1
|
Wang Z, Gao Y, Li Y, Li Y, Wang X, Wu C, Hu M, Wang X, Shuai Y. Mimicked Trees for Spatial Microfluidic Solar Evaporation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26784-26794. [PMID: 40294347 DOI: 10.1021/acsami.5c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The lack of freshwater is becoming an increasingly urgent problem, and clean water production with green energy is becoming a hot topic. Among these, mimicked transpiration for water treatment enabled with solar energy is attracting more and more interest. In this work, we design unique microchannels inspired by leaf veins in nature. We experimentally observe the unique microfludic phenomena exhibited during liquid transport inside the mimicked microchannels, and the underlying mechanisms of the microfluidic performance of the mimicked microchannels are also revealed. Moreover, a type of mimicked leaf integrating "veins" for fluid transport and "stomata" for solar evaporation is designed. Our mimicked leaves achieve rapid liquid transport, when the light intensity is 1 sun, the maximum evaporation rate is 1.85 kg m-2 h-1, and the photothermal conversion efficiency is higher than 92%. In addition, with the rapid liquid transport capability of our mimicked leaves, we innovatively design a mimicked tree for spatial solar evaporation, exhibiting an evaporation rate of 1.52 kg m-2 h-1 with a light intensity of 1 sun. Our mimicked trees promise the microfluidics-powered, large-scale and multidirectional transportation of water, as well as excellent spatial evaporation of water.
Collapse
Affiliation(s)
- Zhaolong Wang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yafeng Gao
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yingying Li
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yinfeng Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xiaolong Wang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ciwei Wu
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Meiyang Hu
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaowei Wang
- Research and Development Center, China Academy of Launch Vehicle Technology, Beijing 100076, P. R. China
| | - Yong Shuai
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
2
|
Lv F, Miao J, Wang Z, Hu J, Orejon D. Polyanionic Electrolyte Ionization Desalination Empowers Continuous Solar Evaporation Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410290. [PMID: 39690819 DOI: 10.1002/adma.202410290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Solar evaporation contributes to sustainable and environmentally friendly production of fresh water from seawater and wastewater. However, poor salt resistance and high degree of corrosion of traditional evaporators in brine make their implementation in real applications scarce. To overcome such deficiency, a polyanionic electrolyte functionalization strategy empowering excellent uniform desalination performance over extended periods of time is exploited. This 3D superhydrophilic graphene oxide solar evaporator design ensures stable water supply by the enhanced self-driving liquid capillarity and absorption at the evaporation interface as well as efficient vapor diffusion. Meanwhile, the polyanionic electrolyte functionalization implemented via layer-by-layer static deposition of polystyrene sodium sulfonate effectively regulates/minimizes the flux of salt ions by exploiting the Donnan equilibrium effect, which eventually hinders local salt crystallization during long-term operation. Stable evaporation rates in line with the literature of up to 1.68 kg m-2 h-1 are achieved for up to 10 days in brine (15‰ salinity) and for up to 3 days in seawater from Hangzhou Bay in the East China Sea (9‰ salinity); while, maintaining evaporation efficiencies of ≈90%. This work demonstrates the excellent benefits of polyanionic electrolyte functionalization as salt resistance strategy for the development of high-performance solar powered seawater desalination technology and others.
Collapse
Affiliation(s)
- Fengyong Lv
- School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jie Miao
- School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhongyu Wang
- School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Daniel Orejon
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh, Scotland, EH9 3FD, UK
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
3
|
Ji Y, Qiang M, Zhao Q, Mo Y, Fu L, Lin Z, Yang H, Xing Y, Ni G, Yang Y. Achieving "Ion Diode" Salt Resistance in Solar Interfacial Evaporation by a Tesla Valve-Like Water Transport Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403606. [PMID: 38940231 DOI: 10.1002/smll.202403606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Salt deposition is a disturbing problem that limits the development of passive solar-driven interfacial evaporation. Inspired by the passive fluid control mechanism of the Tesla valve, a novel solar evaporator is proposed with a Tesla valve-like water transport structure to prevent salt accumulation at the evaporation interface. A unique "ion diode" salt resistance of this evaporator is significantly achieved by optimizing the two asymmetric water transport structures, consisting of one Tesla valve-like side and one wide-leg side, which establish a reverse-suppressing and forward-accelerating water transport channel. In contrast to the limited ion migration of the typical symmetric solar evaporator, such a channel caused by the water/salt ions transport difference between two water supply structures, reinforces the water/salt ions supply on the wide-leg side, thus leading to an apparent unidirectional salt ions migration from the wide-leg side to bulk water through the Tesla valve-like side. Consequently, an evaporation rate of 3.25 kg m-2 h-1 and a conversion efficiency of 83.27% under 2 suns are achieved in 16 wt% NaCl solution. The development of the Tesla Valve-like evaporator provides a new perspective for solving salt deposition and realizing scalable applications of solar-driven interfacial evaporation.
