1
|
O’Connell DW, Mccammon C, Byrne JM, Jensen MM, Thamdrup B, Bruun Hansen HC, Postma D, Jakobsen R. Isotopic Exchange between Aqueous Fe(II) and Solid Fe(III) in Lake Sediment─A Kinetic Assemblage Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5534-5544. [PMID: 40067284 PMCID: PMC11948465 DOI: 10.1021/acs.est.4c07369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025]
Abstract
The catalytic effect of aqueous Fe(II) (Fe2+aq) on the transformation of Fe(oxyhydr)oxides has been extensively studied in the laboratory. It involves the transfer of electrons between Fe2+aq and Fe-(oxyhydr)oxides, rapid atomic exchange of Fe between the two states, and recrystallization of the Fe-oxides into more stable Fe-(oxyhydr)oxides. The potential occurrence of these reactions in natural soils and sediments can have an important impact on biogeochemical cycling of iron, carbon, and phosphorus. We investigated the possible isotopic exchange between Fe2+aq and sedimentary Fe(III) in Fe-Si-C-rich lake sediments. 57Fe Mössbauer spectroscopy was used to evaluate Fe mineral speciation in unaltered lake sediments. Unaltered and oxidized sediment laboratory incubations were coupled with a classical kinetic approach that allows a quantitative description of the reactivity of assemblages of Fe-(oxyhydr)oxides found in sediments. Specifically, unaltered and oxidized sediment samples were separately incubated with an 55Fe2+aq-enriched solution and exchange was observed between 55Fe2+aq and sedimentary Fe(III), highest in the top of the sediment and decreasing with depth with the 55Fe2+aq tracer distributed within the bulk of the sedimentary Fe(III) phase. Our results indicate that atomic exchange between Fe2+aq and sedimentary Fe(III) occurs in natural sediments with electrons transferred from the Fe(III)-particle to Fe(III)-particle via Fe2+aq intermediates.
Collapse
Affiliation(s)
- David W. O’Connell
- Department
of Civil, Structural and Environmental Engineering, Trinity College Dublin, College Green, Museum Building, D02
PN40 Dublin 2, Ireland
- Department
of Plant and Environmental Sciences, University
of Copenhagen, DK-1871 Copenhagen, Denmark
| | - Catherine Mccammon
- Bayerisches
Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
| | - James M. Byrne
- School
of Earth Sciences, University of Bristol, BS8 1RJ Bristol, U.K.
| | - Marlene Mark Jensen
- Department
of Chemical and Biochemical Engineering Bio Conversions, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Bo Thamdrup
- Nordic Center
for Earth Evolution, Institute of Biology, University of Southern Denmark, DK 5230 Odense M, Denmark
| | | | - Dieke Postma
- GEUS,
Geological Survey of Denmark and Greenland, DK-1350 Copenhagen, Denmark
| | - Rasmus Jakobsen
- GEUS,
Geological Survey of Denmark and Greenland, DK-1350 Copenhagen, Denmark
| |
Collapse
|
2
|
Ding L, Han B, Jia R, Yang X, Liang X, Guo X. Molecular Insights into the Synergistic Inhibition of Microplastics-Derived Dissolved Organic Matter and Anions on the Transformation of Ferrihydrite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4104-4112. [PMID: 39973252 DOI: 10.1021/acs.est.4c11745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Ferrihydrite (Fh), as a ubiquitous iron (oxyhydr)oxide, plays an essential role in nutrient cycling and pollutant transformation due to its high surface area and diversified reaction sites. In the natural environment, Fh transformation could be easily influenced by coexisting components (particularly dissolved organic matter (DOM) and anions). As a new and important carbon source, microplastic-derived DOM (MP-DOM) directly or indirectly affects the morphology and fate of Fh, but limited knowledge exists about the combined effect of MP-DOM and anions on Fh transformation. Herein, this study elucidates the joint effects of polystyrene DOM (PS-DOM) and anions (such as Cl-, SO42-, and PO43-) on Fh transformation. Single anions (especially PO43-) were shown to inhibit the transformation of Fh to hematite (Hm) by hindering the dissolution and recrystallization of Fe(III). However, the inhibitory effect was strongly enhanced when PS-DOM and anions coexisted, which is attributed to their synergetic effects on inhibiting dissolution/recrystallization by occupying more active sites and hindering electron transfer. Furthermore, Fh transformation was predominantly controlled by PS-DOM, especially those containing high-unsaturation, high-oxidation-state, and O-rich phenolic compounds. These findings provide a new perspective on the significance of considering the joint effects of DOM and anions in evaluating the transformation of iron minerals.
