1
|
Yao L, Yu Y, Xu X, Du Z, Yang T, Hu J, Huang H. In-situ construction of WS 2/ZIF-8 composites with an electron-rich interface for enhancing nitrogen photofixation. J Colloid Interface Sci 2024; 654:189-200. [PMID: 37839236 DOI: 10.1016/j.jcis.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Photocatalytic nitrogen reduction reaction (PNRR) is an environmentally friendly synthesis method. It has been regarded as a promising approach for future NH3 preparation, which can reduce the natural fuel consumption and pollution of the Haber Bosch process. Nevertheless, this method exists poor activity for mass production, so it is urgent but challenging to explore highly efficient catalysts. Here, the novel WS2/ZIF-8 composites are reported, DFT and XPS indicate the transfer direction of electrons is from ZIF-8 to WS2, forming an electron-rich interface between WS2 and ZIF-8, thus it endows the more powerful photocatalytic nitrogen reduction ability for 2-WS2/ZIF-8 than monomer material. Meanwhile, 2-WS2/ZIF-8 exhibits admirable photocatalytic nitrogen reduction performance under real and simulated sunlight or in tap water, further attesting its excellent stability and practicability.
Collapse
Affiliation(s)
- Lin Yao
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Yanming Yu
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Xin Xu
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Zhenhang Du
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Tao Yang
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, PR China.
| | - Jie Hu
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Hao Huang
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
2
|
Dang Q, Zhang W, Liu J, Wang L, Wu D, Wang D, Lei Z, Tang L. Bias-free driven ion assisted photoelectrochemical system for sustainable wastewater treatment. Nat Commun 2023; 14:8413. [PMID: 38110421 PMCID: PMC10728197 DOI: 10.1038/s41467-023-44155-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
Photoelectrochemical (PEC) systems have emerged as a prominent renewable energy-based technology for wastewater treatment, offering sustainable advantages such as eliminating dependence on fossil fuels or grid electricity compared to traditional electrochemical treatment methods. However, previous PEC systems often overlook the potential of ions present in wastewater as an alternative to externally applied bias voltage for enhancing carrier separation efficiency. Here we report a bias-free driven ion assisted photoelectrochemical (IAPEC) system by integration of an electron-ion acceptor cathode, which leverages its fast ion-electron coupling capability to significantly enhance the separation of electrons and holes at the photoanode. We demonstrate that Prussian blue analogues (PBAs) can serve as robust and reversible electron-ion acceptors that provide reaction sites for photoelectron coupling cations, thus driving the hole oxidation to produce strong oxidant free radicals at photoanode. Our IAPEC system exhibits superior degradation performance in wastewater containing chloride medium. This indicates that, in addition to the cations (e.g., Na+) accelerating the electron transfer rate, the presence of Cl- ions further enhance efficient and sustainable wastewater treatment. This work highlights the potential of utilizing abundant sodium chloride in seawater as a cost-effective additive for wastewater treatment, offering crucial insights into the use of local materials for effective, low-carbon, and sustainable treatment processes.
Collapse
Affiliation(s)
- Qi Dang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, China
| | - Wei Zhang
- Department of Chemistry, IRIS Adlershof & The Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Jiqing Liu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, China
| | - Liting Wang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, China
| | - Deli Wu
- College of Environmental & Engineering, Tongji University, 200092, Shanghai, China
| | - Dejin Wang
- School of Resources and Environment, Anqing Normal University, 246011, Anqing, China
| | - Zhendong Lei
- College of Environmental & Engineering, Tongji University, 200092, Shanghai, China.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, China.
- School of Resources and Environment, Anqing Normal University, 246011, Anqing, China.
