1
|
Yue N, Li D, Pan Y, Chen L, Liu S, Hou M, Luo Y. Structure, transduction pathway, behavior and toxicity of fish olfactory in aquatic environments. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110195. [PMID: 40107438 DOI: 10.1016/j.cbpc.2025.110195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The olfactory system in teleost fish plays a vital role as chemosensory organ that directly interacts with the aquatic environment, exhibiting high sensitivity to chemical alteration in aquatic environments. However, despite its importance, there has been a lack of systematic reviews in the past decade on fish olfactory structure, transduction mechanisms, and the impact of environmental pollutants on olfactory toxicity. This study analyzed 272 relevant studies, focusing on the role of the olfactory system and the disruption of olfactory function by contaminants. Fish processes odors through olfactory receptor neurons, olfactory nerves, mitral/ruffed cells, glomeruli, and neurotransmitters, mediated by membrane potentials resulting from ion channels in the olfactory epithelium and olfactory bulb, which are then relayed to higher brain regions via the medial olfactory tracts and lateral olfactory tracts for further integration and modulation. This process minimizes the overlap between complex odor sets, ensuring distinct representation of each odor and eliciting appropriate olfactory-mediated behaviors, such as feeding, migration, alarm responses, and reproduction. Current research identifies four main types of contaminants affecting the fish olfactory system: heavy metals (51.60 %), organic contaminants (33.79 %), acidification (12.33 %), and salinity (5.94 %). The main mechanisms of impact are: morphological changes (21.19 %), alterations in olfactory receptors (29.24 %), damage to olfactory receptor neurons and neurotransmitters disruption (26.69 %), plasticity (2.97 %), and defense mechanisms (19.92 %). We also identify uncertainties and proposes future research directions on the effects of contaminants on fish olfactory. Overall, this review provides valuable insights into the toxicity of contaminants on fish olfactory.
Collapse
Affiliation(s)
- Ning Yue
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Dan Li
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; The Research Institution of Beautiful China and Ecological Civilization (A University Think Tank of Shanghai Municipality), Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yanling Pan
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Liting Chen
- Guangxi Academy of Fishery Sciences, Nanning City 530021, China
| | - Sisi Liu
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; The Research Institution of Beautiful China and Ecological Civilization (A University Think Tank of Shanghai Municipality), Shanghai Institute of Technology, Shanghai 201418, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning City 530021, China
| |
Collapse
|
2
|
Zeng S, Tong C, Yang F. Hexafluoropropylene oxide trimer acid induces olfactory toxicity to crucian carp by disrupting olfactory function and olfactory-mediated behavior. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107391. [PMID: 40344971 DOI: 10.1016/j.aquatox.2025.107391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA), an emerging substitute for perfluorooctanoic acid, has been widely detected in aquatic environment and received extensive attentions of research due to its potential toxicity. However, the olfactory toxicity of HFPO-TA remains unknown yet. In the study, the effects of HFPO-TA on the olfactory epithelium (OE) and olfactory bulb (OB) were investigated in crucian carp as well as the behavioral response to olfactory stimulants. The results show that exposure to HFPO-TA inhibited the expression of genes encoding olfactory G protein-coupled receptors (GPCRs), reduced the activities of ion transporter enzymes Na+/K+-ATPase and Ca2+-ATPase, as well as the activities of superoxide dismutase (SOD) and catalase (CAT), increasing the level of malondialdehyde (MDA), inducing the activities of caspase-1 and caspase-3, and causing tissue damage in the OE of crucian carp. Similarly, exposure to HFPO-TA also induced oxidative stress and apoptosis in the OB. Moreover, the levels of neurotransmitters including 5-hydroxytryptamine (5-HT), glutamate (Glu), acetylcholine (Ach), and the appetite regulator neuropeptide Y (NPY) were depressed in the OB. The behavioral test indicates that HFPO-TA altered the preference of crucian carp for food stimulants. Therefore, HFPO-TA poses olfactory toxicity to crucian carp by disrupting olfactory function and olfactory-mediated behavior.