Collapse
Affiliation(s)
- Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bing Han
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rongrong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural and Forestry Carbon Sequestration and Pollution Control in Arid and Semi-arid Region, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural and Forestry Carbon Sequestration and Pollution Control in Arid and Semi-arid Region, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Chen Y, Quan Y, Liu Y, Yuan M, Wang J, Chen C, Huang C, Fang X, Zhang J, Feng X, Tan W, Li J, Yin H. Effects of dimethylarsenate coprecipitation with ferrihydrite on Fe(II)-induced mineral transformation and the release of dimethylarsenate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125593. [PMID: 39734042 DOI: 10.1016/j.envpol.2024.125593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Organoarsenicals are toxic pollutants of global concern, and their environmental geochemical behavior might be greatly controlled by iron (Fe) (hydr)oxides through coprecipitation, which is rarely investigated. Here, the effects of the incorporation of dimethylarsenate (DMAs(V)), a typical organoarsenical, into the ferrihydrite (Fh) structure on the mineral physicochemical properties and Fe(II)-induced phase transformation of DMAs(V)-Fh coprecipitates with As/Fe molar ratios up to 0.0876 ± 0.0036 under anoxic conditions and the accompanying DMAs(V) release were investigated. The presence of DMAs(V) during Fh formation gradually decreases the mineral crystallinity. With increasing DMAs(V) content, the specific surface areas of the coprecipitates are decreased owing to particle aggregation, while the micropore sizes are negligible changed. Fourier transformed infrared (FTIR) and As K-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy show that, part of DMAs(V) binds to Fh surfaces in the coprecipitates by forming bidentate binuclear inner-sphere complexes through As-O-Fe bonds. During the reaction of the coprecipitate with 1 mM Fe(II) for 336 h, DMAs(V) inhibits the Fh transformation to goethite. No goethite forms at pH 4; at pH 7 low content of DMAs(V) hinders the further conversion of lepidocrocite to goethite, while high content of DMAs(V) completely inhibits goethite formation. DMAs(V) in the coprecipitate is continuously released into the solution, with the released proportion being generally increased with the increase of DMAs(V) content, pH and Fe(II) addition, probably owing to the desorption of weak inner- and outer-sphere DMAs(V) complexes bound on the Fh surfaces upon the Fh aging and transformation to lepidocrocite and goethite. These results provide deep insights into the fate and mobility of organoarsenical pollutants mediated by Fe (hydr)oxides in natural environments, and help design effective and ecofriendly remediation strategies for As polluted soils and sediments.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Yueyang Quan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Yipu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Meng Yuan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Jiaqi Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Chuan Chen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuanqin Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China.
| | - Xiaoyu Fang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100039, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China.
| |
Collapse
|
4
|
Hu L, Xu X, Gui X, Liang J, Zhao L, Qiu H, Cao X. Time-dependent redistribution of soil arsenic induced by transformation of iron species during zero-valent iron biochar composites amendment: Effects on the bioaccessibility of As in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176956. [PMID: 39423896 DOI: 10.1016/j.scitotenv.2024.176956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/01/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Zero-valent iron biochar composites (ZVI/BC) are considered as effective amendments for arsenic (As)-contaminated soils. However, the mechanisms of transformation of various soil As species during ZVI/BC amendments remain unclear. This study investigated As transformation in four soils (namely, GX, ZJ, HB, and HN) treated with ZVI/BC for 65 days under two soil moisture conditions, unsaturated and oversaturated. Results showed that the 65-day treatment was divided into two stages based on the variation of labile As content. Within 2 days (stage 1), ZVI/BC addition quickly reduced labile As content by 5.91-90.3 % in soils under unsaturated conditions. During days 2-65 (stage 2), labile As ultimately decreased by 0.06-0.31 mg/kg in GX, ZJ, and HB while increasing by 22.1 mg/kg in HN soil, due to its lower pH value and Fe content. The variations of labile As were attributed to changes in multiple Fe minerals and associated As species. In stage 1, the corrosion of ZVI/BC generated amorphous Fe oxides to immobilize labile As, resulting in the accumulation of meta-stable As. In stage 2, amorphous Fe oxides were transformed into crystalline Fe oxides, resulting in the release and re-precipitation of As along with transformation, thus redistributing immobilized As into labile and stable As, which was evidenced by multiple methods, including chemical extraction, XRD, and TEM-EDX. The elevated soil moisture condition would enhance the corrosion of ZVI/BC in stage 1, further forming a reductive environment to facilitate the transformation of Fe minerals in stage 2. Besides, As bioaccessibility in soils was reduced by 10.8-38.7 % after ZVI/BC treatment in in-vitro gastrointestinal simulations. Overall, our study revealed the time-dependent transformation mechanism of soil As species and associated Fe minerals under different soil moisture with ZVI/BC treatments, and highlighted the effectiveness of ZVI/BC as a long-term amendment for As-contaminated soils.