| |
Collapse
|
3
|
Jiang P, Zhou T, Bai J, Zhang Y, Li J, Zhou C, Zhou B. Nitrogen-containing wastewater fuel cells for total nitrogen removal and energy recovery based on Cl•/ClO• oxidation of ammonia nitrogen. WATER RESEARCH 2023; 235:119914. [PMID: 37028212 DOI: 10.1016/j.watres.2023.119914] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The excess nitrogen discharge into water bodies has resulted in extensive water pollution and human health risks, which has become a critical global issue. Moreover, nitrogenous wastewater contains considerable chemical energy contributed by organic pollutants and nitrogenous compounds. Therefore, the treatment of various kinds of nitrogen-containing wastewater for nitrogen removal and energy recovery is of significance. Biological methode and advanced oxidation processes (AOPs) are the main methods for nitrogen removal. However, biological treatment is easily inhibited by high-salinity, high ammonia nitrogen (NH3-N/NH4+-N), nitrite and toxic organics in wastewater, which limits its application. AOPs mainly induce in situ generation of highly reactive species, such as hydroxyl radical (HO•), sulfate radical (SO4•-) and chlorine radicals (Cl•, ClO•, Cl2•-), for nitrogen removal. Nevertheless, HO• shows low reactivity and N2 selectivity towards NH3-N/NH4+-N oxidation, and SO4•- also demonstrates unsatisfactory NH3-N/NH4+-N removal. It has been shown that Cl•/ClO• can efficiently remove NH3-N/NH4+-N with high N2 selectivity. The generation of Cl•/ClO• can be triggered by various techniques, among which the PEC technique shows great potential due to its higher efficiency for Cl•/ClO• generation and eco-friendly approach for pollutants degradation and energy recovery by utilizing solar energy. Cl•/ClO• oxidation of NH3-N/NH4+-N and nitrate nitrogen (NO3--N) reduction can be strengthened through the design of photoanode and cathode materials, respectively. Coupling with this two pathways, an exhaustive total nitrogen (TN) removal system is designed for complete TN removal. When introducing the mechanism into photocatalytic fuel cells (PFCs), the concept of nitrogen-containing wastewater fuel cells (NFCs) is proposed to treat several typical types of nitrogen-containing wastewater, achieving high-efficiency TN removal, organics degradation, toxic chlorate control, and energy recovery simultaneously. Recent research progress in this field is reviewed, summarized and discussed, and in-depth perspectives are proposed, providing new ideas for the resource treatment of nitrogen-containing wastewater.
Collapse
Affiliation(s)
- Panyu Jiang
- School of Environmental Science and Engineering, Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China
| | - Tingsheng Zhou
- School of Environmental Science and Engineering, Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China.
| | - Jing Bai
- School of Environmental Science and Engineering, Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yan Zhang
- School of Environmental Science and Engineering, Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China
| | - Jinhua Li
- School of Environmental Science and Engineering, Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China
| | - Changhui Zhou
- School of Environmental Science and Engineering, Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
4
|
Ti3+ self-doped and nitrogen-annealed TiO2 nanocone arrays photoanode for efficient visible-LED-light-driven photoelectrocatalytic degradation of sulfamethazine. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Liu X, Wang Y, Wang Q, Yang W. Chloroplast inspired Z-scheme photocatalyst for efficient degradation of antibiotics: synergistic effect of full-visible light response, multi-channel electron transport and enhanced molecular oxygen activation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Efficient Bias-Free Degradation of Sulfamethazine by TiO2 Nanoneedle Arrays Photoanode and Co3O4 Photocathode System under LED-Light Irradiation. Catalysts 2023. [DOI: 10.3390/catal13020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Solving high electrical-energy input for pollutants degradation is one of the core requirements for the practical application of photoelectrocatalytic (PEC) technology. Herein, we developed a self-driven dual-photoelectrode PEC system (TiO2 NNs-Co3O4) composed of a TiO2 nanoneedle arrays (TiO2 NNs) photoanode and Co3O4 photocathode for the first time. Under light-emitting-diode (LED) illumination, the bias-free TiO2 NNs-Co3O4 PEC system exhibited excellent PEC performance, with an internal bias as high as 0.19 V, achieving near complete degradation (99.62%) of sulfamethazine (SMT) with a pseudo-first-order rate constant of 0.042 min−1. The influences of solution pH, typical inorganic anions, natural organic matter, and initial SMT concentration on the PEC performance were investigated. Moreover, the main reactive oxygen species (h+, •OH, •O2−) in the dual-photoelectrode PEC system for SMT decomposition were elaborated. The practical application feasibility for efficient water purification of this unbiased PEC system was evaluated. It was proved that the TiO2 NNs photoanode provided a negative bias while the Co3O4 photocathode provided a positive bias for the photoanode, which made this system operate without external bias. This work elucidated the cooperative mechanism of photoelectrodes, providing guidance to develop a sustainable, efficient, and energy-saving PEC system for wastewater treatment.
Collapse
|