Collapse
Affiliation(s)
- Yinzhi Ji
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Mengyuan Qiang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qi Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yalu Mo
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Linjing Fu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ziyan Lin
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Heyu Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Yonglei Xing
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Gang Ni
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Yawei Yang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
4
|
He N, Sun X, Wang H, Wang B, Tang D, Li L. Dual-Interface Solar Evaporator with Highly-Efficient Thermal Regulation via Suspended Multilayer Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402863. [PMID: 38764314 DOI: 10.1002/smll.202402863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Indexed: 05/21/2024]
Abstract
Facing the increasing global shortage of freshwater resources, this study presents a suspended multilayer evaporator (SMLE), designed to tackle the principal issues plaguing current solar-driven interfacial evaporation technologies, specifically, substantial thermal losses and limited water production. This approach, through the implementation of a multilayer structural design, enables superior thermal regulation throughout the evaporation process. This evaporator consists of a radiation damping layer, a photothermal conversion layer, and a bottom layer that leverages radiation, wherein the bottom layer exhibits a notable infrared emissivity. The distinctive feature of the design effectively reduces radiative heat loss and facilitates dual-interface evaporation by heating the water surface through mid-infrared radiation. The refined design leads to a notable evaporation rate of 2.83 kg m-2 h-1. Numerical simulations and practical performance evaluations validate the effectiveness of the multilayer evaporator in actual use scenarios. This energy-recycling and dual-interface evaporation multilayered approach propels the design of high-efficiency solar-driven interfacial evaporators forward, presenting new insights into developing effective water-energy transformation systems.
Collapse
Affiliation(s)
- Nan He
- School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xisheng Sun
- School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Haonan Wang
- School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Bingsen Wang
- School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Dawei Tang
- School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Lin Li
- School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
5
|
Yang Z, Li D, Zhu Y, Zhu X, Yu W, Yang K, Chen B. Developing Salt-Rejecting Evaporators for Solar Desalination: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8610-8630. [PMID: 38720447 DOI: 10.1021/acs.est.3c09703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Solar desalination, a green, low-cost, and sustainable technology, offers a promising way to get clean water from seawater without relying on electricity and complex infrastructures. However, the main challenge faced in solar desalination is salt accumulation, either on the surface of or inside the solar evaporator, which can impair solar-to-vapor efficiency and even lead to the failure of the evaporator itself. While many ideas have been tried to address this ″salt accumulation″, scientists have not had a clear system for understanding what works best for the enhancement of salt-rejecting ability. Therein, for the first time, we classified the state-of-the-art salt-rejecting designs into isolation strategy (isolating the solar evaporator from brine), dilution strategy (diluting the concentrated brine), and crystallization strategy (regulating the crystallization site into a tiny area). Through the specific equations presented, we have identified key parameters for each strategy and highlighted the corresponding improvements in the solar desalination performance. This Review provides a semiquantitative perspective on salt-rejecting designs and critical parameters for enhancing the salt-rejecting ability of dilution-based, isolation-based, and crystallization-based solar evaporators. Ultimately, this knowledge can help us create reliable solar desalination solutions to provide clean water from even the saltiest sources.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, Zhejiang 311400, China
| | - Dawei Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Yunxia Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Wentao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, Zhejiang 311400, China
| | - Kaijie Yang
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
6
|
Chen Y, Hao J, Xu J, Hu Z, Bao H, Xu H. Pickering Emulsion Templated 3D Cylindrical Open Porous Aerogel for Highly Efficient Solar Steam Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303908. [PMID: 37507818 DOI: 10.1002/smll.202303908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Porous-structured evaporators have been fabricated for achieving a high clean water throughput due to their maximized surface area. However, most of the evaporation surfaces in the porous structure are not active because of the trapped vapor in pores. Herein, a three-dimensional (3D) cylindrical aerogel-based photothermal evaporator with a disordered interconnected hierarchical porous structure is developed via a Pickering emulsion-involved polymerization method. The obtained cotton cellulose/aramid nanofibers/polypyrrole (CAP) aerogel-based evaporator achieved all-cold evaporation under 1.0 sun irradiation, which not only completely eliminated energy loss via radiation, convection, and conduction, but also harvested massive extra energy from the surrounding environment and bulk water, thus significantly increasing the total energy input for vapor generation to deliver an extremely high evaporation rate of 5.368 kg m-2 h-1 . In addition, with the external convective flow, solar steam generation over the evaporator can be dramatically enhanced due to fast vapor diffusion out of its unique opened porous structure, realizing an ultrahigh evaporation rate of 18.539 kg m-2 h-1 under 1.0 sun and 4.0 m s-1 . Moreover, this evaporator can continuously operate with concentrated salt solution (20 wt.% NaCl). This work advances rational design and construction of solar evaporator to promote the application of solar evaporation technology in freshwater production.
