1
|
Ye J, Zhang Y, Gao Y, Li C, Zou B, Cheng R, Chi B, Xue X, Domingo-Félez C. Impacts of environmentally persistent free radicals on the denitrification toxicity of photoaged tire wear particles in estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138623. [PMID: 40381342 DOI: 10.1016/j.jhazmat.2025.138623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
The widespread detection of tire wear particles (TWPs) in estuaries has raised concerns about their potential environmental hazards. However, knowledge of photoaging-induced environmentally persistent free radicals (EPFRs) formation on TWPs in estuarine environments and their impact on sediment denitrification remains limited. This study investigated the formation of EPFRs on TWP during photoaging in estuarine environments and evaluated their effects on sediment denitrification and nitrous oxide (N2O) accumulation. Sixty days of illumination increased EPFR concentration on TWPs by 373 %, with the generated EPFRs persisting in sediments for over 20 days. Exposure to pristine TWP (PTWP) reduced denitrification rates by 10.3 ± 5.6 % and increased N2O accumulation by 18.3 ± 4.5 %. Further exposure to photoaged TWP (ATWP) under 10-60 days of illumination expanded denitrification suppression and N2O accumulation to 28.1 ± 7.1-42.5 ± 6.6 % and 18.8 ± 4.3-31.7 ± 4.6 %, respectively. EPFRs exacerbated the accumulation of reactive nitrogen species in sediment and compromised the antioxidant systems. Structural equation modeling confirmed that EPFRs indirectly suppressed denitrification rates by directly impairing microbial processes involved in carbon metabolism and electron transfer. This study is the first to report that the formation of EPFRs enhances the negative effects of ATWP on the sediment's nitrogen cycle, offering valuable insights for assessing the ecological risks associated with TWP.
Collapse
Affiliation(s)
- Jinyu Ye
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Yuhan Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuan Gao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Chen Li
- Wenzhou Environmental Technology Co., Ltd, Wenzhou 325088, China
| | - Baoping Zou
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Ruotong Cheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Baoyan Chi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiangdong Xue
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China.
| | - Carlos Domingo-Félez
- James Watt School of Engineering, University of Glasgow, G12 8QQ, United Kingdom
| |
Collapse
|
2
|
Zhu X, Lin F, Sun J, Li X, Zhu G, Lu Y, Sun L, Wang H. Effects of Weak Electric Fields on the Denitrification Performance of Pseudomonas stutzeri: Insights into Enzymes and Metabolic Pathways. Microorganisms 2024; 12:1218. [PMID: 38930600 PMCID: PMC11205929 DOI: 10.3390/microorganisms12061218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Enhanced denitrification has been reported under weak electric fields. However, it is difficult to investigate the mechanism of enhanced denitrification due to the complex interspecific interactions of mixed-culture systems. In this study, Pseudomonas stutzeri, capable of denitrification under anaerobic conditions, was selected for treating low COD/N (2.0, ratio between concentration of chemical oxygen demand and NO3--N) artificial wastewater under constant external voltages of 0.2, 0.4, and 0.6 V. The results revealed that P. stutzeri exhibited the highest efficiency in nitrate reduction at 0.2 V. Moreover, the maximum nitrate removal rate was 15.96 mg/(L·h) among the closed-circuit groups, 19.39% higher than that under the open-circuit group. Additionally, a notable reduction in nitrite accumulation was observed under weak electric fields. Enzyme activity analysis showed that the nitrate reductase activities were significantly increased among the closed-circuit groups, while nitrite reductase activities were inhibited. Transcriptomic analysis indicated that amino acid metabolism, carbohydrate metabolism, and energy metabolism were increased, enhancing the resistance of P. stutzeri to environmental stress and the efficiency of carbon source utilization for denitrification. The current study examined the impacts of weak electric fields on enzyme activities and microbial metabolic pathways and offers valuable insights into the mechanism by which denitrification is enhanced by weak electric fields.
