1
|
Kim YG, Yoon JW, Kang S, Shin KH, Hyun JH, Ra K, Kim JH, Kwon SY. Impacts of dam construction on mercury methylation and bioaccumulation revealed by stable isotopes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125970. [PMID: 40043877 DOI: 10.1016/j.envpol.2025.125970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Impacts of dam construction on mercury (Hg) sources, biogeochemical cycling, and bioaccumulation were investigated along the west coast of Korea, where large-scale national projects were initiated between 1978 and 1990 to build dam or weir at the interface between rivers and estuaries. Total Hg (THg) and methylmercury (MeHg) concentrations and Hg stable isotopes in estuarine sediment cores sampled downstream of dam/weir reveal 74 ± 3% reduction in THg, 536 ± 158% increase in MeHg, and shifts in Hg sources from riverine export to wet deposition (precipitation) as revealed by increases in Δ199Hg (by 0.13 ± 0.03‰) and Δ200Hg (by 0.10 ± 0.01‰). Stable carbon isotopes, n-alkanes, and four geochemical pools of Hg extracted from the sediment cores show enhanced proportion of labile (F1; 0.28 ± 0.21% points) and organically-bound (F2; 34 ± 12% points) Hg fractions and the ratio of marine-based organic matter relative to recalcitrant Hg bound to terrestrial organic matter at the downstream estuary. Dam/weir constructions have significant effects on Hg bioavailability and methylation, by enhancing the proportion of dissolved Hg delivered by precipitation and those subject to efficient assimilation by marine algae and microbial utilization. This is evident by the negative δ202Hg shifts in the sediment cores at the depths of MeHg peaks. Cessation of riverine Hg input is manifested by 96% reduction of THg in shellfish and enhanced methylation appears to cause 106% increase in fish THg at the downstream estuarine ecosystem. This study underscores the importance of considering complex and long-term biogeochemical modifications as a part of Environmental Impact Assessments.
Collapse
Affiliation(s)
- Young-Gwang Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ji Won Yoon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sujin Kang
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jung-Ho Hyun
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kongtae Ra
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea; Department of Ocean Science (Oceanography), KIOST School, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jung-Hyun Kim
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
2
|
Wang D, Lin X, Wu G, Xu Z, Liu J, Xu X, Jia D, Liang L, Habibullah-Al-Mamun M, Qiu G. Synchronous changes in mercury stable isotopes and compound-specific amino acid nitrogen isotopes in organisms through food chains. ENVIRONMENT INTERNATIONAL 2025; 196:109327. [PMID: 39952203 DOI: 10.1016/j.envint.2025.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The relationship between stable isotope of mercury (Hg, Δ199Hg and δ202Hg) and compound-specific nitrogen isotope of amino acids (CSIA-AA, δ15NGlu and δ15NPhe) remains poorly understood. In this study, we investigated bird species and their prey in an abandoned Hg mining area, southern China to elucidate these correlations for a better understanding of Hg sources, biological transfer, accumulation and amplification through food chains. Our findings revealed distinct isotopic patterns: Δ199Hg showed a positive correlation with δ15NGlu, indicating trophic transfer processes, while a negative correlation with δ15NPhe suggested differences in Hg sources among birds. The wide ranges of δ15NPhe and Δ199Hg observed in birds appear to reflect mixtures of multiple nitrogen and Hg sources, likely due to their diverse food sources and the large variation in the proportion of MeHg in total Hg (MeHg%). The consistent slope between Δ199Hg/δ15Nphe and MeHg%/δ15Nphe, reflecting both energy and Hg sources, provides new insights into the biotransfer and accumulation of Hg in organisms. Notably, the trophic magnification factor (TMF) of MeHg observed in water birds, such as egrets, reached an exceptionally high value of 97.7 estimated from CSIA of multiple amino acids (i.e., TMFM), underscoring the significance of investigating Hg sources in birds. Our results demonstrate that the synchronous changes between CSIA-AA and odd Hg isotopes effectively identify Hg sources and transfer across multiple ecological systems.