Collapse
Affiliation(s)
- Shimin Zeng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Changlun Tong
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
3
|
Zhang JM, Li P, Chen CZ, Liu L, Li ZH. Toxic effects of emerging pollutants on mucosal organs of teleost fish: A review focusing on mucosal microbiota, physical barrier and immune barrier. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179431. [PMID: 40245518 DOI: 10.1016/j.scitotenv.2025.179431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
The urgency of emerging pollutants driven by human activities presents an increasing threat to the health of fish. The mucosal system, serving as a primary barrier against environmental pollutants, has emerged as a central focus in toxicological research. Alterations in the mucosal microbiota can impact health at both local and systemic levels. This review explores the toxic effects of emerging pollutants on the mucosal immunity of teleost fish, reflects on the reasons behind the limited focus on adaptive immunity studies, and highlights changes in microbial composition, gene expression, histology, and overall mucosal organ function. Furthermore, we summarize the mechanisms through which these pollutants disrupt the mucosal barriers of teleosts, emphasizing interactions between the mucosal microbiota, physical barriers, and immune defenses. The relevant methodologies and potential solutions to the current challenges have been summarized. While current research predominantly centers on the intestines and gills, further studies are needed to investigate the toxic effects of emerging pollutants on other mucosal organs and to elucidate how microbiota influence host health through neuro-immune communication. This review aims to provide a comprehensive overview of mucosal immunity, serving as a theoretical foundation for the assessment of related ecological risks.
Collapse
Affiliation(s)
- Jia-Ming Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | | | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
4
|
Sun P, Liu H, Zhao Y, Hao N, Deng Z, Zhao W. A novel data-driven screening method of antidepressants stability in wastewater and the guidance of environmental regulations. ENVIRONMENT INTERNATIONAL 2025; 198:109427. [PMID: 40188602 DOI: 10.1016/j.envint.2025.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/05/2025] [Accepted: 03/29/2025] [Indexed: 04/08/2025]
Abstract
Wastewater-based epidemiology (WBE) represents a powerful technique for quantifying the attenuation characteristics and consumption of pharmaceuticals. In addition to WBE, no further methods have been developed to assess the wastewater stability related to antidepressants (ADs). In this study, the biodegradability, solubility, and adsorption or partition of 66 ADs were objectively scored according to the relevant guidelines of the Organisation for Economic Cooperation and Development. An assessment framework and the MSSL-RealFormer classification model of ADs wastewater stability were constructed based on physicochemical properties to predict the ADs wastewater stability and the quantitative structure-activity relationship. The constructed MSSL-RealFormer classification model exhibited a markedly higher prediction accuracy than traditional methods. Furthermore, 15 high-stable ADs in wastewater with low biodegradability, high solubility, and low adsorption or partition were identified. SHapley Additive exPlanation method demonstrated that group hydrophobicity, electrostatic and van der Waals forces exerted a significant influence on the ADs wastewater stability. And molecular stability was found to be significantly correlated with the ADs wastewater stability. A combination of density functional theory and MSSL-RealFormer classification model was employed to identify 17 high-stable transformation products of nine medium- and low-stable ADs in wastewater. The Ecological Structure Activity Relationships model demonstrated that bupropion, tapentadol and chlorpheniramine exhibited significant acute toxicity to the aquatic food chain. In this study, a novel deep learning model was constructed to rapidly screen the correlation between the ADs wastewater stability and their molecular structures. It is anticipated to prove a favorable tool for optimizing the wastewater stability screening of pharmaceuticals.
Collapse
Affiliation(s)
- Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Huaishi Liu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130000, China.
| | - Yuanyuan Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Zhengyang Deng
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Lu L, Shan C, Tong D, Yu Y, Zhang W, Zhang X, Shu Y, Li W, Liu G, Shi W. Olfactory toxicity of tetrabromobisphenol A to the goldfish Carassius auratus. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135661. [PMID: 39213767 DOI: 10.1016/j.jhazmat.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most extensively used brominated flame retardants and its increasing use in consumer products has raised concerns about its ecotoxicity. Given the ubiquity of TBBPA in aquatic environments, it is inevitable that these chemicals will enter the olfactory chambers of fish via water currents. Nevertheless, the olfactory toxicity of TBBPA to aquatic organisms and the underlying toxic mechanisms have yet to be elucidated. Therefore, we investigated the olfactory toxicity of TBBPA in the goldfish Carassius auratus, a model organism widely used in sensory biology. Results showed that exposure to TBBPA resulted in abnormal olfactory-mediated behaviors and diminished electro-olfactogram (EOG) responses, indicating reduced olfactory acuity. To uncover the underlying mechanisms of action, we examined the structural integrity of the olfactory epithelium (OE), expression levels of olfactory G protein-coupled receptors (GPCRs), enzymatic activities of ion transporters, and fluctuations in neurotransmitters. Additionally, comparative transcriptomic analysis was employed to investigate the molecular mechanisms further. Our study demonstrates for the first time that TBBPA at environmentally relevant levels can adversely affect the olfactory sensitivity of aquatic organisms by interfering with the transmission of aqueous stimuli to olfactory receptors, impeding the binding of odorants to their receptors, disrupting the olfactory signal transduction pathway, and ultimately affecting the generation of action potentials.
