved the disinfection efficiencies for Gram-positive bacteria by 3-log. Both ozone and •OH oxidation was enhanced via micro-bubble aeration because of efficient gas-liquid transfer. The equilibrium aquatic ozone concentration increased by 1.38 times and the •OH yield increased by 2.40 times compared with those with milli-bubble aeration. Consequently, ozone micro-bubble aeration caused severe membrane damage to bacterial cells and fragmented the bacterial DNA, which caused a rapid decrease in the bacterial metabolic activity (> 80 %). This study demonstrates that ozone micro-bubble aeration can boost broad spectrum disinfection and effectively reduce the ozone dose, which will facilitate the application of ozonation with a lower cost and reduced environmental impact.
Collapse
Affiliation(s)
- Zi-Chen Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Lu Peng
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Zi-Bo Jing
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Han-Ying Cai
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yi-Qing Jiang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Long-Di Li
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Bei Ye
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
2
|
Li F, Dong C, Chen T, Yu S, Chen C. Current Advances and Future Prospects of Bulk and Microfluidic-Enabled Electroporation Systems. Biotechnol Bioeng 2025; 122:1347-1365. [PMID: 40042165 DOI: 10.1002/bit.28965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Reversible electroporation (EP) is a pivotal biophysical technology that leverages pulsed electric fields to enhance the permeability of cell membranes, thereby facilitating the introduction of foreign material into cells. In this review, we provide an overview of bulk electroporators and microfluidic-enabled EP systems, focusing on their controversial points of mechanisms, architectures, and parameter settings. Bulk electroporators have been extensively commercialized with settled form including pulse generator and accessories (i.e., EP cuvette and plates). Researchers have made efforts to increase the throughput and simplify the operation of bulk EP systems. Additionally, microfluidics has emerged as a promising technology for optimizing EP parameters and enhancing the performance. Given the significant structural differences between these two types of EP systems, their operating conditions such as temperature, voltage, and pulse parameters are discussed. Research tend to operate single cells under more concentrated electric field induced by low voltage, enabling a quantitative exogenous materials delivery and numerical simulation. However, due to cost constraints and properties of materials utilized in laboratories, the commercialization of laboratory prototypes has been impeded. Furthermore, the technological limitations, current commercialization status, and development trends have been examined.
Collapse
Affiliation(s)
- Fei Li
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Digifluidic Biotech Inc., Zhuhai, China
| | - Cheng Dong
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
- School of Intelligent Systems Science and Engineering/JNU-Industry School of Artificial Intelligence, Jinan University, Zhuhai, China
| | | | - Siming Yu
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Chunzhao Chen
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai, China
| |
Collapse
|
3
|
Wang C, Wang L, Liu M, Bi W, Xu Y. High-Efficiency and Stable Cathode Disinfection in Real Water Systems via Convenient In Situ Prepared Copper-Cuprous Oxide Nanowires. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19471-19481. [PMID: 40101240 DOI: 10.1021/acsami.5c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
As global pollution intensifies, water contamination─a critical issue for both human and ecological survival─has become increasingly severe. Consequently, there is an urgent need for a rapid and stable water disinfection method to ensure clean water. In this study, high-surface-area Cu composite films were first deposited on a conductive substrate through an in situ electrodeposition process. The derived copper nanowire (M-Cu/Cu2O NWs) electrodes were then synthesized by controlled in situ growth and electrochemical reduction-decomposition of the Cu composite films. The working electrode was then placed on the cathode for water disinfection. The results demonstrated excellent and stable antimicrobial performance against Escherichia coli, Staphylococcus aureus, and Citrobacter freundii. The in situ reduction method for preparing derived copper electrodes can help prevent reoxidation during synthesis, promote the formation of an excellent crystal structure, and reduce grain boundaries and defects, thereby enhancing the mechanical strength and chemical stability of the Cu/Cu2O nanowires. Furthermore, the cathodic environment of the working electrode significantly reduces metal corrosion caused by oxidation, further enhancing its durability. The sterilization mechanism is the membrane's electroporation caused by nanowires' tip effect. It has been demonstrated that the M-Cu/Cu2O NWs cathode electrode can continuously maintain a bacterial inactivation rate above 90% for 30 days at an 8 V working potential. Due to the simple electrode fabrication method, stable disinfection efficiency, and significant reduction in copper ion release, which minimizes secondary environmental contamination, this system holds great potential for safe and stable water treatment applications.