Collapse
Affiliation(s)
- Yiquan Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Jiajia Hao
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Jie Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Zhengsong Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Haifeng Bao
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, SA, 5095, Australia
| |
Collapse
|
7
|
Zeng B, Kumar T, Wu H, Stark S, Hamza H, Zhao H, Xu H, Zhang X. Evolution of Morphology and Distribution of Salt Crystals on a Photothermal Layer during Solar Interfacial Evaporation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14737-14747. [PMID: 37794656 DOI: 10.1021/acs.langmuir.3c02126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Solar interfacial evaporation (SIE) by leveraging photothermal conversion could be a clean and sustainable solution to the scarcity of fresh water, decontamination of wastewater, and steam sterilization. However, the process of salt crystallization on photothermal materials used in SIE, especially from saltwater evaporation, has not been completely understood. We report the temporal and spatial evolution of salt crystals on the photothermal layer during SIE. By using a typical oil lamp evaporator, we found that salt crystallization always initiates from the edge of the evaporation surface of the photothermal layer due to the local fast flux of the vapor to the surroundings. Interestingly, the salt crystals exhibit either compact or loose morphology, depending on the location and evaporation duration. By employing a suite of complementary analytical techniques of Raman and infrared spectroscopy and temperature mapping, we followed the evolution and spatial distribution of salt crystals, interfacial water, and surface temperature during evaporation. Our results suggested that the compact crystal structure may emerge from the recrystallization of salt in an initially porous structure, driven by continuous water evaporation from the porous and loose crystals. The holistic view provided in this study may lay the foundation for effective strategies for mitigation of the negative impact of salt crystallization in solar evaporation.
Collapse
Affiliation(s)
- Binglin Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada
| | - Tanay Kumar
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada
| | - Hongyan Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada
| | - Shane Stark
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada
| | | | | | - Haolan Xu
- Future Industries Institute, University of South Australia, Adelaide, South Australia 5095, Australia
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada
- Physics of Fluids Group, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
8
|
Yang Z, Li D, Yang K, Chen L, Wang J, Zhu X, Chen B. Optimized Water Supply in a Solar Evaporator for Simultaneous Freshwater Production and Salt Recycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13047-13055. [PMID: 37607016 DOI: 10.1021/acs.est.3c03457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Solar desalination has shown great potential in alleviating global water scarcity. However, the trade-off between energy efficiency and salt rejection remains a challenge, restricting its practical applications. In this study, we report a three-dimensional nitrocellulose membrane-based evaporator featuring a high evaporation rate (1.5 kg m-2 h-1) and efficient salt precipitation at the edges. Additionally, the salt is isolated from the photothermal area of the evaporator and falls automatically with a salt recovery rate of 97 g m-2 h-1 in brine with 10 wt % salt content. The distinctive performance is attributed to the precise water supply control, which was adjusted by changing the resistance force and driven force in the evaporator. With a high evaporation rate, stable performance, and specific salt recovery ability, this solar evaporation structure holds great potential in water desalination and resource recovery.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Dawei Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Kaijie Yang
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lei Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jian Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
9
|
Yan J, Wu Q, Wang J, Xiao W, Zhang G, Xue H, Gao J. Carbon nanofiber reinforced carbon aerogels for steam generation: Synergy of solar driven interface evaporation and side wall induced natural evaporation. J Colloid Interface Sci 2023; 641:1033-1042. [PMID: 36996682 DOI: 10.1016/j.jcis.2023.03.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Solar-based interface evaporation (SIE) is a green, efficient and cost-effective technique to harvest fresh water. 3D solar evaporators show their unique advantages in gaining energy from environment and hence possess a higher evaporation rate than 2D evaporators. However, much effort is still required to develop mechanically robust and superhydrophilic 3D evaporators with strong water transportation capability and salt-rejection performance, and at the same time reveal how they gain energy from environment via the natural evaporation. In this work, a novel carbon nanofiber reinforced carbon aerogel (CNFA) is prepared for the SIE. The CNFA has a high light absorption up to 97.2% and outstanding photothermal conversion performance. The heteroatom doping and hierarchically porous structure endow the CNFA with superhydrophilicity and thus powerful water transportation capability and salt rejection performance. Benefiting from synergy of the SIE and side wall induced natural evaporation, the CNFA evaporator exhibits a high evaporation rate and efficiency (as high as 3.82 kg m-2h-1 and 95.5%, respectively) with long-term stability and durability. The CNFA can also work normally in high-salinity and corrosive seawater. This study demonstrates a new method to fabricate all-carbon aerogel solar evaporators and provides insights for the effective thermal management during the interface evaporation.