Collapse
Affiliation(s)
- Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Conghui Shan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
6
|
Zhang W, Tian D, Yu Y, Tong D, Zhou W, Yu Y, Lu L, Li W, Liu G, Shi W. Micro/nanoplastics impair the feeding of goldfish by disrupting the complicated peripheral and central regulation of appetite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174112. [PMID: 38908581 DOI: 10.1016/j.scitotenv.2024.174112] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The ubiquitous presence of plastic particles in water bodies poses a potential threat to aquatic species. Although numerous adverse effects of microplastics (MPs) and nanoplastics (NPs) have been documented, their effects on fish feeding, one of the most important behaviors of animals, are far from being fully understood. In this study, the effects of MPs and NPs (at environmentally realistic levels) on fish food consumption and feeding behavior were assessed using goldfish (Carassius auratus) and polystyrene (PS) particles as representatives. In addition, to reveal the potential mechanisms, the effects of MPs and NPs on peripheral and central regulation of appetite were evaluated by examining appetite-regulation related intestinal, serous, and hypothalamic parameters. The results obtained indicated that the 28-day MP- and NP-exposure significantly impaired goldfish feeding by disrupting peripheral and central appetite regulation. Based on differences observed in their effects on the abovementioned behavioral, histological, and physiological parameters, MPs and NPs may interfere with appetite regulation in a size-dependent manner. Blocking the gastrointestinal tract and causing histopathological and functional damage to inner organs may be the main routes through which MPs and NPs disrupt appetite regulation. Our findings suggested that plastic particles exposure may have far-reaching effects on fish species through impaired feeding, which warrants further attention.
Collapse
Affiliation(s)
- Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Sun P, Zhao W. Control list of high-priority chemicals based on 5-HT-RI functionality and the human health interference effects selective CNN-GRU deep learning model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169699. [PMID: 38181943 DOI: 10.1016/j.scitotenv.2023.169699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024]
Abstract
The antidepressant drug known as 5-HT reuptake inhibitor (5-HT-RI) was commonly detected in biological tissues and result in significant adverse health effects. Homology modeling was used to characterize the functionalities (efficacy and resistance), and the adverse outcome pathway was used to characterize its human health interferences (olfactory toxicity, neurotoxicity, and gut microbial interference). The convolutional neural network coupled with the gated recurrent unit (CNN-GRU) deep learning method was used to construct a comprehensive model of 5-HT-RI functionality and human health interference effects selectivity with small sample data. The architecture with 2 SE, 320 neuronal nodes and 6-folds cross-validation showed the best applicability. The results showed that the confidence interval of the constructed model reached 90 % indicating that the model had reliable prediction ability and generalization ability. Based on the CNN-GRU deep learning model, seven high-priority chemicals with a weak comprehensive effect, including D-VEN, (1R,4S)-SER, S-FLX, CTP, S-CTP, NEF, and VEN, were screened. Based on the molecular three-dimensional structure information, a comprehensive-effect three-dimensional quantitative structure-activity relationship (3D-QSAR) model was constructed to confirm the reliability of the constructed control list of 5-HT-RI high-priority chemicals. Analysis with the ranking of calculated values based on the molecular dynamics method and predicted values based on the CNN-GRU deep learning model, we found that the consistency of the three methods was above 85 %. Additionally, by analyzing the sensitivity, molecular electrostatic potential, polar surface area of the comprehensive-effect CNN-GRU deep learning model, and the electrostatic field of the 3D-QSAR models, we found that the significant effects of five key characteristics (DM, Qyy, Qxz, I, and BP), molecular electronegativity, and polarity significantly affected the high-priority degree of 5-HT-RI. In this study, we provided reasonable and reliable prediction tools and discussed theoretical methods for the risk assessment of functionality and human health interference of emerging pollutants such as 5-HT-RI.