Collapse
Affiliation(s)
- Chuanqi Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Lupeng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Miao Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Weilin Bi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Peng L, Zhu H, Yang ZC, Cai X, Jing Z, Wang W, Wu QY. Coating Nanowires with Straw Carbon Enhances Their Bactericidal Performance and Enables Efficient Water Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4756-4764. [PMID: 39994997 DOI: 10.1021/acs.est.4c12258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Bacterial contamination in water remains a significant public health threat, and it is crucial to develop disinfection methods that are both safe and effective. In this study, we developed straw carbon-coated nanowires (SC/NWs) as an effective bactericidal material for water disinfection. The thermal decomposition of rice straw produced an sp2-structured, amorphous carbon layer with oxygen-containing functional groups and hetero atoms on its surface. The SC coating enhanced the bactericidal performance of Cu(OH)2 NWs by more than 3-log, achieving >6-log inactivation of Escherichia coli at a flux of 2000 L m-2 h-1. The bacteria exposed to SC/NWs suffered extensive membrane disruption and lost cellular integrity. In contrast, the uncoated NWs caused limited damage to the bacteria. Molecular dynamics simulations revealed that the SC coating had strong van der Waals and electrostatic interactions with bacterial membranes, and these attractive forces led to efficient rupture of bacteria during water flow. The SC/NWs were used to disinfect real water samples, including tap water and reclaimed water, with >6-log reductions in bacterial counts during storage. Importantly, no bacterial reactivation was observed after 24 h of storage, which indicated that the SC/NWs caused irreversible membrane damage to the bacteria. This work presents a cost-effective, sustainable solution for developing mechano-bactericidal materials tailored to water disinfection.
Collapse
Affiliation(s)
- Lu Peng
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Haojie Zhu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zi-Chen Yang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xinhao Cai
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zibo Jing
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wenlong Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
5
|
Jeon J, Kang D, Kim SW. Advances in Triboelectric Nanogenerators for Microbial Disinfection. MICROMACHINES 2025; 16:281. [PMID: 40141892 PMCID: PMC11946175 DOI: 10.3390/mi16030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025]
Abstract
The global COVID-19 pandemic has highlighted the pivotal role of microbial disinfection technologies, driving the demand for innovative, efficient, and sustainable solutions. Triboelectric technology, known for efficiently converting ambient mechanical energy into electrical energy, has emerged as a promising candidate to address these needs. Self-powered electro-based microbial disinfection using triboelectric nanogenerators (TENGs) has emerged as a promising solution. TENGs have demonstrated effective disinfection capabilities in various settings, including water, air, surfaces, and wounds. This review explores the advancements in TENG-based microbial disinfection, highlighting its mechanisms and applications. By utilizing triboelectric technology, it provides comprehensive insights into the development of sustainable and efficient solutions for microbial control across diverse environments.
Collapse
Affiliation(s)
- Jinyoung Jeon
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Human-Oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Donghyeon Kang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Human-Oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Human-Oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Wu X, Wang X, Wu Y, Xu H, Li Z, Hong R, Rigby K, Wu Z, Kim JH. Bilayer electrified-membrane with pair-atom tin catalysts for near-complete conversion of low concentration nitrate to dinitrogen. Nat Commun 2025; 16:1122. [PMID: 39875403 PMCID: PMC11775098 DOI: 10.1038/s41467-025-56102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Discharge of wastewater containing nitrate (NO3-) disrupts aquatic ecosystems even at low concentrations. However, selective and rapid reduction of NO3- at low concentration to dinitrogen (N2) is technically challenging. Here, we present an electrified membrane (EM) loaded with Sn pair-atom catalysts for highly efficient NO3- reduction to N2 in a single-pass electrofiltration. The pair-atom design facilitates coupling of adsorbed N intermediates on adjacent Sn atoms to enhance N2 selectivity, which is challenging with conventional fully-isolated single-atom catalyst design. The EM ensures sufficient exposure of the catalysts and intensifies the catalyst interaction with NO3- through mass transfer enhancement to provide more N intermediates for N2 coupling. We further develop a reduced titanium dioxide EM as the anode to generate free chlorines for fully oxidizing the residual ammonia (<1 mg-N L-1) to N2. The sequential cathode-to-anode electrofiltration realizes near-complete removal of 10 mg-N L-1 NO3- and ~100% N2 selectivity with a water resident time on the order of seconds. Our findings advance the single-atom catalyst design for NO3- reduction and provide a practical solution for NO3- contamination at low concentrations.
Collapse
Affiliation(s)
- Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Xiaoxiong Wang
- Institute for Ocean Engineering & Center of Double Helix & Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| | - Yunshuo Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Huimin Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Zhe Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Rongrong Hong
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Kali Rigby
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
- School of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Li R, Dai H, Wang W, Peng R, Yu S, Zhang X, Huo ZY, Yuan Q, Luo Y. Local Electric Field-Incorporated In-Situ Copper Ions Eliminating Pathogens and Antibiotic Resistance Genes in Drinking Water. Antibiotics (Basel) 2024; 13:1161. [PMID: 39766551 PMCID: PMC11672500 DOI: 10.3390/antibiotics13121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Pathogen inactivation and harmful gene destruction from water just before drinking is the last line of defense to protect people from waterborne diseases. However, commonly used disinfection methods, such as chlorination, ultraviolet irradiation, and membrane filtration, experience several challenges such as continuous chemical dosing, the spread of antibiotic resistance genes (ARGs), and intensive energy consumption. METHODS Here, we perform a simultaneous elimination of pathogens and ARGs in drinking water using local electric fields and in-situ generated trace copper ions (LEF-Cu) without external chemical dosing. A 100-μm thin copper wire placed in the center of a household water pipe can generate local electric fields and trace copper ions near its surface after an external low voltage is applied. RESULTS The local electric field rapidly damages the outer structure of microorganisms through electroporation, and the trace copper ions can effectively permeate the electroporated microorganisms, successfully damaging their nucleic acids. The LEF-Cu disinfection system achieved complete inactivation (>6 log removal) of Escherichia coli O157:H7, Pseudomonas aeruginosa PAO1, and bacteriophage MS2 in drinking water at 2 V for 2 min, with low energy consumption (10-2 kWh/m3). Meanwhile, the system effectively damages both intracellular (0.54~0.64 log) and extracellular (0.5~1.09 log) ARGs and blocks horizontal gene transfer. CONCLUSIONS LEF-Cu disinfection holds promise for preventing horizontal gene transfer and providing safe drinking water for household applications.