Collapse
Affiliation(s)
- Xuyan Zhu
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (X.Z.); (F.L.); (J.S.); (X.L.); (Y.L.); (L.S.)
| | - Feng Lin
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (X.Z.); (F.L.); (J.S.); (X.L.); (Y.L.); (L.S.)
| | - Ji Sun
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (X.Z.); (F.L.); (J.S.); (X.L.); (Y.L.); (L.S.)
| | - Xin Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (X.Z.); (F.L.); (J.S.); (X.L.); (Y.L.); (L.S.)
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (X.Z.); (F.L.); (J.S.); (X.L.); (Y.L.); (L.S.)
| | - Yongze Lu
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (X.Z.); (F.L.); (J.S.); (X.L.); (Y.L.); (L.S.)
| | - Liwei Sun
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (X.Z.); (F.L.); (J.S.); (X.L.); (Y.L.); (L.S.)
| | - Hongyang Wang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
3
|
She Z, Wang J, Pan X, Ma D, Gao Y, Wang S, Chuai X, Mu Y, Yue Z. Multi-omics insights into biogeochemical responses to organic matter addition in an acidic pit lake: Implications for bioremediation. WATER RESEARCH 2024; 254:121404. [PMID: 38442608 DOI: 10.1016/j.watres.2024.121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Acidic pit lakes (APLs) emerge as reservoirs of acid mine drainage in flooded open-pit mines, representing extreme ecosystems and environmental challenges worldwide. The bioremediation of these oligotrophic waters necessitates the addition of organic matter, but the biogeochemical response of APLs to exogenous organic matter remains inadequately comprehended. This study delves into the biogeochemical impacts and remediation effects of digestate-derived organic matter within an APL, employing a multi-omics approach encompassing geochemical analyses, amplicon and metagenome sequencing, and ultra-high resolution mass spectrometry. The results indicated that digestate addition first stimulated fungal proliferation, particularly Ascomycetes and Basidiomycetes, which generated organic acids through lignocellulosic hydrolysis and fermentation. These simple compounds further supported heterotrophic growth, including Acidiphilium, Acidithrix, and Clostridium, thereby facilitating nitrate, iron, and sulfate reduction linked with acidity consumption. Nutrients derived from digestate also promoted the macroscopic development of acidophilic algae. Notably, the increased sulfate reduction-related genes primarily originated from assimilatory metabolism, thus connecting sulfate decrease to organosulfur increase. Assimilatory and dissimilatory sulfate reduction collectively contributed to sulfate removal and metal fixation. These findings yield multi-omics insights into APL biogeochemical responses to organic matter addition, enhancing the understanding of carbon-centered biogeochemical cycling in extreme ecosystems and guiding organic amendment-based bioremediation in oligotrophic polluted environments.
Collapse
Affiliation(s)
- Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Ding Ma
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yijun Gao
- Luohe Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Hefei, Anhui 230009, China
| | - Shaoping Wang
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Ma'anshan, Anhui 243000, China
| | - Xin Chuai
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Ma'anshan, Anhui 243000, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
4
|
Li X, Qi M, Li Q, Wu B, Fu Y, Liang X, Yin G, Zheng Y, Dong H, Liu M, Hou L. Acidification Offset Warming-Induced Increase in N 2O Production in Estuarine and Coastal Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4989-5002. [PMID: 38442002 DOI: 10.1021/acs.est.3c10691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Global warming and acidification, induced by a substantial increase in anthropogenic CO2 emissions, are expected to have profound impacts on biogeochemical cycles. However, underlying mechanisms of nitrous oxide (N2O) production in estuarine and coastal sediments remain rarely constrained under warming and acidification. Here, the responses of sediment N2O production pathways to warming and acidification were examined using a series of anoxic incubation experiments. Denitrification and N2O production were largely stimulated by the warming, while N2O production decreased under the acidification as well as the denitrification rate and electron transfer efficiency. Compared to warming alone, the combination of warming and acidification decreased N2O production by 26 ± 4%, which was mainly attributed to the decline of the N2O yield by fungal denitrification. Fungal denitrification was mainly responsible for N2O production under the warming condition, while bacterial denitrification predominated N2O production under the acidification condition. The reduced site preference of N2O under acidification reflects that the dominant pathways of N2O production were likely shifted from fungal to bacterial denitrification. In addition, acidification decreased the diversity and abundance of nirS-type denitrifiers, which were the keystone taxa mediating the low N2O production. Collectively, acidification can decrease sediment N2O yield through shifting the responsible production pathways, partly counteracting the warming-induced increase in N2O emissions, further reducing the positive climate warming feedback loop.
