1
|
Zhang H, Zhao Q, Zhong K, Bai R, Dong J, Ma J, Zhang J, Strathmann TJ. Overlooked interaction between redox-mediator and bisphenol-A in permanganate oxidation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100421. [PMID: 38774192 PMCID: PMC11106538 DOI: 10.1016/j.ese.2024.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 05/24/2024]
Abstract
Research efforts on permanganate (Mn(VII)) combined with redox-mediator (RM), have received increasing attention due to their significant performance for bisphenol-A (BPA) removal. However, the mechanisms underpinning BPA degradation remain underexplored. Here we show the overlooked interactions between RM and BPA during permanganate oxidation by introducing an RM-N-hydroxyphthalimide (NHPI). We discovered that the concurrent generation of MnO2 and phthalimide-N-oxyl (PINO) radical significantly enhances BPA oxidation within the pH range of 5.0-6.0. The detection of radical cross-coupling products between PINO radicals and BPA or its derivatives corroborates the pivotal role of radical cross-coupling in BPA oxidation. Intriguingly, we observed the formation of an NHPI-BPA complex, which undergoes preferential oxidation by Mn(VII), marked by the emergence of an electron-rich domain in NHPI. These findings unveil the underlying mechanisms in the Mn(VII)/RM system and bridge the knowledge gap concerning BPA transformation via complexation. This research paves the way for further exploration into optimizing complexation sites and RM dosage, significantly enhancing the system's efficiency in water treatment applications.
Collapse
Affiliation(s)
- Honglong Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, PR China
| | - Qiaoqiao Zhao
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, PR China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, PR China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, PR China
| | - Jiaojiao Dong
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Timothy J. Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, United States
| |
Collapse
|
2
|
Lin W, Chen R, Gong C, Desmond P, He X, Nan J, Li G, Ma J, Ding A, Ngo HH. Sustained oxidation of Tea-Fe(III)/H 2O 2 simultaneously achieves sludge reduction and carbamazepine removal: The crucial role of EPS regulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134182. [PMID: 38583202 DOI: 10.1016/j.jhazmat.2024.134182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024]
Abstract
Establishing an economic and sustained Fenton oxidation system to enhance sludge dewaterability and carbamazepine (CBZ) removal rate is a crucial path to simultaneously achieve sludge reduction and harmless. Leveraging the principles akin to "tea making", we harnessed tea waste to continually release tea polyphenols (TP), thus effectively maintaining high level of oxidation efficiency through the sustained Fenton reaction. The results illustrated that the incorporation of tea waste yielded more favorable outcomes in terms of water content reduction and CBZ removal compared to direct TP addition within the Fe(III)/hydrogen peroxide (H2O2) system. Concomitantly, this process mainly generated hydroxyl radical (•OH) via three oxidation pathways, effectively altering the properties of extracellular polymeric substances (EPS) and promoting the degradation of CBZ from the sludge mixture. The interval addition of Fe(III) and H2O2 heightened extracellular oxidation efficacy, promoting the desorption and removal of CBZ. The degradation of EPS prompted the transformation of bound water to free water, while the formation of larger channels drove the discharge of water. This work achieved the concept of treating waste with waste through using tea waste to treat sludge, meanwhile, can provide ideas for subsequent sludge harmless disposal.
Collapse
Affiliation(s)
- Wei Lin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China
| | - Renglu Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China
| | - Chuangxin Gong
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China
| | - Peter Desmond
- Institute of Environmental Engineering, RWTH Aachen University, Aachen, Germany; Sustainability Division, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Xu He
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China.
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Zhu C, Xiao X, Wang X, Ma Z, Han Y. Lignin-modified graphitic carbon nitride nanotubes for photocatalytic H 2O 2 production and degradation of brilliant black BN. Int J Biol Macromol 2024; 267:131533. [PMID: 38608988 DOI: 10.1016/j.ijbiomac.2024.131533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
As a renewable aromatic compound with enormous production potential, lignin has various potential high-value utilization pathways, but the success achieved in the field of photocatalysis is limited. Herein, this work prepares a new type of photocatalyst by modifying Graphitic Carbon Nitride Nanotubes (CNT) with self-assembled lignin nanospheres for the photocatalytic production of H2O2 and the degradation of azo dyes. Under light conditions, lignin enhances the production of H2O2 through oxygen reduction and collaborates with carbon nitride tubes to generate O2- and 1O2. Furthermore, carbon nitride tubes form electron-rich regions with lignin, promoting the transfer of electrons from adsorbed aromatic pollutants to this region, thereby facilitating their degradation. The experimental results indicate that the addition of 5 % lignin significantly enhances the photocatalytic degradation efficiency of azo dyes, with a degradation rate 1.87 times higher than that of the original carbon nitride tubes. Furthermore, CNL also have excellent degradation ability to pollutants in actual wastewater. This study provides new insights and prospects for the high-value utilization of lignin, enabling it to be used as a photocatalytic co-catalyst to participate in the photocatalytic degradation of environmental pollutants.