Collapse
Affiliation(s)
- Ruiqing Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (R.L.); (W.W.); (R.P.); (X.Z.)
| | - Haojie Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;
| | - Wei Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (R.L.); (W.W.); (R.P.); (X.Z.)
| | - Rulin Peng
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (R.L.); (W.W.); (R.P.); (X.Z.)
| | - Shenbo Yu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; (S.Y.); (Y.L.)
| | - Xueying Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (R.L.); (W.W.); (R.P.); (X.Z.)
| | - Zheng-Yang Huo
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Qingbin Yuan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (R.L.); (W.W.); (R.P.); (X.Z.)
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; (S.Y.); (Y.L.)
| | - Yi Luo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; (S.Y.); (Y.L.)
| |
Collapse
|
8
|
Zhou C, Zhang Y, Xie C, Bai J, Li J, Zhang H, Zhu H, Long M, Zhou B, Zheng G. Efficient Electroreduction of Low Nitrate Concentration via Nitrate Self-Enrichment and Active Hydrogen Inducement on the Ce(IV)-Co 3O 4 Cathode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14940-14948. [PMID: 39105779 DOI: 10.1021/acs.est.4c06263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Low concentrations of nitrate (NO3-) widely exist in wastewater, post-treated wastewater, and natural environments; its further disposal is a challenge but meaningful for its discharge goals. Electroreduction of NO3- is a promising method that allows to eliminate NO3- and even generate higher-value NH3. However, the massive side reaction of hydrogen evolution has raised great obstacles in the electroreduction of low concentrations of NO3-. Herein, we present an efficient electroreduction method for low or even ultralow concentrations of NO3- via NO3- self-enrichment and active hydrogen (H*) inducement on the Ce(IV)-Co3O4 cathode. The key mechanism is that the strong oxytropism of Ce(IV) in Co3O4 resulted in two changes in structures, including loose nanoporous structures with copious dual adsorption sites of Ce-Co showing strong self-enrichment of NO3- and abundant oxygen vacancies (Ovs) inducing substantial H*. Ultimately, the bifunctional role synergistically promoted the selective conversion of NH3 rather than H2. As a result, Ce(IV)-Co3O4 demonstrated a NO3- self-enrichment with a 4.3-fold up-adsorption, a 7.5-fold enhancement of NH3 Faradic efficiency, and a 93.1% diminution of energy consumption when compared to Co3O4, substantially exceeding other reported electroreduction cathodes for NO3- concentrations lower than 100 mg·L-1. This work provides an effective treatment method for low or even ultralow concentrations of NO3-.
Collapse
Affiliation(s)
- Changhui Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaoyue Xie
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Bai
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinhua Li
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haichuan Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui 230026, China
| | - Hong Zhu
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Wang T, Xie X. Tuning the Locally Enhanced Electric Field Treatment (LEEFT) between Electrophysical and Electrochemical Mechanisms for Bacteria Inactivation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14875-14885. [PMID: 39105772 PMCID: PMC11339917 DOI: 10.1021/acs.est.4c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Efficient drinking water disinfection methods are critical for public health. Locally enhanced electric field treatment (LEEFT) is an antimicrobial method that uses sharp structures, like metallic nanowires, to enhance the electric field at tips and cause bacteria inactivation. Electroporation is the originally designed mechanism of LEEFT. Although oxidation is typically undesired due to byproduct generation and electrode corrosion, it can enhance the overall disinfection efficiency. In this work, we conduct an operando investigation of LEEFT, in which we change the electrical parameters to tune the mechanisms between electrophysical electroporation and electrochemical oxidation. Pure electroporation (i.e., without detectable oxidation) could be achieved under a duty cycle of ≤0.1% and a pulse width of ≤2 μs. Applying 2 μs pulses at 7-8 kV/cm and 0.1% duty cycle results in 80-100% bacteria inactivation with pure electroporation. A higher chance of oxidation is found with a higher duty cycle and a longer pulse width, where the antimicrobial efficiency could also be enhanced. For water with a higher conductivity, a higher antimicrobial efficiency can be achieved under the same treatment conditions, and electrochemical reactions could be induced more easily. The findings shown in this work improve the fundamental understanding of LEEFT and help optimize the performance of LEEFT in real applications.