Collapse
Affiliation(s)
- Liyang Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyang Gui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center for Solid Waste Treatment and Resource Recovery, Shanghai 200240, China.
| |
Collapse
|
5
|
Zhao Z, Shu J, Zeng X, Chen M, Hu L, Deng Z, Ma L, Wang S, Yang Y, Wei H. Iron separation from iron-rich manganese ore leachate: Comprehensive optimization of operating parameters and economic viability. CHEMOSPHERE 2024; 367:143608. [PMID: 39481487 DOI: 10.1016/j.chemosphere.2024.143608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
In the current electrolytic manganese industry, iron separation and reuse from iron-rich manganese ore leachate (IRMOL) has become one of the most pressing challenges. This study aimed to investigate the optimal conditions for iron separation from IRMOL and to assess the economic and practical advantages of iron separation or removal in industrial manufacturing. To identify more cost-effective and technologically advanced production circumstances, we examined five key elements that weaken Fe(OH)3 colloidal production conditions in enterprises: reaction temperature, pH, crystal species, aging and reaction time. The screening results showed that when the conditions were optimized, the efficiency of reducing manganese loss decreased from 6.15% to 4.69%. Additionally, the generation of iron-rich electrolytic manganese residue (IREMR) was decreased by 44.32%, and the filtration velocity of IREMR increased from 0.0030 to 0.0220 mL/(s·cm2) compared to the production conditions before optimization at the enterprises. Through multiphase equilibria modeling with Visual MINTEQ, we have determined that raising the temperature and pH levels increases the expenses associated with chemicals and energy usage and results in an elevation of Fe(OH)2+ concentration. This can lead to the creation of Fe(OH)3 colloidal, causing a high water content in IREMR, inefficient filtration, and significant loss of manganese. This strategy is highly significant for the production of electrolytic manganese and the reduction of electrolytic manganese residue.
Collapse
Affiliation(s)
- Zhisheng Zhao
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China; College of Carbon Neutrality Future Technology, Sichuan University, Sichuan, Chengdu, 610065, China.
| | - Jiancheng Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China.
| | - Xiangfei Zeng
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China.
| | - Mengjun Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China.
| | - Ling Hu
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China.
| | - Zongyu Deng
- Zunyi Manganese Day Magnetic Industry Group Co., Ltd, Zunyi, Guizhou, 563000, China.
| | - Liang Ma
- College of Carbon Neutrality Future Technology, Sichuan University, Sichuan, Chengdu, 610065, China.
| | - Shengjie Wang
- Guangxi Key Laboratory for High-value Utilization of Manganese Resources, college of Chemistry and Biological Engineering, Guangxi minzu normal University, Chongzuo, 532200, China.
| | - Yong Yang
- Daxin Manganese Mining Branch of South Manganese Group Limited, Chongzuo, 532315, China.
| | - Hanke Wei
- Daxin Manganese Mining Branch of South Manganese Group Limited, Chongzuo, 532315, China.
| |
Collapse
|
6
|
Dong Y, Wang J, Ma C, Thompson A, Liu C, Chen C. The Influence of Seawater on Fe(II)-Catalyzed Ferrihydrite Transformation and Its Subsequent Consequences for C Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19277-19288. [PMID: 39401941 DOI: 10.1021/acs.est.4c05300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Short-range-ordered minerals like ferrihydrite often bind substantial organic carbon (OC), which can be altered if the minerals transform. Such mineral transformations can be catalyzed by aqueous Fe(II) (Fe(II)aq) in redox-dynamic environments like coastal wetlands, which are inundated with seawater during storm surges or tidal events associated with sea-level rise. Yet, it is unknown how seawater salinity will impact Fe(II)-catalyzed ferrihydrite transformation or the fate of bound OC. We reacted ferrihydrite with Fe(II)aq under anoxic conditions in the absence and presence of dissolved organic matter (DOM). We compared treatments with no salts (DI water), NaCl-KCl salts, and artificial seawater mixes (containing Ca and Mg ions) with or without SO42-/HCO3-. Both XRD and Mössbauer showed that NaCl-KCl favored lepidocrocite formation, whereas Ca2+/Mg2+/SO42-/HCO3- ions in seawater overrode the effects of NaCl-KCl and facilitated goethite formation. We found that the highly unsaturated and phenolic compounds (HuPh) of DOM selectively bound to Fe minerals, promoting nanogoethite formation in seawater treatments. Regardless of salt presence, only 5-9% of Fe-bound OC was released during ferrihydrite transformation, enriching HuPh relative to aliphatics in solution. This study offers new insights into the occurrence of (nano)goethite and the role of Fe minerals in OC protection in coastal wetlands.