Collapse
Affiliation(s)
- Chen Zhu
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Key Laboratory of High Value Utilization of Botanical Resources of China, Light Industry College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xinyu Xiao
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Key Laboratory of High Value Utilization of Botanical Resources of China, Light Industry College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Key Laboratory of High Value Utilization of Botanical Resources of China, Light Industry College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zihao Ma
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Key Laboratory of High Value Utilization of Botanical Resources of China, Light Industry College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Ying Han
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Key Laboratory of High Value Utilization of Botanical Resources of China, Light Industry College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
4
|
Gao J, Xing X, Cai W, Li Z, Shi G, Chen Y, Liang H, Chen C, Ma K, Chen J, Hu C. Effect of micropollutants on disinfection byproducts and antibiotic resistance genes in drinking water in the process of biological activated carbon treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132304. [PMID: 37748307 DOI: 10.1016/j.jhazmat.2023.132304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 09/27/2023]
Abstract
The biofilm stress response of biological activated carbon (BAC) was investigated under prolonged exposure to sulfadiazine and 2,4-Dichlorophenoxyacetic acid, simulating complex emerging organic contaminants (EOCs) that are mainly involved in the formation of nitrogenous disinfection byproducts (N-DBPs) and antibiotic resistance genes (ARGs). Under trace complex EOCs condition (2 µg/L), N-DBP precursors and abundance of ARGs increased significantly in BAC effluent. The total formation potential of haloacetonitriles (HANs) and halonitromethanes (HNMs) was 751.47 ± 2.98 ng/L, which was much higher than the control group (440.67 ± 13.38 ng/L without EOCs). Similarly, the relative abundance of ARGs was more than twice that in the control group. The complex EOCs induce excessive extracellular polymeric substance secretion (EPS), thereby causing more N-DBP precursors and stronger horizontal gene transfer. Metagenome analysis revealed that functional amino acid and protein biosynthesis genes were overexpressed compared to the control group, causing more EPS to be secreted into the external environment. Complex EOCs promote Cobetia, Clostridium, and Streptomyces dominance, contributing to the production of N-DBP precursors and ARGs. For the first time, in addition to the direct hazards of the EOCs, this study successfully revealed the indirect water quality risks of complex EOCs from the microbial stress response during BAC treatment. Synergistic regulation of EOCs and microorganisms is important for tap water security.
Collapse
Affiliation(s)
- Jingyu Gao
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xueci Xing
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Wu Cai
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zesong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Guogui Shi
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Youyi Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hao Liang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Chaoxiang Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Kunyu Ma
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Jinrong Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Tang L, Zhou S, Li F, Sun L, Lu H. Ozone Micronano-bubble-Enhanced Selective Degradation of Oxytetracycline from Production Wastewater: The Overlooked Singlet Oxygen Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18550-18562. [PMID: 36474357 DOI: 10.1021/acs.est.2c06008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The efficient and selective removal of refractory antibiotics from high-strength antibiotic production wastewater is crucial but remains a substantial challenge. In this study, a novel ozone micronano-bubble (MNB)-enhanced treatment system was constructed for antibiotic production wastewater treatment. Compared with conventional ozone, ozone MNBs exhibit excellent treatment efficiency for oxytetracycline (OTC) degradation and toxicity decrease. Notably, this study identifies the overlooked singlet oxygen (1O2) for the first time as a crucial active species in the ozone MNB system through probe and electron paramagnetic resonance methods. Subsequently, the oxidation mechanisms of OTC by ozone MNBs are systematically investigated. Owing to the high reactivity of OTC toward 1O2, ozone MNBs enhance the selective and anti-interference performance of OTC degradation in raw OTC production wastewater with complex matrixes. This study provides insights into the mechanism of ozone MNB-enhanced pollutant degradation and a new perspective for the efficient treatment of high-concentration industrial wastewater using ozone MNBs. In addition, this study presents a promising technology with scientific guidance for the treatment of antibiotic production wastewater.