Collapse
Affiliation(s)
- Ting Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xing Xie
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Institute
for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Suh IY, Huo ZY, Jung JH, Kang D, Lee DM, Kim YJ, Kim B, Jeon J, Zhao P, Shin J, Kim S, Kim SW. Highly efficient microbial inactivation enabled by tunneling charges injected through two-dimensional electronics. SCIENCE ADVANCES 2024; 10:eadl5067. [PMID: 38701201 PMCID: PMC11067992 DOI: 10.1126/sciadv.adl5067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Airborne pathogens retain prolonged infectious activity once attached to the indoor environment, posing a pervasive threat to public health. Conventional air filters suffer from ineffective inactivation of the physics-separated microorganisms, and the chemical-based antimicrobial materials face challenges of poor stability/efficiency and inefficient viral inactivation. We, therefore, developed a rapid, reliable antimicrobial method against the attached indoor bacteria/viruses using a large-scale tunneling charge-motivated disinfection device fabricated by directly dispersing monolayer graphene on insulators. Free charges can be stably immobilized under the monolayer graphene through the tunneling effect. The stored charges can motivate continuous electron loss of attached microorganisms for accelerated disinfection, overcoming the diffusion limitation of chemical disinfectants. Complete (>99.99%) and broad-spectrum disinfection was achieved <1 min of attachment to the scaled-up device (25 square centimeters), reliably for 72 hours at high temperature (60°C) and humidity (90%). This method can be readily applied to high-touch surfaces in indoor environments for pathogen control.
Collapse
Affiliation(s)
- In-Yong Suh
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Zheng-Yang Huo
- School of Environment and Natural Resources, Institute of Ecological Civilization, Renmin University of China, Beijing 100872, PR China
| | - Jae-Hwan Jung
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Donghyeon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Dong-Min Lee
- Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Jun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Bosung Kim
- Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinyoung Jeon
- Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Pin Zhao
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Jeonghune Shin
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research and Development Center, SEMS CO., Ltd., Suwon 16229, Republic of Korea
| | - SeongMin Kim
- Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Deng R, He Q, Yang D, Chen M, Chen Y. Dielectric barrier discharge plasma promotes disinfection-residual-bacteria inactivation via electric field and reactive species. WATER RESEARCH 2024; 254:121386. [PMID: 38457942 DOI: 10.1016/j.watres.2024.121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/02/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
Traditional disinfection processes face significant challenges such as health and ecological risks associated with disinfection-residual-bacteria due to their single mechanism of action. Development of new disinfection processes with composite mechanisms is therefore urgently needed. In this study, we employed liquid ground-electrode dielectric barrier discharge (lgDBD) to achieve synergistic sterilization through electric field electroporation and reactive species oxidation. At a voltage of 12 kV, Pseudomonas fluorescens (ultraviolet and ozone-resistant) and Bacillus subtilis (chlorine-resistant) were completely inactivated within 8 and 6 min, respectively, surpassing a 7.0-log reduction. The lgDBD process showed good disinfection performance across a wide range of pH values and different practical water samples. Staining experiments suggest that cellular membrane damage contributes to this inactivation. In addition, we used a two-dimensional parallel streamer solver with kinetics code to fashion a representative model of the basic discharge unit, and discovered the presence of a persistent electric field during the discharge process with a peak value of 2.86 × 106 V/m. Plasma discharge generates excited state species such as O(1D) and N2(C3Πu), and further forms reactive oxygen and nitrogen species at the gas-liquid interface. The physical process, which is driven by electric field-induced cell membrane electroporation, synergizes with the bactericidal effects of reactive oxygen and nitrogen species to provide effective disinfection. Adopting the lgDBD process enhances sterilization efficiency and adaptability, underscoring its potential to revolutionize physicochemical synergistic disinfection practices.
Collapse
Affiliation(s)
- Ruoyu Deng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Dongxu Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Mengli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
12
|
Li J, Yu L, Liu M, Xie Y, Yu Y. Aeration-driven piezoelectric activation of peroxymonosulfate achieves effective mitigation of antibiotic resistance dissemination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123687. [PMID: 38458515 DOI: 10.1016/j.envpol.2024.123687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
The antibiotic resistance dissemination in water has become a globally concerned issue, and the wastewater discharge, especially medical wastewater, is considered as one of the most important sources for antibiotic resistance genes (ARGs). However, the effectiveness of current disinfection techniques in the ARGs reduction still remains controversial. In this study, a novel aeration-driven piezoelectric peroxymonosulfate (PMS) activation system using oxygen-vacancy engineered BaTiO3 (BTO) was developed to effectively eliminate antibiotic resistant bacteria (ARB) and ARGs from water. The ARB can be completely inactivated and ∼3.0 logs of ARGs can be removed by the PMS/BTO/aeration system within 1 h, and the spent BTO nanoparticles can be facilely reused after simple rinsing. The aeration can not only provide the driving force for the piezocatalytic process but also more dissolved oxygen in water that played an important role in the generation of free radicals. The radical quenching experiments and electron spin-resonance (ESR) confirmed that all the free radicals, including singlet oxygen (1O2), hydroxyl radical (OH•), sulfate radical (SO4•-) and superoxide radical (•O2-), contributed to the ARGs reduction and 1O2 radicals were identified as the dominant active species. This work provides a high-efficiency and energy saving approach for the mitigation of ARGs from water as the universal use of aeration in water treatment processes and the good reusability of BTO nanoparticles.