Collapse
Affiliation(s)
- Yanjun Dong
- Tianjin University, School of Earth System Science, Tianjin 300072, China
| | - Jialin Wang
- Tianjin University, School of Earth System Science, Tianjin 300072, China
| | - Chao Ma
- Tianjin University, School of Earth System Science, Tianjin 300072, China
| | - Aaron Thompson
- University of Georgia, Department of Crop and Soil Sciences, Athens, Georgia 30602, United States
| | - Congqiang Liu
- Tianjin University, School of Earth System Science, Tianjin 300072, China
| | - Chunmei Chen
- Tianjin University, School of Earth System Science, Tianjin 300072, China
| |
Collapse
|
7
|
Hayatifar A, Gravelle S, Moreno BD, Schoepfer VA, Lindsay MBJ. Probing atomic-scale processes at the ferrihydrite-water interface with reactive molecular dynamics. GEOCHEMICAL TRANSACTIONS 2024; 25:10. [PMID: 39460808 PMCID: PMC11514817 DOI: 10.1186/s12932-024-00094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Interfacial processes involving metal (oxyhydr)oxide phases are important for the mobility and bioavailability of nutrients and contaminants in soils, sediments, and water. Consequently, these processes influence ecosystem health and functioning, and have shaped the biological and environmental co-evolution of Earth over geologic time. Here we employ reactive molecular dynamics simulations, supported by synchrotron X-ray spectroscopy to study the molecular-scale interfacial processes that influence surface complexation in ferrihydrite-water systems containing aqueousMoO 4 2 - . We validate the utility of this approach by calculating surface complexation models directly from simulations. The reactive force-field captures the realistic dynamics of surface restructuring, surface charge equilibration, and the evolution of the interfacial water hydrogen bond network in response to adsorption and proton transfer. We find that upon hydration and adsorption, ferrihydrite restructures into a more disordered phase through surface charge equilibration, as revealed by simulations and high-resolution X-ray diffraction. We observed how this restructuring leads to a different interfacial hydrogen bond network compared to bulk water by monitoring water dynamics. Using umbrella sampling, we constructed the free energy landscape of aqueousMoO 4 2 - adsorption at various concentrations and the deprotonation of the ferrihydrite surface. The results demonstrate excellent agreement with the values reported by experimental surface complexation models. These findings are important as reactive molecular dynamics opens new avenues to study mineral-water interfaces, enriching and refining surface complexation models beyond their foundational assumptions.
Collapse
Affiliation(s)
- Ardalan Hayatifar
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Simon Gravelle
- University Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France
| | | | - Valerie A Schoepfer
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Matthew B J Lindsay
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| |
Collapse
|
8
|
Ding W, Bao S, Zhang Y, Chen B, Wang Z. Antimony(V) Adsorption and Partitioning by Humic Acid-Modified Ferrihydrite: Insights into Environmental Remediation and Transformation Processes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4172. [PMID: 39274562 PMCID: PMC11396405 DOI: 10.3390/ma17174172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/16/2024]
Abstract
Antimony (Sb) migration in soil and water systems is predominantly governed by its adsorption onto ferrihydrite (FH), a process strongly influenced by natural organic matter. This study investigates the adsorption behavior, stability, and mechanism of FH and FH-humic acid (FH-HA) complexes on Sb(V), along with the fate of adsorbed Sb(V) during FH aging. Batch adsorption experiments reveal that initial pH and concentration significantly influence Sb(V) sorption. Lower pH levels decrease adsorption, while higher concentrations enhance it. Sb(V) adsorption increases with prolonged contact time, with FH exhibiting a higher adsorption capacity than FH-HA complexes. Incorporating HA onto FH surfaces reduces reactive adsorption sites, decreasing Sb(V) adsorption. Adsorbed FH-HA complexes exhibit a higher specific surface area than co-precipitated FH-HA, demonstrating stronger Sb(V) adsorption capacity under various conditions. X-ray photoelectron spectroscopy (XPS) confirms that Sb(V) adsorption primarily occurs through ligand exchange, forming Fe-O-Sb complexes. HA inhibits the migration of Sb(V), thereby enhancing its retention within the FH and FH-HA complexes. During FH transformation, a portion of Sb(V) may replace Fe(III) within converted iron minerals. However, the combination of relatively high adsorption capacity and significantly lower desorption rates makes adsorbed FH-HA complexes promising candidates for sustained Sb adsorption over extended periods. These findings enhance our understanding of Sb(V) behavior and offer insights for effective remediation strategies in complex environmental systems.
Collapse
Affiliation(s)
- Wei Ding
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shenxu Bao
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yimin Zhang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Bo Chen
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhanhao Wang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
9
|
Fan J, Arrazolo LK, Du J, Xu H, Fang S, Liu Y, Wu Z, Kim JH, Wu X. Effects of Ionic Interferents on Electrocatalytic Nitrate Reduction: Mechanistic Insight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12823-12845. [PMID: 38954631 DOI: 10.1021/acs.est.4c03949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nitrate, a prevalent water pollutant, poses substantial public health concerns and environmental risks. Electrochemical reduction of nitrate (eNO3RR) has emerged as an effective alternative to conventional biological treatments. While extensive lab work has focused on designing efficient electrocatalysts, implementation of eNO3RR in practical wastewater settings requires careful consideration of the effects of various constituents in real wastewater. In this critical review, we examine the interference of ionic species commonly encountered in electrocatalytic systems and universally present in wastewater, such as halogen ions, alkali metal cations, and other divalent/trivalent ions (Ca2+, Mg2+, HCO3-/CO32-, SO42-, and PO43-). Notably, we categorize and discuss the interfering mechanisms into four groups: (1) loss of active catalytic sites caused by competitive adsorption and precipitation, (2) electrostatic interactions in the electric double layer (EDL), including ion pairs and the shielding effect, (3) effects on the selectivity of N intermediates and final products (N2 or NH3), and (4) complications by the hydrogen evolution reaction (HER) and localized pH on the cathode surface. Finally, we summarize the competition among different mechanisms and propose future directions for a deeper mechanistic understanding of ionic impacts on eNO3RR.