Collapse
Affiliation(s)
- Lan Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou510275, China
| | - Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou510275, China
| | - Fan Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou510006, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou510275, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou510275, China
| |
Collapse
|
6
|
Yu M, Feng L, Hua Y, Tang A, Yang H. Understanding the Nanoscale Affinity between Dissolved Organic Matter and Noncrystalline Mineral with the Implication for Water Treatment. Inorg Chem 2023; 62:13130-13139. [PMID: 37532281 DOI: 10.1021/acs.inorgchem.3c02093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
In recent decades, the concentration of dissolved organic matter (DOM) in aquatic ecosystems has gradually increased, leading to water pollution problems. Understanding the interfacial chemical processes of DOM on natural minerals is important to the exploration of high-efficiency absorbents. However, studying DOM chemical processes and adsorption mechanisms are still challenging due to the complex DOM structure and environmental system. Hence, we characterized the microstructure changes after the formation of amorphous calcium phosphate (ACP) at the interface of montmorillonite (Mt) minerals in a simulated environment system. Combined with atomic force microscopy and density functional theory (DFT) simulation, the mechanism of interfacial interaction between Mt-ACP and DOM was characterized at the molecular level. Moreover, we further evaluated the adsorption behavior of Mt-ACP as a potential adsorbent for organic matter. The comprehensive investigation of humic acid adsorption, intermolecular force, and DFT simulation is conducive to our understanding of the interfacial interaction mechanism between organic matter and noncrystalline minerals in aquatic environments and provides new perspectives on the application of clay-based mineral materials in pollutant removal under exposure from DOM.
Collapse
Affiliation(s)
- Menghan Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Li Feng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yicheng Hua
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Chen X, Chen Y, Lin H, Liu Z, Peng C, Xu X, Jia J, Zhang M, Liu C. In situ and self-adaptive BOD bioreaction sensing system based on environmentally domesticated microbial populations. Talanta 2023; 261:124671. [PMID: 37201342 DOI: 10.1016/j.talanta.2023.124671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Biochemical oxygen demand (BOD) is a water quality parameter of vital importance. Rapid BOD analysis methods have emerged to simplify the five-day BOD (BOD5) measurement protocol. However, their universal implementations are restricted by the tricky environmental matrix (including environmental microbes, contaminants, ionic compositions, etc.). Here, an in situ and self-adaptive BOD bioreaction sensing system consisting of a "gut-like" microfluidic coil bioreactor with self-renewed biofilm was proposed for the establishment of a rapid, resilient and reliable BOD determination method. With the spontaneous surface adhesion of environmental microbial populations, the biofilm was colonized in situ on the inner surface of the microfluidic coil bioreactor. Exploiting the environmental domestication during every real sample measurement, the biofilm was capable of self-renewal to adapt to the environmental changes and exhibited representative biodegradation behaviors. The aggregated abundant, adequate and adapted microbial populations in the BOD bioreactor rendered a total organic carbon (TOC) removal rate of 67.7% within a short hydraulic retention time of 99 s. As validated by an online BOD prototype, exceptional analytical performance was achieved in terms of reproducibility (relative standard deviation of 3.7%), survivability (inhibition by pH and metal ion interference of <20%) and accuracy (relative error of -5.9% to 9.7%). This work rediscovered the interactive effects of the environmental matrix on BOD assays and demonstrated an instructive attempt by making use of the environment to develop practical online BOD monitoring devices for water quality assessments.
Collapse
Affiliation(s)
- Xiaoting Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Yiyuan Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Huizhen Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Ziye Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Ci'en Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Xiaolong Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Jianbo Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Mengchen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| | - Changyu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
8
|
Nie Y, Zhang Y, Nie X, Tian X, Dai C, Shi J. Colloidal iron species driven enhanced H 2O 2 decomposition into hydroxyl radicals for efficient removal of methylene blue from water. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130949. [PMID: 36860077 DOI: 10.1016/j.jhazmat.2023.130949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Colloids are wide-spread in natural waters and colloid-facilitated transport via adsorption was established as the most important mechanism for the mobilization of aqueous contaminants. This study reports another possible, but reasonable, role of colloids for the contaminants driven by redox reactions. Under the same conditions (pH 6.0, 0.3 ml 30% H2O2, and 25 °C), the degradation efficiencies of methylene blue (MB) at 240 min over Fe colloid, Fe ion, Fe oxide and Fe(OH)3 were 95.38%, 42.66%, 4.42% and 9.40%. We suggested that, Fe colloid can promote the H2O2 based in-situ chemical oxidation process (ISCO) compared with other iron species such as Fe(Ⅲ) ion, Fe oxide and Fe(OH)3 in natural water. Furthermore, the MB removal via adsorption by Fe colloid was only 1.74% at 240 min. Hence, the occurrence, behavior and fate of MB in Fe colloid containing natural water system mainly depends on the reduction-oxidation rather than adsorption-desorption process. Based on the mass balance of colloidal iron species and characterization of iron configurations distribution, Fe oligomers were the active and dominant components for Fe colloid-driven enhanced H2O2 activation among three types of Fe species. The quick and steady conversion of Fe(III) to Fe(II) was proven to be reason why Fe colloid can efficiently react with H2O2 to produce hydroxyl radicals.
Collapse
Affiliation(s)
- Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yuge Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xueyu Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Chu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Jianbo Shi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|