Collapse
Affiliation(s)
- Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Mengting Qi
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuxuan Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Boshuang Wu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Yuxuan Fu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| |
Collapse
|
5
|
Xie L, Yang B, Xu J, Dan SF, Ning Z, Zhou J, Kang Z, Lu D, Huang H. Effects of intensive oyster farming on nitrogen speciation in surface sediments from a typical subtropical mariculture bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170092. [PMID: 38246374 DOI: 10.1016/j.scitotenv.2024.170092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
The spatial-temporal distributions of various nitrogen (N) species in surface sediments were examined in a typical subtropical mariculture bay (Maowei Sea) in the northern Beibu Gulf to assess the impact of intensive oyster culture activities on sedimentary N speciation. The results indicated that the mean contents of total nitrogen (TN), extractable (labile) nitrogen (LN) and residual nitrogen (RN) in the surface sediments were 33.3 ± 15.5 μmol g-1, 13.8 ± 1.3 μmol g-1 and 19.5 ± 15.0 μmol g-1, respectively, which lacked significant seasonal variability (P > 0.05). Four forms of LN, namely ion extractable form (IEF-N), weak acid extractable form (WAEF-N), strong alkali extractable form (SAEF-N) and strong oxidant extractable form (SOEF-N) were identified based on sequential extraction. SOEF-N was the dominant form of LN, accounting for 67.8 ± 2.5 % and 63.7 ± 5.9 % in summer and winter, respectively. Spatially, the contents of sedimentary TN, LN, RN, WAEF-N and SOEF-N in intensive mariculture areas (IMA) were significantly higher than those in non-intensive mariculture areas (NIMA) during summer (P < 0.05). Stable nitrogen isotope (δ15N) mixing model revealed that shellfish biodeposition was the predominant source of sedimentary TN in IMA with a contribution of 67.8 ± 23.0 %, approximately 5.4 times that of NIMA (12.6 ± 3.3 %). Significant positive correlations (P < 0.05) were observed between most forms of N species (WAEF-N, SOEF-N, LN and RN) and shellfish-biodeposited N in the surface sediments during summer, indicating that intensive oyster farming greatly enhanced sedimentary TN accumulation.
Collapse
Affiliation(s)
- Lei Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Bin Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China.