Collapse
Affiliation(s)
- Jinling Fan
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Leslie K Arrazolo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jiaxin Du
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huimin Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Siyu Fang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yue Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
10
|
Wang K, Holm PE, van Genuchten CM. Alkali Extraction of Arsenic from Groundwater Treatment Sludge: An Essential Initial Step for Arsenic Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11175-11184. [PMID: 38857431 PMCID: PMC11210475 DOI: 10.1021/acs.est.4c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 06/12/2024]
Abstract
Arsenic (As)-bearing Fe(III) precipitate groundwater treatment sludge has traditionally been viewed by the water sector as a disposal issue rather than a resource opportunity, partly due to assumptions of the low value of As. However, As has now been classified as a Critical Raw Material (CRM) in many regions, providing new incentives to recover As and other useful components of the sludge, such as phosphate (P) and the reactive hydrous ferric oxide (HFO) sorbent. Here, we investigate alkali extraction to separate As from a variety of field and synthetic As-bearing HFO sludges, which is a critical first step to enable sludge upcycling. We found that As extraction was most effective using NaOH, with the As extraction efficiency increasing up to >99% with increasing NaOH concentrations (0.01, 0.1, and 1 M). Extraction with Na2CO3 and Ca(OH)2 was ineffective (<5%). Extraction time (hour, day, week) played a secondary role in As release but tended to be important at lower NaOH concentrations. Little difference in As extraction efficiency was observed for several key variables, including sludge aging time (50 days) and cosorbed oxyanions (e.g., Si, P). However, the presence of ∼10 mass% calcite decreased As release from field and synthetic sludges considerably (<70% As extracted). Concomitant with As release, alkali extraction promoted crystallization of poorly ordered HFO and decreased particle specific surface area, with structural modifications increasing with NaOH concentration and extraction time. Taken together, these results provide essential information to inform and optimize the design of resource recovery methods for As-bearing treatment sludge.
Collapse
Affiliation(s)
- Kaifeng Wang
- Department
of Geochemistry, Geological Survey of Denmark
and Greenland (GEUS), Øster Voldgade 10, Copenhagen1350, Denmark
| | - Peter E. Holm
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Thorvaldsensvej
40, 1871 Frederiksberg
C, Denmark
| | - Case M. van Genuchten
- Department
of Geochemistry, Geological Survey of Denmark
and Greenland (GEUS), Øster Voldgade 10, Copenhagen1350, Denmark
| |
Collapse
|
11
|
Jin X, Guo C, Tao X, Li X, Xie Y, Dang Z, Lu G. Divergent redistribution behavior of divalent metal cations associated with Fe(II)-mediated jarosite phase transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124004. [PMID: 38641039 DOI: 10.1016/j.envpol.2024.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The Fe(II)/Fe(III) cycle is an important driving force for dissolution and transformation of jarosite. Divalent heavy metals usually coexist with jarosite; however, their effects on Fe(II)-induced jarosite transformation and different repartitioning behavior during mineral dissolution-recrystallization are still unclear. Here, we investigated Fe(II)-induced (1 mM Fe(II)) jarosite conversion in the presence of Cd(II), Mn(II), Co(II), Ni(II) and Pb(II) (denoted as Me(II), 1 mM), respectively, under anaerobic condition at neutral pH. The results showed that all co-existing Me(II) retarded Fe(II)-induced jarosite dissolution. In the Fe(II)-only system, jarosite first rapidly transformed to lepidocrocite (an intermediate product) and then slowly to goethite; lepidocrocite was the main product. In Fe(II)-Cd(II), -Mn(II), and -Pb(II) systems, coexisting Cd(II), Mn(II) and Pb(II) retarded the above process and lepidocrocite was still the dominant conversion product. In Fe(II)-Co(II) system, coexisting Co(II) promoted lepidocrocite transformation into goethite. In Fe(II)-Ni(II) system, jarosite appeared to be directly converted into goethite, although small amounts of lepidocrocite were detected in the final product. In all treatments, the appearance or accumulation of lepidocrocite may be also related to the re-adsorption of released sulfate. By the end of reaction, 6.0 %, 4.0 %, 76.0 % 11.3 % and 19.2 % of total Cd(II), Mn(II), Pb(II) Co(II) and Ni(II) were adsorbed on the surface of solid products. Up to 49.6 %, 44.3 %, and 21.6 % of Co(II), Ni(II), and Pb(II) incorporated into solid product, with the reaction indicating that the dynamic process of Fe(II) interaction with goethite may promote the continuous incorporation of Co(II), Ni(II), and Pb(II).