Collapse
Affiliation(s)
- Dawei Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China; University of Chinese Academy of Sciences, Beijing 100049 China
| | - Xiaoyuan Lin
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007 China
| | - Gaoen Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228 China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China
| | - Jiemin Liu
- Guizhou Provincial People's Hospital, Guiyang 550002 China
| | - Xiaohang Xu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025 China
| | - Dongya Jia
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025 China
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025 China
| | - Md Habibullah-Al-Mamun
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000 Bangladesh
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China.
| |
Collapse
|
3
|
Kim D, Lee SY, Lee J, Cho HE, Kim MS, Won EJ, Shin KH. Innovative approach for environmental pollution assessment using seabird eggs: mercury in black-tailed gull (Larus crassirostris) eggs from the Korean islands (2012-2021). MARINE POLLUTION BULLETIN 2024; 209:117167. [PMID: 39442352 DOI: 10.1016/j.marpolbul.2024.117167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Since black-tailed gulls derive energy for egg production around their habitat, analyzing concentration of chemicals in the eggs reveals the local environmental pollution. This is, however, complex due to the diversity of seabird diets across multiple ecosystems. This study determined the influence of food source and trophic position (TP) on the mercury concentration ([Hg]) in eggs and subsequently mitigated these influences by adjusting through [Hg]-TP relationship, thereby enabling spatial and temporal comparisons among individuals. Following TP adjustment, the [Hg] that previously exhibited significant regional differences no longer displayed such a variation. Moreover, by normalizing to trophic level 4, as suggested by the European Union (EU), the total [Hg] was standardized from 1001 ± 415 ng g-1 to 1347 ± 516 ng g-1 in all the egg samples, far exceeding the EU criteria. These two approaches provide valuable insights for the effective monitoring of marine pollution and past environmental reconstruction by adjusting/normalizing [Hg] in seabird eggs.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea; Marine Environment Research Department, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Soo Yong Lee
- Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jangho Lee
- Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Ha-Eun Cho
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Min-Seob Kim
- Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea.
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
4
|
Hong C, Suman TY, Ji CW, Kong DS, Kwak IS. Heavy metal bioaccumulation based on seasonal monsoon impact in benthic macroinvertebrates of Korean streams. CHEMOSPHERE 2024; 368:143749. [PMID: 39547293 DOI: 10.1016/j.chemosphere.2024.143749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
This study investigates the influence of seasonal monsoon flooding on heavy metal contamination and bioaccumulation in benthic macroinvertebrate communities within a stream ecosystem. We analyzed sediment and benthic macroinvertebrate samples for eight heavy metals [zinc (Zn), chromium (Cr), nickel (Ni), lead (Pb), copper (Cu), arsenic (As), cadmium (Cd), and mercury (Hg)]) before (BF) and after (AF) a major flooding event. We found significant spatial and temporal variations in heavy metal concentrations were observed, with higher levels after the flood. Chironomidae showed high bioaccumulation factors (BAFs) for several metals, highlighting their role as bioindicators. Notably, elevated Cu accumulation was observed in multiple species, including Radix auricularia (R. auricularia), Cipangopaludina chinensis malleata (C. c. malleata), and Palaemon spp. Non-metric multidimensional scaling (NMDS) analysis revealed shifting correlations between environmental variables and bioaccumulation patterns before and after flooding. Pre-flood, total nitrogen (TN) showed a strong positive correlation with Hg bioaccumulation, while post-flood, large sand content emerged as a more influential factor for Zn, Cr, Ni, and Pb bioaccumulation. Our findings emphasize the complex interplay between seasonal flooding, environmental factors, and heavy metal dynamics, with potential implications for ecological risk assessment and water quality management.