| | - Jie Xu
- Center for Regional Ocean, Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Taipa, Macau
| | - Solomon Felix Dan
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Zhiming Ning
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Jiaodi Zhou
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Zhenjun Kang
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Dongliang Lu
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Haifang Huang
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
6
|
Shu W, Zhang Q, Audet J, Li Z, Leng P, Qiao Y, Tian C, Chen G, Zhao J, Cheng H, Li F. Non-negligible N 2O emission hotspots: Rivers impacted by ion-adsorption rare earth mining. WATER RESEARCH 2024; 251:121124. [PMID: 38237464 DOI: 10.1016/j.watres.2024.121124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Rare earth mining causes severe riverine nitrogen pollution, but its effect on nitrous oxide (N2O) emissions and the associated nitrogen transformation processes remain unclear. Here, we characterized N2O fluxes from China's largest ion-adsorption rare earth mining watershed and elucidated the mechanisms that drove N2O production and consumption using advanced isotope mapping and molecular biology techniques. Compared to the undisturbed river, the mining-affected river exhibited higher N2O fluxes (7.96 ± 10.18 mmol m-2d-1 vs. 2.88 ± 8.27 mmol m-2d-1, P = 0.002), confirming that mining-affected rivers are N2O emission hotspots. Flux variations scaled with high nitrogen supply (resulting from mining activities), and were mainly attributed to changes in water chemistry (i.e., pH, and metal concentrations), sediment property (i.e., particle size), and hydrogeomorphic factors (e.g., river order and slope). Coupled nitrification-denitrification and N2O reduction were the dominant processes controlling the N2O dynamics. Of these, the contribution of incomplete denitrification to N2O production was greater than that of nitrification, especially in the heavily mining-affected reaches. Co-occurrence network analysis identified Thiomonas and Rhodanobacter as the key genus closely associated with N2O production, suggesting their potential roles for denitrification. This is the first study to elucidate N2O emission and influential mechanisms in mining-affected rivers using combined isotopic and molecular techniques. The discovery of this study enhances our understanding of the distinctive processes driving N2O production and consumption in highly anthropogenically disturbed aquatic systems, and also provides the foundation for accurate assessment of N2O emissions from mining-affected rivers on regional and global scales.
Collapse
Affiliation(s)
- Wang Shu
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China
| | - Qiuying Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Joachim Audet
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, Aarhus 8000, Denmark
| | - Zhao Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Peifang Leng
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunfeng Qiao
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Tian
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Chen
- Department of Civil and Environmental Engineering, Florida A&M University (FAMU)-Florida State University (FSU) Joint College of Engineering, 32310, United States
| | - Jun Zhao
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fadong Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
7
|
Gan X, Hu H, Fu Q, Zhu J. Nitrate reduction coupling with As(III) oxidation in neutral As-contaminated paddy soil preserves nitrogen, reduces N 2O emissions and alleviates As toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169360. [PMID: 38104836 DOI: 10.1016/j.scitotenv.2023.169360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
In arsenic (As)-contaminated paddy soil, microbial-driven nitrate (NO3-) reduction coupled with arsenite (As(III)) oxidation can reduce As toxicity, but the whereabouts of NO3- remain unclear. In this study, the experiments were established using selective streptomycin (STP) and cyclohexylamine to inhibit bacterial and fungal functional responses, respectively, and metagenomic sequencing techniques were used to explain the biological mechanisms of NO3- reduction coupled with As(III) oxidation in neutral As-contaminated paddy soil. The results indicated that fungal denitrification resulted in stronger nitrous oxide (N2O) emissions (321.6 μg kg-1) than bacterial denitrification (175.9 μg kg-1) in neutral As-contaminated paddy soil, but NO3- reduction coupled with As(III) oxidation reduced the N2O emissions. Only adding STP led to ammonium (NH4+) generation (17.7 mg kg-1), and simultaneously more NH4+ appeared in NO3- reduction coupled with As(III) oxidation; this may be because it improved the electron transfer efficiency by 18.2 %. Achromobacter was involved in denitrification coupled with As(III) oxidation. Burkholderiales was responsible for NO3- reduction to NH4+ coupled with As(III) oxidation. This study provided a theoretical basis for NO3- reduction coupled with As(III) oxidation reducing N2O emissions, promoting the reduction of NO3- to NH4+, and reducing As toxicity in paddy soil.