Collapse
Affiliation(s)
- Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, 528000, Foshan, China
| | - Yingying Xie
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Guangdong, Chaozhou, 521041, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Namayandeh A, Zhang W, Watson SK, Borkiewicz OJ, Bompoti NM, Chrysochoou M, Penn RL, Michel FM. Goethite and Hematite Nucleation and Growth from Ferrihydrite: Effects of Oxyanion Surface Complexes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5952-5962. [PMID: 38506754 DOI: 10.1021/acs.est.3c09955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The presence of oxyanions, such as nitrate (NO3-) and phosphate (PO43-), regulates the nucleation and growth of goethite (Gt) and hematite (Hm) during the transformation of ferrihydrite (Fh). Our previous studies showed that oxyanion surface complexes control the rate and pathway of Fh transformation to Gt and Hm. However, how oxyanion surface complexes control the mechanism of Gt and Hm nucleation and growth during the Fh transformation is still unclear. We used synchrotron scattering methods and cryogenic transmission electron microscopy to investigate the effects of NO3- outer-sphere complexes and PO43- inner-sphere complexes on the mechanism of Gt and Hm formation from Fh. Our TEM results indicated that Gt particles form through a two-step model in which Fh particles first transform to Gt nanoparticles and then crystallographically align and grow to larger particles by oriented attachment (OA). In contrast, for the formation of Hm, imaging shows that Fh particles first aggregate and then transform to Hm through interface nucleation. This is consistent with our X-ray scattering results, which demonstrate that NO3- outer-sphere and PO43- inner-sphere complexes promote the formation of Gt and Hm, respectively. These results have implications for understanding the coupled interactions of oxyanions and iron oxy-hydroxides in Earth-surface environments.
Collapse
Affiliation(s)
- Alireza Namayandeh
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Wei Zhang
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven K Watson
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Olaf J Borkiewicz
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nefeli M Bompoti
- Department of Civil and Environmental Engineering, University of Massachusetts, Dartmouth, Massachusetts 02747, United States
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Maria Chrysochoou
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - R Lee Penn
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - F Marc Michel
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Division of Nanoscience, Academy of Integrated Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
13
|
Li Y, Zhang C, Yang M, Liu J, He H, Ma Y, Arai Y. Effects of carbonate on ferrihydrite transformation in alkaline media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:288-297. [PMID: 38258502 DOI: 10.1039/d3em00469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alkaline media widely exist in natural and engineered systems such as semiarid/arid areas, radioactive waste sites, and mine tailings. In these settings, the commonly occurring iron (oxyhydr)oxides differed in their ability to influence the fate of nutrients and contaminants. Due to the substantially increased atmospheric carbon dioxide (CO2) concentration, carbonate stands to increase in these media. However, how increasing carbonate affects the transformation of poorly crystalline iron (oxyhydr)oxides (e.g., two-line ferrihydrite) under alkaline conditions still remains unclear. Here, kinetics of ferrihydrite transformation were evaluated at pH ∼10 as a function of [carbonate] = 0-286 mM using synchrotron-based X-ray and vibrational spectroscopic techniques. The results showed that carbonate slowed down ferrihydrite transformation slightly and suppressed goethite formation, but promoted hematite formation regardless of its concentration. At low carbonate concentration (11.42 mM), the effect of carbonate on product formation was obvious due to the weak inner-sphere complex; however, at high carbonate concentration (80-286 mM), the effect was retarded because of the adsorption equilibrium of carbonate as well as the initial carbonate adsorption followed by desorption. Moreover, carbonate modified the morphology of hematite from rhombic to ellipsoidal to honeycomb and goethite from rod-like to needle-like to spindle-like due to the inner-sphere adsorption-desorption of carbonate and adsorption of hydroxyl ions on reactive sites of iron (oxyhydr)oxides in alkaline media. The results suggest that the concurrently increasing carbonate with enhanced atmospheric CO2 could control the transformation and occurrence of iron (oxyhydr)oxides in natural and engineered environments and have important implications for the biogeochemical cycles of iron and carbon.
Collapse
Affiliation(s)
- Ying Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chaoqun Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Meijun Yang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jing Liu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, 999078, Macau, China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yibing Ma
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
| | - Yuji Arai
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Adams FT, Bauer M, Levard C, Michel FM. Multivariate regression analysis of factors regulating the formation of synthetic aluminosilicate nanoparticles. NANOSCALE 2024. [PMID: 38381522 DOI: 10.1039/d4nr00473f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Interest is growing in nanoparticles made of earth abundant materials, like alumino(silicate) minerals. Their applications are expanding to include catalysis, carbon sequestration reactions, and medical applications. It remains unclear, however, what factors control their formation and abundance during laboratory synthesis or on a larger industrial scale. This work investigates the complex system of physicochemical conditions that influence the formation of nanosized alumino(silicate) minerals. Samples were synthesized and analyzed by powder X-ray diffraction, in situ and ex situ small angle X-ray scattering, and transmission electron microscopy. Regression analyses combined with linear combination fitting of powder diffraction patterns was used to model the influence of different synthesis conditions including concentration, hydrolysis ratio and rate, and Al : Si elemental ratio on the particle size of the initial precipitate and on the phase abundances of the final products. These models show that hydrolysis ratio has the strongest control on the overall phase composition, while the starting reagent concentration also plays a vital role. For imogolite nanotubes, we determine that increasing concentration, and relatively high or low hydrolysis limit nanotube production. A strong relationship is also observed between the distribution of nanostructured phases and the size of precursor particles. The confidences were >99% for all linear regression models and explained up to 85% of the data variance in the case of imogolite. Additionally, the models consistently predict resulting data from other experimental studies. These results demonstrate the use of an approach to understand complex chemical systems with competing influences and provide insight into the formation of several nanosized alumino(silicate) phases.