Collapse
Affiliation(s)
- Jingwen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| | - Ling Yu
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Mengxiao Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| | - Yiqiao Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| | - Yang Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
13
|
Gao J, Ma Q, Zhang Y, Xue S, Young J, Zhao M, Ren ZJ, Kim JH, Zhang W. Coupling Curvature and Hydrophobicity: A Counterintuitive Strategy for Efficient Electroreduction of Nitrate into Ammonia. ACS NANO 2024; 18:10302-10311. [PMID: 38537206 DOI: 10.1021/acsnano.4c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The electrochemical upcycling of nitrate (NO3-) to ammonia (NH3) holds promise for synergizing both wastewater treatment and NH3 synthesis. Efficient stripping of gaseous products (NH3, H2, and N2) from electrocatalysts is crucial for continuous and stable electrochemical reactions. This study evaluated a layered electrocatalyst structure using copper (Cu) dendrites to enable a high curvature and hydrophobicity and achieve a stratified liquid contact at the gas-liquid interface of the electrocatalyst layer. As such, gaseous product desorption or displacement from electrocatalysts was enhanced due to the separation of a wetted reaction zone and a nonwetted zone for gas transfer. Consequently, this electrocatalyst structure yielded a 2.9-fold boost in per-active-site activity compared with that with a low curvature and high hydrophilic counterpart. Moreover, a NH3 Faradaic efficiency of 90.9 ± 2.3% was achieved with nearly 100% NO3- conversion. This high-curvature hydrophobic Cu dendrite was further integrated with a gas-extraction membrane, which demonstrated a comparable NH3 yield from the real reverse osmosis retentate brine.
Collapse
Affiliation(s)
- Jianan Gao
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Qingquan Ma
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yihan Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Shan Xue
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Joshua Young
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mengqiang Zhao
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
14
|
Li Z, Yang D, Li S, Yang L, Yan W, Xu H. Advances on electrochemical disinfection research: Mechanisms, influencing factors and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169043. [PMID: 38070567 DOI: 10.1016/j.scitotenv.2023.169043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Disinfection, a vital barrier against pathogenic microorganisms, is crucial in halting the spread of waterborne diseases. Electrochemical methods have been extensively researched and implemented for the inactivation of pathogenic microorganisms from water and wastewater, primarily owing to their simplicity, efficiency, and eco-friendliness. This review succinctly outlined the core mechanisms of electrochemical disinfection (ED) and systematically examined the factors influencing its efficacy, including anode materials, system conditions, and target species. Additionally, the practical application of ED in water and wastewater treatment was comprehensively reviewed. Case studies involving various scenarios such as drinking water, hospital wastewater, black water, rainwater, and ballast water provided concrete instances of the expansive utility of ED. Finally, coupling ED with other technologies and the resulting synergies were introduced as pivotal foundations for subsequent engineering advancements.
Collapse
Affiliation(s)
- Zhen Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311200, China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311200, China.
| |
Collapse
|
15
|
Jarin M, Wang T, Xie X. Operando investigation of the synergistic effect of electric field treatment and copper for bacteria inactivation. Nat Commun 2024; 15:1345. [PMID: 38355666 PMCID: PMC10867087 DOI: 10.1038/s41467-024-45587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
As the overuse of chemicals in our disinfection processes becomes an ever-growing concern, alternative approaches to reduce and replace the usage of chemicals is warranted. Electric field treatment has shown promising potential to have synergistic effects with standard chemical-based methods as they both target the cell membrane specifically. In this study, we use a lab-on-a-chip device to understand, observe, and quantify the synergistic effect between electric field treatment and copper inactivation. Observations in situ, and at a single cell level, ensure us that the combined approach has an enhancement effect leading more bacteria to be weakened by electric field treatment and susceptible to inactivation by copper ion permeation. The synergistic effects of electric field treatment and copper can be visually concluded here, enabling the further study of this technology to optimally develop, mature, and scale for its various applications in the future.
Collapse
Affiliation(s)
- Mourin Jarin
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ting Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
16
|
Haberl Meglič S, Slokar D, Miklavčič D. Inactivation of antibiotic-resistant bacteria Escherichia coli by electroporation. Front Microbiol 2024; 15:1347000. [PMID: 38333581 PMCID: PMC10850576 DOI: 10.3389/fmicb.2024.1347000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction In modern times, bacterial infections have become a growing problem in the medical community due to the emergence of antibiotic-resistant bacteria. In fact, the overuse and improper disposal of antibiotics have led to bacterial resistance and the presence of such bacteria in wastewater. Therefore, it is critical to develop effective strategies for dealing with antibiotic-resistant bacteria in wastewater. Electroporation has been found to be one of the most promising complementary techniques for bacterial inactivation because it is effective against a wide range of bacteria, is non-chemical and is highly optimizable. Many studies have demonstrated electroporation-assisted inactivation of bacteria, but rarely have clinical antibiotics or bacteria resistant to these antibiotics been used in the study. Therefore, the motivation for our study was to use a treatment regimen that combines antibiotics and electroporation to inactivate antibiotic-resistant bacteria. Methods We separately combined two antibiotics (tetracycline and chloramphenicol) to which the bacteria are resistant (with a different resistance mode) and electric pulses. We used three different concentrations of antibiotics (40, 80 and 150 µg/ml for tetracycline and 100, 500 and 2000 µg/ml for chloramphenicol, respectively) and four different electric field strengths (5, 10, 15 and 20 kV/cm) for electroporation. Results and discussion Our results show that electroporation effectively enhances the effect of antibiotics and inactivates antibiotic-resistant bacteria. The inactivation rate for tetracycline or chloramphenicol was found to be different and to increase with the strength of the pulsed electric field and/or the concentration of the antibiotic. In addition, we show that electroporation has a longer lasting effect (up to 24 hours), making bacteria vulnerable for a considerable time. The present work provides new insights into the use of electroporation to inactivate antibiotic-resistant bacteria in the aquatic environment.