Collapse
Affiliation(s)
- Xuelian Gan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Ma X, Li Y, Wang L, Niu L, Shang J, Zheng J. Hypoxia and salinity constrain the sediment microbiota-mediated N removal potential in an estuary: A multi-trophic interrelationship perspective. WATER RESEARCH 2024; 248:120872. [PMID: 38006831 DOI: 10.1016/j.watres.2023.120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Reactive nitrogen (N) enrichment is a common environmental problem in estuarine ecosystems, while the microbial-mediated N removal process is complicated for other multi-environmental factors. Therefore, A systematic investigation is necessary to understand the multi-trophic microbiota-mediated N removal characteristics under various environmental factors in estuaries. Here, we studied how multiple factors affect the multi-trophic microbiota-mediated N removal potential (denitrification and anammox) and N2O emission along a river-estuary-bay continuum in southeastern China using the environmental DNA (eDNA) approach. Results suggested that hypoxia and salinity were the dominant environmental factors affecting multi-trophic microbiota-mediated N removal in the estuary. The synergistic effect of hypoxia and salinity contributed to the loss of taxonomic (MultiTaxa) and phylogenetic (MultiPhyl) diversity across multi-trophic microbiota and enhanced the interdependence among multi-trophic microbiota in the estuary. The N removal potential calculated as the activities of key N removal enzymes was also significantly constrained in the estuary (0.011), compared with the river (0.257) and bay (0.461). Structural equation modeling illustrated that metazoans were central to all sediment N removal potential regulatory pathways. The top-down forces (predation by metazoans) restrained the growth of heterotrophic bacteria, which may affect microbial N removal processes in the sediment. Furthermore, we found that the hypoxia and salinity exacerbated the N2O emission in the estuary. This study clarifies that hypoxia and salinity constrain estuarine multi-trophic microbiota-mediated N removal potential and highlights the important role of multi-trophic interactions in estuarine N removal, providing a new perspective on mitigating estuarine N accumulation.
Collapse
Affiliation(s)
- Xin Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; Research Institute of Mulan Ecological River, Putian 351100, China.
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing 210098, China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Research Institute of Mulan Ecological River, Putian 351100, China.
| | - Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jinhai Zheng
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China; Research Institute of Mulan Ecological River, Putian 351100, China
| |
Collapse
|
9
|
Cheng M, Song J, Li W, Zhao Y, Zhang G, Chen Y, Gao H. Potentilla parvifolia strongly influenced soil microbial community and environmental effect along an altitudinal gradient in central Qilian Mountains in western China. Ecol Evol 2023; 13:e10685. [PMID: 38020704 PMCID: PMC10645544 DOI: 10.1002/ece3.10685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The Qilian Mountains (QLMs) form an important ecological security barrier in western China and a priority area for biodiversity conservation. Potentilla parvifolia is a widespread species in the mid-high altitudes of the QLMs and has continuously migrated to higher altitudes in recent years. Understanding the effects of P. parvifolia on microbial community characteristics is important for exploring future changes in soil biogeochemical processes in the QLMs. This study found that P. parvifolia has profound effects on the community structure and ecological functions of soil microorganisms. The stability and complexity of the root zone microbial co-occurrence network were significantly higher than those of bare soils. There was a distinct altitudinal gradient in the effect of P. parvifolia on soil microbial community characteristics. At an elevation of 3204 m, P. parvifolia promoted the accumulation of carbon, nitrogen, and phosphorus and increased sucrase activity and soil C/N while significantly improving the community richness index of fungi (p < .05) compared with that of bacteria and the relative abundance of Ascomycota. The alpha diversity of fungi in the root zone soil of P. parvifolia was also significantly increased at 3550 m altitude. Furthermore, the community similarity distance matrix of fungi showed an evident separation at 3204 m. However, at an altitude of 3750 m, P. parvifolia mainly affected the bacterial community. Potentilla parvifolia increased the bacterial community richness. This is in agreement with the findings based on the functional prediction that P. parvifolia favors the growth and enrichment of denitrifying communities at 3550 and 3750 m. The results provide a scientific basis for predicting the evolutionary trends of the effects of P. parvifolia on soil microbial communities and functions and have important implications for ecological governance in the QLMs.