Collapse
Affiliation(s)
- Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
8
|
Zhang T, Wang X, Zhang Q, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Zhao J. Interactive effects of multiple antibiotic residues and ocean acidification on physiology and metabolome of the bay scallops Argopecten irradians irradians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168941. [PMID: 38056652 DOI: 10.1016/j.scitotenv.2023.168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Coastal areas are confronted with compounding threats arising from both climatic and non-climatic stressors. Antibiotic pollution and ocean acidification are two prevalently concurrent environmental stressors. Yet their interactive effects on marine biota have not been investigated adequately and the compound hazard remain obscure. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on A. irradians irradians were determined from multidimensional bio-responses, including energetic physiological traits as well as the molecular underpinning (metabolome and expressions of key genes). Results showed that multiple antibiotics predominantly enhanced the process of DNA repair and replication via disturbing the purine metabolism pathway. This alternation is perhaps to cope with the DNA damage induced by oxidative stress. Ocean acidification mainly disrupted energy metabolism and ammonia metabolism of the scallops, as evidenced by the increased ammonia excretion rate, the decreased O:N ratio, and perturbations in amino acid metabolism pathways. Moreover, the antagonistic effects of multiple antibiotics and ocean acidification caused alternations in the relative abundance of neurotransmitter and gene expression of neurotransmitter receptors, which may lead to neurological disorders in scallops. Overall, the revealed alternations in physiological traits, metabolites and gene expressions provide insightful information for the health status of bivalves in a natural environmental condition under the climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
9
|
Grzesiuk M, Grabska M, Pawelec A. Fluoxetine may interfere with learning in fish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104358. [PMID: 38154759 DOI: 10.1016/j.etap.2023.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Our study aimed to test whether fluoxetine impairs learning in fish and whether this potential impairment is reversible. Learning efficiency, with no aversive stimuli, of the Carassius carassius was analysed under different pharmaceutical conditions: (i) fish cultured without antidepressant (control), (ii) fish exposed to fluoxetine for 21 days (fluoxetine), and (iii) fish exposed to fluoxetine for 21 days and then cultured without fluoxetine for another 21 days (recovery). We exposed animals to environmental concentrations (360 ng L-1) of antidepressant. The learning rate was measured by timing how long it took the individual fish to find food and start feeding, six days in a row. The control and recovery fish took significantly less time to start eating over the six days. Control fish start eating 14 times faster than the fluoxetine fish. Fluoxetine can significantly affect learning and 21-day recovery period is not enough to fully restore the original learning abilities.
Collapse
Affiliation(s)
- Malgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Marta Grabska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Alicja Pawelec
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
10
|
Zhang T, Wang X, Zhang Q, Li K, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Yuan X, Zhao J. Intrinsic and extrinsic pathways of apoptosis induced by multiple antibiotics residues and ocean acidification in hemocytes of scallop Argopecten irradians irradians: An interactionist perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115806. [PMID: 38091672 DOI: 10.1016/j.ecoenv.2023.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The increasing prevalence of antibiotics in seawater across global coastal areas, coupled with the ocean acidification induced by climate change, present a multifaceted challenge to marine ecosystems, particularly impacting the key physiological processes of marine organisms. Apoptosis is a critical adaptive response essential for maintaining cellular homeostasis and defending against environmental threats. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on apoptosis and the underlying mechanisms in hemocytes of A. irradians irradians were determined through flow cytometry analysis, comet assay, oxidative stress biomarkers analysis, and transcriptome analysis. Results showed that apoptosis could be triggered by either AM exposure or OA exposure, but through different pathways. Exposure to AM leads to mitochondrial dysfunction and oxidative damage, which in turn triggers apoptosis via a series of cellular events in both intrinsic and extrinsic pathways. Conversely, while OA exposure similarly induced apoptosis, its effects are comparatively subdued and are predominantly mediated through the intrinsic pathway. Additionally, the synergistic effects of AM and OA exposure induced pronounced mitochondrial dysfunction and oxidative damages in the hemocytes of A. irradians irradians. Despite the evident cellular distress and the potential initiation of apoptotic pathways, the actual execution of apoptosis appears to be restrained, which might be attributed to an energy deficit within the hemocytes. Our findings underscore the constrained tolerance capacity of A. irradians irradians when faced with multiple environmental stressors, and shed light on the ecotoxicity of antibiotic pollution in the ocean under prospective climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Ke Li