Collapse
Affiliation(s)
- Faisal T Adams
- Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - McNeill Bauer
- Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - F Marc Michel
- Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
15
|
Chi J, Ou Y, Li F, Zhang W, Zhai H, Liu T, Chen Q, Zhou X, Fang L. Cooperative roles of phosphate and dissolved organic matter in inhibiting ferrihydrite transformation and their distinct fates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168376. [PMID: 37952664 DOI: 10.1016/j.scitotenv.2023.168376] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Phosphate and dissolved organic matter (DOM) mediate the crystalline transformation of ferrihydrite catalyzed by Fe(II) in subsurface environments such as soils and groundwater. However, the cooperative mechanisms underlying the mediation of phosphate and DOM in crystalline transformation of ferrihydrite and the feedback effects on their own distribution and speciation remain unresolved. In this study, solid characterization indicates that phosphate and DOM can collectively inhibit the crystalline transformation of ferrihydrite to lepidocrocite and thus goethite, via synergetic effects of inhibiting recrystallization and electron transfer. Phosphate can be retained on the surface or transformed to a nonextractable form within Fe oxyhydroxides; DOM is either released into the solution or preserved in an extractable form, while it is not incorporated or retained in the interior. Element distribution and DOM composition analysis on Fe oxyhydroxides reveals even distribution of phosphate on the newly formed Fe oxyhydroxides, while the distribution of DOM depends on its specific species. Electrochemical and dynamic force spectroscopic results provide molecular-scale thermodynamic evidence explaining the inhibition of electron transfer between Fe(II) and ferrihydrite by phosphate and DOM, thus influecing the crystalline transformation of ferrihydrite and the distribution of phosphate and DOM. This study provides new insights into the coupled biogeological cycle of Fe with phosphate and DOM in aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Jialin Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yanan Ou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hang Zhai
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoxia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
16
|
Wang X, Jiang Z, Qian J, Fu W, Pan B. Structure Evolution of Iron (Hydr)oxides under Nanoconfinement and Its Implication for Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:826-835. [PMID: 38154031 DOI: 10.1021/acs.est.3c05760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
In the development of nanoenabled technologies for large-scale water treatment, immobilizing nanosized functional materials into the confined space of suitable substrates is one of the most effective strategies. However, the intrinsic effects of nanoconfinement on the decontamination performance of nanomaterials, particularly in terms of structural modulation, are rarely unveiled. Herein, we investigate the structure evolution and decontamination performance of iron (hydr)oxide nanoparticles, a widely used material for water treatment, when confined in track-etched (TE) membranes with channel sizes varying from 200 to 20 nm. Nanoconfinement drives phase transformation from ferrihydrite to goethite, rather than to hematite occurring in bulk systems, and the increase in the nanoconfinement degree from 200 to 20 nm leads to a significant drop in the fraction of the goethite phase within the aged products (from 41% to 0%). The nanoconfinement configuration is believed to greatly slow down the phase transformation kinetics, thereby preserving the specific adsorption of ferrihydrite toward As(V) even after 20-day aging at 343 K. This study unravels the structure evolution of confined iron hydroxide nanoparticles and provides new insights into the temporospatial effects of nanoconfinement on improving the water decontamination performance.
Collapse
Affiliation(s)
- Xuening Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhao Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Zhang D, Jin Y, Wang Y, Wang S, Xiao F, Wang Y, Wang D, Xu D, Wang F, Jia Y. The fate of arsenic during the crystallization process of Fe III oxyhydroxides: Effect of reaction media, pH value, and Fe/As molar ratio under relatively low arsenic loading. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167427. [PMID: 37774868 DOI: 10.1016/j.scitotenv.2023.167427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Understanding the nature of arsenic (As) adsorbed on FeIII oxyhydroxides, and the subsequent behavior of As during the crystallization process, is critical to predicting its fate in a range of natural and engineered settings. In this work, As adsorbed on FeIII oxyhydroxides formed in the different reaction media at different pH values were characterized with X-ray diffraction (XRD), Raman spectra, transmission electron microscopy (TEM), and extended X-ray absorption fine structure spectroscopy (EXAFS) to determine how As is redistributed during the crystallization process. Results showed that at pH 12, a quarter of the added As was still left in the liquid phase with the formation of goethite and hematite as the major and minor product. The concentration of As was found to be the lowest at pH 4 which is independent of the reaction media, indicating the importance of pH value in the crystallization process of the As adsorbed FeIII oxyhydroxides. Under acidic conditions, sulfate and chloride media favored the formation of goethite and hematite, respectively. Arsenic can indeed be incorporated into the structure of the formed goethite at pH 4. The morphology of the formed products changed to rhombus-like particles if both goethite and hematite appeared as the later as the dominant product.