Collapse
Affiliation(s)
- Saša Haberl Meglič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Dejan Slokar
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
17
|
Qiao M, Zhang J, Mao R, Zhao X. Inactivation of Escherichia Coli by mixed-valent nanoparticles in-situ generated during Fe electrocoagulation. WATER RESEARCH 2023; 247:120818. [PMID: 37925859 DOI: 10.1016/j.watres.2023.120818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Electrocoagulation (EC) is promising for the removal of chemical and microbial contaminants. Although the removal of pathogens from wastewater is efficient by conventional Fe-EC in the presence of dissolved oxygen (DO), the non-inactivated pathogens in the sediment still have a risk. Herein, the inactivation of Escherichia coli (E. coli) with the mixed-valent iron nanoparticles, magnetite and green rust (GR), in-situ generated from Fe-EC process in the absence of DO was investigated. The inactivation efficiency was significantly higher with magnetite (4.7 log cells) and GR (3.2 log cells) compared with FeOOH (0.7-1.7 log cells) generated at 50 mA in 10 min. The unstable in-situ generated magnetite with positive charges was prone to adsorb onto E. coli, damaging the cell membrane, inactivating the bacteria. The unstable in-situ generated GR was prone to coagulate with E. coli, delivering Fe2+ into the cell and inducing the generation of endogenous ROS, inactivating the bacteria. Fe-EC in the absence of DO was proved to be efficient for the inactivation of E. coli (4.2-4.3 log cells) in real wastewater. These findings identified the ignored inactivation effect and mechanism of E. coli with magnetite and GR generated in situ from Fe-EC process, which will provide theoretical support for real applications.
Collapse
Affiliation(s)
- Meng Qiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junke Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ran Mao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
18
|
Dong L, Cui S, Sun X, Liu J, Lv G, Chen S. Copper sulfides (Cu 7S 4) nanowires with Ag anchored in N-doped carbon layers optimize interfacial charge transfer for rapid water sterilization. J Colloid Interface Sci 2023; 654:1209-1219. [PMID: 39491910 DOI: 10.1016/j.jcis.2023.10.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
There are many methods of water disinfection, and how to realize low energy consumption, high efficiency and safety sterilization has always been a research hotspot. In this work, Cu7S4 nanowires were grown on copper foam, and coated with N-doped carbon layer and Ag particles, which not only improved the conductivity and local field enhancement regions of the material, but also improved the durability and mechanical stability of Cu7S4. DFT (Density functional theory) calculation shows that different kinds of N doping make the electron difference density and work function of the surrounding C different, which leads to high carrier transport capacity at the interface, and Ag anchored in N-doped carbon films can adsorb O2. The band gap of the material is 2.12 eV, and the material has the potential to generate superoxide anion under energy excitation. Under the condition of 6 V voltage and 1000 mL min-1 water flow rate, the long-term water filtration sterilization of high-concentration bacteria can be realized, and the removal efficiency can still reach 99% after 8 h continuous treatment. This work has great application prospects for the purification of highly polluted water in the future.
Collapse
Affiliation(s)
- Liting Dong
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shaogang Cui
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jianhua Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Gaojian Lv
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
19
|
Zhang S, Wang N, Zhang Q, Guan R, Qu Z, Sun L, Li J. The Rise of Electroactive Materials in Face Masks for Preventing Virus Infections. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48839-48854. [PMID: 37815875 DOI: 10.1021/acsami.3c10465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Air-transmitted pathogens may cause severe epidemics, posing considerable threats to public health and safety. Wearing a face mask is one of the most effective ways to prevent respiratory virus infection transmission. Especially since the new coronavirus pandemic, electroactive materials have received much attention in antiviral face masks due to their highly efficient antiviral capabilities, flexible structural design, excellent sustainability, and outstanding safety. This review first introduces the mechanism for preventing viral infection or the inactivation of viruses by electroactive materials. Then, the applications of electrostatic-, conductive-, triboelectric-, and microbattery-based materials in face masks are described in detail. Finally, the problems of various electroactive antiviral materials are summarized, and the prospects for their future development directions are discussed. In conclusion, electroactive materials have attracted great attention for antiviral face masks, and this review will provide a reference for materials scientists and engineers in antiviral materials and interfaces.