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiutang Yuan
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
11
|
Xie Z, Li P, Lei X, Tang Q, Zhao X, Tang J, He X. Unraveling the combined toxicity and removal mechanisms of fluoxetine and sertraline co-contaminants by the freshwater microalga Chlorella pyrenoidosa. CHEMOSPHERE 2023; 343:140217. [PMID: 37739131 DOI: 10.1016/j.chemosphere.2023.140217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine (FLX) and sertraline (SER), are among the most widely detected pharmaceuticals in aquatic environments, and they usually occur as mixtures. However, little is known about the combined toxicity of SSRI mixtures to microalgae and the associated removal mechanisms. This study investigated the combined toxicity of FLX and SER to the growth, photosynthetic activity, and antioxidant system of Chlorella pyrenoidosa and their removal mechanisms. The results showed that FLX and SER strongly inhibited microalgal growth with 96 h EC50 values of 493 and 61.1 μg/L, respectively. Additionally, the combined toxicity of FLX and SER towards microalgal growth exhibited an additive effect. After 4 days of short-term exposure, FLX, SER, and their mixtures caused photosynthetic damage and oxidative stress in microalgae, and the mixture's toxicity was stronger than those of individuals. However, the adverse effects on microalgal growth, photosynthetic activity, and antioxidant system were alleviated with increasing exposure time. Meanwhile, C. pyrenoidosa efficiently removed FLX (67.59%-99.08%) and SER (94.92%-99.11%) individually after 11 days of cultivation. Biodegradation (59.25%-86.21%) was the prominent removal mechanism of FLX, while both biodegradation (48.08%-88.17%) and bioaccumulation (4.74%-43.38%) contributed significantly to SER removal. The co-existence of FLX and SER lowered the removal rate and biodegradation amount of both compounds. Besides, SER inhibited C. pyrenoidosa's N-demethylation and O-dealkylation of FLX, while co-existing with FLX inhibited the excretion of the N-deamination product of SER from microalgal cells. Furthermore, the principal component analysis indicated that the removal performance of FLX, SER, and their mixtures correlated strongly to the microalgae's physiological and biochemical states. These results highlighted the significance of co-contamination during ecological risk assessments and microalgae-based bioremediation of SSRIs.
Collapse
Affiliation(s)
- Zhengxin Xie
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Pengxiang Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Xianyan Lei
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Qiyue Tang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jun Tang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaolei He
- Anhui Huameng Environmental Engineering Technology Co., Ltd, Maanshan, 243000, China
| |
Collapse
|
12
|
Yu Y, Hu L, Tian D, Yu Y, Lu L, Zhang J, Huang X, Yan M, Chen L, Wu Z, Shi W, Liu G. Toxicities of polystyrene microplastics (MPs) and hexabromocyclododecane (HBCD), alone or in combination, to the hepatopancreas of the whiteleg shrimp, Litopenaeus vannamei. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121646. [PMID: 37105466 DOI: 10.1016/j.envpol.2023.121646] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023]
Abstract
The hepatopancreas is one of the largest organs playing crucial roles in metabolism and detoxification in crustacean invertebrates. Although toxicities have been increasingly documented for the two ubiquitous pollutants, hexabromocyclododecane (HBCD) and microplastics (MPs), in model animals, little is known about their impacts on the hepatopancreas of crustaceans. To fill this knowledge gap, the effects of MPs and HBCD, alone or in combination, on the hepatopancreas were evaluated in a commercially important crustacean species (the whiteleg shrimp) by histological observation as well as quantification of hepatic lesion-, metabolism-, and detoxification-related parameters. In addition, to reveal potential mechanisms underlying the hepatoxicity observed, the accumulation of HBCD in the shrimp and the status of oxidative stress were also investigated. Our results demonstrated that exposure of the whiteleg shrimp to MPs and HBCD for 4 weeks resulted in evident histological injury in the hepatopancreas and marked elevation in hepatic lesion markers (alanine aminotransferase and aspartate aminotransferase) in the hemolymph. Moreover, both metabolism (activity of phosphofructokinase, contents of lactic acid and adenosine triphosphate, and expression of metabolism-related genes) and detoxification (contents of cytochrome P450, UDP-glucuronosyltransferase, and glutathione, activity of glutathione S-transferase, and expression of detoxification-related genes) were found to be disrupted by the pollutants tested. In addition, exposure to MPs and HBCD also led to alterations in the contents and/or activities of antioxidant enzymes and resulted in oxidative damage to the hepatopancreas (indicated by marked elevation in malondialdehyde content). Furthermore, a significant amount of HBCD accumulated in shrimp treated with HBCD-containing seawater. The data also illustrated that HBCD-MP coexposure was more toxic than single exposure to these pollutants. These findings suggest that MPs and HBCD may exert hepatotoxic impacts on whiteleg shrimp by accumulating in vivo and inducing oxidative stress, which could pose a severe threat to the health of this important crustacean species.