Collapse
Affiliation(s)
- Miaomiao Cheng
- College of Life Sciences and Engineering, Hexi University, Key Laboratory of the Hexi Corridor Resources Utilization of GansuZhangyeChina
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Jinge Song
- School of StomatologyLanzhou UniversityLanzhouChina
| | - Weikun Li
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Yiming Zhao
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and EngineeringLanzhouChina
| | - Yong Chen
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Haining Gao
- College of Life Sciences and Engineering, Hexi University, Key Laboratory of the Hexi Corridor Resources Utilization of GansuZhangyeChina
| |
Collapse
|
10
|
Zhou M, Guan X, Deng T, Hu R, Qian L, Yang X, Wu B, Li J, He Q, Shu L, Yan Q, He Z. Synthetic phylogenetically diverse communities promote denitrification and stability. ENVIRONMENTAL RESEARCH 2023; 231:116184. [PMID: 37207729 DOI: 10.1016/j.envres.2023.116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Denitrification is an important process of the global nitrogen cycle as some of its intermediates are environmentally important or related to global warming. However, how the phylogenetic diversity of denitrifying communities affects their denitrification rates and temporal stability remains unclear. Here we selected denitrifiers based on their phylogenetic distance to construct two groups of synthetic denitrifying communities: one closely related (CR) group with all strains from the genus Shewanella and the other distantly related (DR) group with all constituents from different genera. All synthetic denitrifying communities (SDCs) were experimentally evolved for 200 generations. The results showed that high phylogenetic diversity followed by experimental evolution promoted the function and stability of synthetic denitrifying communities. Specifically, the productivity and denitrification rates were significantly (P < 0.05) higher with Paracocus denitrificans as the dominant species (since the 50th generation) in the DR community than those in the CR community. The DR community also showed significantly (t = 7.119, df = 10, P < 0.001) higher stability through overyielding and asynchrony of species fluctuations, and showed more complementarity than the CR group during the experimental evolution. This study has important implications for applying synthetic communities to remediate environmental problems and mitigate greenhouse gas emissions.
Collapse
Affiliation(s)
- Min Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ting Deng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lu Qian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xueqin Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China; College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
11
|
Zhu Z, Li X, Bu Q, Yan Q, Wen L, Chen X, Li X, Yan M, Jiang L, Chen G, Li S, Gao X, Zeng G, Liang J. Land-Water Transport and Sources of Nitrogen Pollution Affecting the Structure and Function of Riverine Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2726-2738. [PMID: 36746765 DOI: 10.1021/acs.est.2c04705] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The characterization of variations in riverine microbiota that stem from contaminant sources and transport modes is important for understanding biogeochemical processes. However, the association between complex anthropogenic nitrogen pollution and bacteria has not been extensively investigated owing to the difficulties faced while determining the distribution of nitrogen contaminants in watersheds. Here, we employed the Soil and Water Assessment Tool alongside microbiological analysis to explore microbial characteristics and their responses to complex nitrogen pollution patterns. Significant variations in microbial communities were observed in sub-basins with distinct land-water pollution transport modes. Point source-dominated areas (PSDAs) exhibited reduced microbial diversity, high number of denitrification groups, and increased nitrogen cycling compared with others. The negative relative deviations (-3.38) between the measured and simulated nitrate concentrations in PSDAs indicated that nitrate removal was more effective in PSDAs. Pollution sources were also closely associated with microbiota. Effluents from concentrated animal feeding operations were the primary factors relating to the microbiota compositions in PSDAs and balanced areas. In nonpoint source-dominated areas, contaminants from septic tanks become the most relevant sources to microbial community structures. Overall, this study expands our knowledge regarding microbial biogeochemistry in catchments and beyond by linking specific nitrogen pollution scenarios to microorganisms.
Collapse
Affiliation(s)
- Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Qiurong Bu
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Qingcheng Yan
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Liqun Wen
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Xiaolei Chen
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Gaojie Chen
- School of Mathematics, Hunan University, Changsha 410082, P. R. China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| |
Collapse
|