Collapse
Affiliation(s)
- Shaohua Zhang
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Na Wang
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, Qingdao 266071, People's Republic of China
| | - Qian Zhang
- Department of Respirology, Qingdao Women and Children's Hospital, Qingdao 266034, People's Republic of China
| | - Renzheng Guan
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Zhenghai Qu
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Lirong Sun
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jiwei Li
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, Qingdao 266071, People's Republic of China
| |
Collapse
|
20
|
Peng L, Zhu H, Wang H, Guo Z, Wu Q, Yang C, Hu HY. Hydrodynamic tearing of bacteria on nanotips for sustainable water disinfection. Nat Commun 2023; 14:5734. [PMID: 37714847 PMCID: PMC10504294 DOI: 10.1038/s41467-023-41490-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
Water disinfection is conventionally achieved by oxidation or irradiation, which is often associated with a high carbon footprint and the formation of toxic byproducts. Here, we describe a nano-structured material that is highly effective at killing bacteria in water through a hydrodynamic mechanism. The material consists of carbon-coated, sharp Cu(OH)2 nanowires grown on a copper foam substrate. We show that mild water flow (e.g. driven from a storage tank) can efficiently tear up bacteria through a high dispersion force between the nanotip surface and the cell envelope. Bacterial cell rupture is due to tearing of the cell envelope rather than collisions. This mechanism produces rapid inactivation of bacteria in water, and achieved complete disinfection in a 30-day field test. Our approach exploits fluidic energy and does not require additional energy supply, thus offering an efficient and low-cost system that could potentially be incorporated in water treatment processes in wastewater facilities and rural communities.
Collapse
Affiliation(s)
- Lu Peng
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Haojie Zhu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Haobin Wang
- School of Environment, Tsinghua University, Beijing, China
| | - Zhenbin Guo
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Institute of Semiconductor Manufacturing Research, Shenzhen University, Shenzhen, China
| | - Qianyuan Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| | - Cheng Yang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| | - Hong-Ying Hu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
- School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
21
|
Huo ZY, Yang Y, Jeong JM, Wang X, Zhang H, Wei M, Dai K, Xiong P, Kim SW. Self-Powered Disinfection Using Triboelectric, Conductive Wires of Metal-Organic Frameworks. NANO LETTERS 2023; 23:3090-3097. [PMID: 36802718 DOI: 10.1021/acs.nanolett.2c04391] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Efficient water disinfection is vitally needed in rural and disaster-stricken areas lacking power supplies. However, conventional water disinfection methods strongly rely on external chemical input and reliable electricity. Herein, we present a self-powered water disinfection system using synergistic hydrogen peroxide (H2O2) assisted electroporation mechanisms driven by triboelectric nanogenerators (TENGs) that harvest electricity from the flow of water. The flow-driven TENG, assisted by power management systems, generates a controlled output with aimed voltages to drive a conductive metal-organic framework nanowire array for effective H2O2 generation and electroporation. The injured bacteria caused by electroporation can be further damaged by facile diffused H2O2 molecules at high throughput. A self-powered disinfection prototype enables complete disinfection (>99.9999% removal) over a wide range of flows up to 3.0 × 104 L/(m2 h) with low water flow thresholds (200 mL/min; ∼20 rpm). This rapid, self-powered water disinfection method is promising for pathogen control.
Collapse
Affiliation(s)
- Zheng-Yang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, People's Republic of China
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU) Suwon 16419, Republic of Korea
| | - Yuxin Yang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Jang-Mook Jeong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU) Suwon 16419, Republic of Korea
| | - Xiaoxiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - He Zhang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Mingdeng Wei
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou 350002, People's Republic of China
| | - Keren Dai
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU) Suwon 16419, Republic of Korea
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Peixun Xiong
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou 350002, People's Republic of China
| | - Sang-Woo Kim
- Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
22
|
Wei S, Chen T, Hou H, Xu Y. Recent Advances in Electrochemical Sterilization. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
23
|
Zhou J, Hung YC, Xie X. Application of electric field treatment (EFT) for microbial control in water and liquid food. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130561. [PMID: 37055970 DOI: 10.1016/j.jhazmat.2022.130561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 06/19/2023]
Abstract
Water disinfection and food pasteurization are critical to reducing waterborne and foodborne diseases, which have been a pressing public health issue globally. Electrified treatment processes are emerging and have become promising alternatives due to the low cost of electricity, independence of chemicals, and low potential to form by-products. Electric field treatment (EFT) is a physical pathogen inactivation approach, which damages cell membrane by irreversible electroporation. EFT has been studied for both water disinfection and food pasteurization. However, no study has systematically connected the two fields with an up-to-date review. In this article, we first provide a comprehensive background of microbial control in water and food, followed by the introduction of EFT. Subsequently, we summarize the recent EFT studies for pathogen inactivation from three aspects, the processing parameters, its efficacy against different pathogens, and the impact of liquid properties on the inactivation performance. We also review the development of novel configurations and materials for EFT devices to address the current challenges of EFT. This review introduces EFT from an engineering perspective and may serve as a bridge to connect the field of environmental engineering and food science.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yen-Con Hung