Collapse
Affiliation(s)
- Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Lihua Hu
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China; Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jiongming Zhang
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China; Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Xianke Huang
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China; Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Maocang Yan
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China; Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
13
|
Tian D, Yu Y, Yu Y, Lu L, Tong D, Zhang W, Zhang X, Shi W, Liu G. Tris(2-chloroethyl) Phosphate Exerts Hepatotoxic Impacts on Zebrafish by Disrupting Hypothalamic-Pituitary-Thyroid and Gut-Liver Axes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37276532 DOI: 10.1021/acs.est.3c01631] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ubiquitous environmental presence of tris(2-chloroethyl) phosphate (TCEP) poses a potential threat to animals; however, little is known about its hepatotoxicity. In this study, the effects of TCEP exposure (0.5 and 5.0 μg/L for 28 days) on liver health and the potential underlying toxification mechanisms were investigated in zebrafish. Our results demonstrated that TCEP exposure led to hepatic tissue lesions and resulted in significant alterations in liver-injury-specific markers. Moreover, TCEP-exposed fish had significantly lower levels of thyrotropin-releasing hormone and thyroid-stimulating hormone in the brain, evidently less triiodothyronine whereas more thyroxine in plasma, and markedly altered expressions of genes from the hypothalamic-pituitary-thyroid (HPT) axis in the brain or liver. In addition, a significantly higher proportion of Bacteroidetes in the gut microbiota, an elevated bacterial source endotoxin lipopolysaccharide (LPS) in the plasma, upregulated expression of LPS-binding protein and Toll-like receptor 4 in the liver, and higher levels of proinflammatory cytokines in the liver were detected in TCEP-exposed zebrafish. Furthermore, TCEP-exposed fish also suffered severe oxidative damage, possibly due to disruption of the antioxidant system. These findings suggest that TCEP may exert hepatotoxic effects on zebrafish by disrupting the HPT and gut-liver axes and thereafter inducing hepatic inflammation and oxidative stress.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
14
|
Huang L, Zhang W, Tong D, Lu L, Zhou W, Tian D, Liu G, Shi W. Triclosan and triclocarban weaken the olfactory capacity of goldfish by constraining odorant recognition, disrupting olfactory signal transduction, and disturbing olfactory information processing. WATER RESEARCH 2023; 233:119736. [PMID: 36801581 DOI: 10.1016/j.watres.2023.119736] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Recently, increased production and consumption of disinfectants such as triclosan (TCS) and triclocarban (TCC) have led to massive pollution of the environment, which draws global concern over the potential risk to aquatic organisms. However, the olfactory toxicity of disinfectants in fish remains elusive to date. In the present study, the impact of TCS and TCC on the olfactory capacity of goldfish was assessed by neurophysiological and behavioral approaches. As shown by the reduced distribution shifts toward amino acid stimuli and hampered electro-olfactogram responses, our results demonstrated that TCS/TCC treatment would cause deterioration of the olfactory ability of goldfish. Our further analysis found that TCS/TCC exposure suppressed the expression of olfactory G protein-coupled receptors in the olfactory epithelium, restricted the transformation of odorant stimulation into electrical responses by disturbing the cAMP signaling pathway and ion transportation, and induced apoptosis and inflammation in the olfactory bulb. In conclusion, our results demonstrated that an environmentally realistic level of TCS/TCC would weaken the olfactory capacity of goldfish by constraining odorant recognition efficiency, disrupting olfactory signal generation and transduction, and disturbing olfactory information processing.
Collapse
Affiliation(s)
- Lin Huang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China.
| |
Collapse
|