Collapse
Affiliation(s)
- Cheol Hong
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, South Korea
| | | | - Chang Woo Ji
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea
| | - Dong-Soo Kong
- Department of Life Science, Kyonggi University, Suwon, 16227, South Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, South Korea; Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea.
| |
Collapse
|
5
|
Wang D, Wu G, Tian J, Li C, Liu J, Liang L, Qiu G. Efficient acid hydrolysis for compound-specific δ 15N analysis of amino acids for determining trophic positions. ENVIRONMENTAL RESEARCH 2024; 256:119223. [PMID: 38810830 DOI: 10.1016/j.envres.2024.119223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Compound-specific isotope analysis of nitrogen in amino acids (CSIA-AA, δ15NAA) has gained increasing popularity for elucidating energy flow within food chains and determining the trophic positions of various organisms. However, there is a lack of research on the impact of hydrolysis conditions, such as HCl concentration and hydrolysis time, on δ15NAA analysis in biota samples. In this study, we investigated two HCl concentrations (6 M and 12 M) and four hydrolysis times (2 h, 6 h, 12 h, and 24 h) for hydrolyzing and derivatizing AAs in reference materials (Tuna) and biological samples of little egret (n = 4), night heron (n = 4), sharpbelly (n = 4) and Algae (n = 1) using the n-pivaloyl-iso-propyl (NPIP) ester approach. A Dowex cation exchange resin was used to purify amino acids before derivatization. We then determined δ15NAA values using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The results revealed no significant differences (p > 0.05) in δ15NAA values among samples treated with different HCl concentrations or hydrolysis times, particularly for δ15NGlx (range: 21.0-23.5‰) and δ15NPhe (range: 4.3-5.4‰) in Tuna (12 M). Trophic positions (TPs) calculated based on δ15NAA at 2 h (little egret: 2.9 ± 0.1, night heron: 2.8 ± 0.1, sharpbelly: 2.0 ± 0.1 and Algae: 1.3 ± 0.2) were consistent with those at 24 h (3.1 ± 0.1, 2.8 ± 0.1, 2.2 ± 0.1 and 1.1 ± 0.1, respectively), suggesting that a 2-h hydrolysis time and a 6 M HCl concentration are efficient pretreatment conditions for determining δ15NAA and estimating TP. Compared to the currently used hydrolysis conditions (24 h, 6 M), the proposed conditions (2 h, 6 M) accelerated the δ15NAA assay, making it faster, more convenient, and more efficient. Further research is needed to simplify the operational processes and reduce the time costs, enabling more efficient applications of CSIA-AA.
Collapse
Affiliation(s)
- Dawei Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaoen Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jing Tian
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Chan Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Jiemin Liu
- Guizhou Provincial People's Hospital, China
| | - Longchao Liang
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang, 550025, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
6
|
Kim D, Lee J, Won EJ, Lee SY, Cho HE, Choi H, Shin KH. Integrated approach for the isotope trophic position of black-tailed gull (Larus crassirostris) eggs over a decade: Combining stable isotopes of amino acids and fatty acids composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169732. [PMID: 38160818 DOI: 10.1016/j.scitotenv.2023.169732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Recently, compound-specific isotope analysis (CSIA) using the amino acid nitrogen stable isotope ratio (δ15NAAs) has been widely used for accurate estimation of trophic position (TP). In addition, a quantitative fatty acid signature analysis (QFASA) offers insights into diet sources. In this study, we used these techniques to estimate the TP for seabirds that rely on diverse food sources across multiple ecosystems. This allows for the proper combination of factors used in TP calculation which are different for each ecosystem. The approach involved the application of a multi-mixing trophic discrimination factor (TDF) and mixing β which is a Δδ15N between trophic and source amino acid of primary producer. Since the black-tailed gulls (BTGs) are income-breeding seabirds, which rely on energy sources obtained around their breeding sites, they and their eggs could be useful bioindicators for environmental monitoring. However, the ecological properties of BTGs such as habitats, diets, and TP are not well known due to their large migration range for wintering or breeding and their feeding habits on both aquatic and terrestrial prey. In this study, the eggs were used for estimating TP and for predicting TP of mother birds to overcome difficulties such as capturing birds and collecting non-invasive tissue samples. Eggs, sampled over a decade from three Korean islands, showed spatial differences in diet origin. Considering both the food chain and physiology of BTG, the TP of eggs was estimated to be 3.3-4.0. Notably, the TP was significantly higher at site H (3.8 ± 0.1) than at site B (3.5 ± 0.2), which indicated a higher contribution of marine diet as confirmed by QFASA. Using a reproductive shift of δ15NAAs, the TP of the mother birds was predicted to be 3.6-4.3, positioning them as the top predator in the food web. The advanced integration of multiple approaches provides valuable insights into bird ecology.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Jangho Lee
- Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea; Institute of Ocean and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Soo Yong Lee
- Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Ha-Eun Cho
- Institute of Ocean and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyuntae Choi
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
7
|
Sackett DK, Chrisp JK, Farmer TM. Isotopes and otolith chemistry provide insight into the biogeochemical history of mercury in southern flounder across a salinity gradient. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:233-246. [PMID: 38284178 DOI: 10.1039/d3em00482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Methylmercury (MeHg) continues to pose a significant global health risk to wildlife and humans through fish consumption. Despite numerous advancements in understanding the mercury (Hg) cycle, questions remain about MeHg sources that accumulate in fish, particularly across transitional coastal areas, where harvest is prominent and Hg sources are numerous. Here we used a unique combination of Hg and nutrient isotopes, and otolith chemistry to trace the biogeochemical history of Hg and identify Hg sources that accumulated in an economically important fish species across Mobile Bay, Alabama (USA). Fish tissue Hg in our samples primarily originated from wet deposition within the watershed, and partly reflected legacy industrial Hg. Results also suggest that little Hg was lost through photochemical processes (<10% of fish tissue Hg underwent photochemical processes). Of the small amount that did occur, photodegradation of the organic form, MeHg, was not the dominant process. Biotic transformation processes were estimated to have been a primary driver of Hg fractionation (∼93%), with isotope results indicating methylation as the primary biotic fractionation process prior to Hg entering the foodweb. On a finer scale, individual lifetime estuarine habitat use influenced Hg sources that accumulated in fish and fish Hg concentrations, with runoff from terrestrial Hg sources having a larger influence on fish in freshwater regions of the estuary compared to estuarine regions. Overall, results suggest increases in Hg inputs to the Mobile Bay watershed from wet deposition, turnover of legacy sources, and runoff are likely to translate into increased uptake into the foodweb.
Collapse
Affiliation(s)
- Dana K Sackett
- Department of Environmental Science and Technology, University of Maryland, 8127 Regents Dr, College Park, MD 20742, USA.
| | - Jared K Chrisp
- Department of Forestry and Environmental Conservation, Clemson University, 262 Lehotsky Hall, Clemson, SC 29634, USA
| | - Troy M Farmer
- Department of Forestry and Environmental Conservation, Clemson University, 262 Lehotsky Hall, Clemson, SC 29634, USA
| |
Collapse
|
8
|
Kim D, Won EJ, Cho HE, Lee J, Shin KH. New insight into biomagnification factor of mercury based on food web structure using stable isotopes of amino acids. WATER RESEARCH 2023; 245:120591. [PMID: 37690411 DOI: 10.1016/j.watres.2023.120591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Although many attempts have been carried out to elaborate trophic magnification factor (TMF) and biomagnification factor (BMF), such as normalizing the concentration of pollutants and averaging diet sources, the uncertainty of the indexes still need to be improved to assess the bioaccumulation of pollutants. This study first suggests an improved BMF (i.e., BMF') applied to mercury bioaccumulation in freshwater fish from four sites before and after rainfall. The diet source and TP of each fish were identified using nitrogen stable isotope of amino acids (δ15NAAs) combined with bulk carbon stable isotope (δ13C). The BMF' was calculated normalizing with TP and diet contributions derived from MixSIAR. The BMF' values (1.3-27.2 and 1.2-27.8), which are representative of the entire food web, were generally higher than TMF (1.5-13.9 and 1.5-14.5) for both total mercury and methyl mercury, respectively. The BMF' implying actual mercury transfer pathway is more reliable index than relatively underestimated TMF for risk assessment. The ecological approach for BMF calculations provides novel insight into the behavior and trophic transfer of pollutants like mercury.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea; Institute of Ocean and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Ha-Eun Cho
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | | | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|