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, GA, USA
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
24
|
Misra U, Dixit N, Singh SP. Effect of Laser Parameters on Laser-Induced Graphene Filter Fabrication and Its Performance for Desalination and Water Purification. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7899-7910. [PMID: 36748439 DOI: 10.1021/acsami.2c17106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Laser-induced graphene (LIG) is a low-cost, chemical-free single-step fabrication process and has shown its potential in water treatment, electronics, and sensing. LIG fabrication optimization is mostly explored for dense polyimide (PI) polymers. However, LIG-based filters and membranes for water treatment need to be porous, and additional steps are required to get porous surfaces from PI-based surfaces. Polyethersulfone (PES) porous membranes are cost-effective and are common in water purification as compared to PI; further, the optimization of LIG fabrication on PES-based porous membranes is not explored. So, this study demonstrated the fabrication, optimization, and characterization of LIG with different laser parameters such as power, speed, image density (ID), focusing, laser platforms, and membrane support layer effect on porous PES commercial (UP010) and lab-casted 15% PES (PES15) membranes. The performance of optimized LIG filters was tested for interfacial evaporation (IE)-based desalination in single and stacked layer configuration and water purification applications such as dye removal and disinfection. IE was done in Joule heating (JH) and solar heating (SH) modes, and the UP010-ID7 LIG filter showed the highest JH evaporation rates of ∼1.1, 1.8, and 2.82 kg m-2 h-1 in single, double, and triple stacked configurations, respectively. Using a JH IE setup, the best-performing UP010-ID7 LIG filters have also shown ∼100% removal of methylene blue dye from the contaminated water. Furthermore, all LIG filters showed a complete 6-log bacterial inhibition at the 5 V filtration experiments; at 2.5 V, the optimized LIG filters showed a higher removal than the non-optimized filters. Additionally, the LIGs obtained with the aluminum platform were the best quality. This work demonstrates that laser power, ID, platform, and membrane support are critical parameters for the best-performing PES-LIG filters, and they can be effectively utilized to fabricate PES-based LIG porous surfaces for various energy, environmental, and catalysis applications.
Collapse
Affiliation(s)
- Utkarsh Misra
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai400076, India
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai400076, India
| | - Nandini Dixit
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai400076, India
| | - Swatantra P Singh
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai400076, India
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai400076, India
| |
Collapse
|
25
|
Forés E, Mejías-Molina C, Ramos A, Itarte M, Hundesa A, Rusiñol M, Martínez-Puchol S, Esteve-Bricullé P, Espejo-Valverde A, Sirés I, Calvo M, Araujo RM, Girones R. Evaluation of pathogen disinfection efficiency of electrochemical advanced oxidation to become a sustainable technology for water reuse. CHEMOSPHERE 2023; 313:137393. [PMID: 36442679 DOI: 10.1016/j.chemosphere.2022.137393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Water treatment and reuse is gaining acceptance as a strategy to fight against water contamination and scarcity, but it usually requires complex treatments to ensure safety. Consequently, the electrochemical advanced processes have emerged as an effective alternative for water remediation. The main objective here is to perform a systematic study that quantifies the efficiency of a laboratory-scale electrochemical system to inactivate bacteria, bacterial spores, protozoa, bacteriophages and viruses in synthetic water, as well as in urban wastewater once treated in a wetland for reuse in irrigation. A Ti|RuO2-based plate and Si|BDD thin-film were comparatively employed as the anode, which was combined with a stainless-steel cathode in an undivided cell operating at 12 V. Despite the low resulting current density (<15 mA/cm2), both anodes demonstrated the production of oxidants in wetland effluent water. The disinfection efficiency was high for the bacteriophage MS2 (T99 in less than 7.1 min) and bacteria (T99 in about 30 min as maximum), but limited for CBV5 and TuV, spores and amoebas (T99 in more than 300 min). MS2 presented a rapid exponential inactivation regardless of the anode and bacteria showed similar sigmoidal curves, whereas human viruses, spores and amoebas resulted in linear profiles. Due the different sensitivity of microorganisms, different models must be considered to predict their inactivation kinetics. On this basis, it can be concluded that evaluating the viral inactivation from inactivation profiles determined for bacteria or some bacteriophages may be misleading. Therefore, neither bacteria nor bacteriophages are suitable models for the disinfection of water containing enteric viruses. The electrochemical treatment added as a final disinfection step enhances the inactivation of microorganisms, which could contribute to safe water reuse for irrigation. Considering the calculated low energy consumption, decentralized water treatment units powered by photovoltaic modules might be a near reality.
Collapse
Affiliation(s)
- Eva Forés
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Arantxa Ramos
- Secció de Microbiologia, Virologia i Biotecnologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Ayalkibet Hundesa
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Pau Esteve-Bricullé
- Secció de Microbiologia, Virologia i Biotecnologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
| | - Alejandro Espejo-Valverde
- Secció de Microbiologia, Virologia i Biotecnologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Miquel Calvo
- Secció d'Estadística, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rosa M Araujo
- Secció de Microbiologia, Virologia i Biotecnologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rosina Girones
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|