Collapse
|
10
|
Wu J, Zhang T, Qu J, Jiao FZ, Hu C, Zhao HY, Li X, Yu ZZ. Hydrothermally Modified 3D Porous Loofah Sponges with MoS 2 Sheets and Carbon Particles for Efficient Solar Steam Generation and Seawater Desalination. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37285282 DOI: 10.1021/acsami.3c05198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although the emerging interfacial solar steam generation technology is sustainable and eco-friendly for generating clean water by desalinating seawater and purifying wastewaters, salt deposition on the evaporation surface during solar-driven evaporation severely degrades the purification performances and adversely affect the long-term performance stability of solar steam generation devices. Herein, to construct solar steam generators for efficient solar steam generation and seawater desalination, three-dimensional (3D) natural loofah sponges with both macropores of the sponge and microchannels of the loofah fibers are hydrothermally decorated with molybdenum disulfide (MoS2) sheets and carbon particles. Benefiting from fast upward transport of water, rapid steam extraction, and effective salt-resistant capacity, the 3D hydrothermally decorated loofah sponge with MoS2 sheets and carbon particles (HLMC) with an exposed height of 4 cm can not only obtain heat by its top surface under the downward solar light irradiation based on the solar-thermal energy conversion but also gain environmental energy by its porous sidewall surface, achieving a competitive water evaporation rate of 3.45 kg m-2 h-1 under 1 sun irradiation. Additionally, the 3D HLMC evaporator exhibits long-term desalination stability during the solar-driven desalination of an aqueous salt solution with 3.5 wt % NaCl for 120 h without apparent salt deposition because of its dual type of pores and uneven structure distribution.
Collapse
Affiliation(s)
- Jing Wu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jin Qu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fan-Zhen Jiao
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Hu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao-Yu Zhao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaofeng Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Mu X, Chen L, Qu N, Yu J, Jiang X, Xiao C, Luo X, Hasi Q. MXene/polypyrrole coated melamine-foam for efficient interfacial evaporation and photodegradation. J Colloid Interface Sci 2023; 636:291-304. [PMID: 36638569 DOI: 10.1016/j.jcis.2023.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m-1 K-1), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m-2 illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m-2h-1 and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator.
Collapse
Affiliation(s)
- Xiaotong Mu
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Lihua Chen
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China.
| | - Nannan Qu
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Jiale Yu
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Xiaoqian Jiang
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Chaohu Xiao
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Xingping Luo
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Qimeige Hasi
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China.
| |
Collapse
|
12
|
Wu J, Ma X, Gnanasekar P, Wang F, Zhu J, Yan N, Chen J. Superhydrophobic lignin-based multifunctional polyurethane foam with SiO 2 nanoparticles for efficient oil adsorption and separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160276. [PMID: 36403829 DOI: 10.1016/j.scitotenv.2022.160276] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Superhydrophobic polyurethane foam is one of the most promising materials for oil-water separation. However, there are only limited studies prepared matrix superhydrophobic foams as adsorbents. In this paper, SiO2 modified by 1H, 1H, 2H, 2H-perfluorododecyl trichlorosilane (F-SiO2) was added into the lignin-based foam matrix by a one-step foaming technique. The average diameter of F-SiO2 was about 480 nm with an water contact angle (WCA) of 160.3°. The lignin-based polyurethane foam with F-SiO2 had a superhydrophobic water contact angle of 151.3°. There is no obvious change in contact angle after 100 cycles of compression or after cutting and abrasion. Scanning electron microscopy (SEM) analysis showed that F-SiO2 was distributed both on the surface and inside of the foam. The efficiency for oil-water separation reached 99 %. Under the light intensity of 1 kW/m2, the surface temperature of the lignin-based foam rose to 77.6 °C. In addition, the foam exhibited self-cleaning properties and degraded within 2 h in an alcoholic alkali solution. Thus, in this study, we developed a novel matrix superhydrophobic lignin-based polyurethane foam with an excellent promise to be used as oil water separation adsorbents in industrial wastewater treatment and oil spill clean-up processes.
Collapse
Affiliation(s)
- Jialong Wu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Northeast Electric Power University, Jilin, Jilin 132012, China
| | - Xiaozhen Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Fan Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jin Zhu
- Northeast Electric Power University, Jilin, Jilin 132012, China
| | - Ning Yan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College street, ON M5S 3E5, Canada.
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
13
|
Kang L, Shi L, Song L, Guo X. Facile Fabrication of Superhydrophobic Porous Materials Using the Water-Based Aza-Michael Reaction for High-Efficiency Oil-Water Separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Chen H, Yang J, Su J, Cui Y. Facile fabrication of biobased porous material via the photocuring technique and a template-assisted approach for oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|