Collapse
Affiliation(s)
- Danni Zhang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yuting Jin
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| | - Yumeng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; College of Energy and Power, Shenyang Institute of Engineering, Shenyang 110136, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Fan Xiao
- Shanxi Academy of Ecological Environmental Planning and Technology, Taiyuan 030002, China
| | - Ying Wang
- College of Ecology and Environment, NingXia University, Yinchuan 750021, China
| | - Duo Wang
- Liaoning Provincial Institute of Metrology, Shenyang 110004, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| | - Fuhui Wang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
18
|
Luo M, Zhang H, Ren Y, Zhou H, Zhou P, He CS, Xiong Z, Du Y, Liu Y, Lai B. In Situ Regulation of MnO 2 Structural Characteristics by Oxyanions to Boost Permanganate Autocatalysis for Phenol Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12847-12857. [PMID: 37578486 DOI: 10.1021/acs.est.3c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Oxyanions, a class of constituents naturally occurring in water, have been widely demonstrated to enhance permanganate (Mn(VII)) decontamination efficiency. However, the detailed mechanism remains ambiguous, mainly because the role of oxyanions in regulating the structural parameters of colloidal MnO2 to control the autocatalytic activity of Mn(VII) has received little attention. Herein, the origin of oxyanion-induced enhancement is systematically studied using theoretical calculations, electrochemical tests, and structure-activity relation analysis. Using bicarbonate (HCO3-) as an example, the results indicate that HCO3- can accelerate the degradation of phenol by Mn(VII) by improving its autocatalytic process. Specifically, HCO3- plays a significant role in regulating the structure of in situ produced MnO2 colloids, i.e., increasing the surface Mn(III)s content and restricting particle growth. These structural changes in MnO2 facilitate its strong binding to Mn(VII), thereby triggering interfacial electron transfer. The resultant surface-activated Mn(VII)* complexes demonstrate excellent degrading activity via directly seizing one electron from phenol. Further, other oxyanions with appropriate ionic potentials (i.e., borate, acetate, metasilicate, molybdate, and phosphate) exhibit favorable influences on the oxidative capability of Mn(VII) through an activation mechanism similar to that of HCO3-. These findings considerably improve our fundamental understanding of the oxidation behavior of Mn(VII) in actual water environments and provide a theoretical foundation for designing autocatalytically boosted Mn(VII) oxidation systems.
Collapse
Affiliation(s)
- Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Chen C, Dong Y, Thompson A. Electron Transfer, Atom Exchange, and Transformation of Iron Minerals in Soils: The Influence of Soil Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37449758 DOI: 10.1021/acs.est.3c01876] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Despite substantial experimental evidence of electron transfer, atom exchange, and mineralogical transformation during the reaction of Fe(II)aq with synthetic Fe(III) minerals, these processes are rarely investigated in natural soils. Here, we used an enriched Fe isotope approach and Mössbauer spectroscopy to evaluate how soil organic matter (OM) influences Fe(II)/Fe(III) electron transfer and atom exchange in surface soils collected from Luquillo and Calhoun Experimental Forests and how this reaction might affect Fe mineral composition. Following the reaction of 57Fe-enriched Fe(II)aq with soils for 33 days, Mössbauer spectra demonstrated marked electron transfer between sorbed Fe(II) and the underlying Fe(III) oxides in soils. Comparing the untreated and OM-removed soils indicates that soil OM largely attenuated Fe(II)/Fe(III) electron transfer in goethite, whereas electron transfer to ferrihydrite was unaffected. Soil OM also reduced the extent of Fe atom exchange. Following reaction with Fe(II)aq for 33 days, no measurable mineralogical changes were found for the Calhoun soils enriched with high-crystallinity goethite, while Fe(II) did drive an increase in Fe oxide crystallinity in OM-removed LCZO soils having low-crystallinity ferrihydrite and goethite. However, the presence of soil OM largely inhibited Fe(II)-catalyzed increases in Fe mineral crystallinity in the LCZO soil. Fe atom exchange appears to be commonplace in soils exposed to anoxic conditions, but its resulting Fe(II)-induced recrystallization and mineral transformation depend strongly on soil OM content and the existing soil Fe phases.
Collapse
Affiliation(s)
- Chunmei Chen
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yanjun Dong
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Aaron Thompson
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Notini L, Schulz K, Kubeneck LJ, Grigg ARC, Rothwell KA, Fantappiè G, ThomasArrigo LK, Kretzschmar R. A New Approach for Investigating Iron Mineral Transformations in Soils and Sediments Using 57Fe-Labeled Minerals and 57Fe Mössbauer Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37364169 DOI: 10.1021/acs.est.3c00434] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Iron minerals in soils and sediments play important roles in many biogeochemical processes and therefore influence the cycling of major and trace elements and the fate of pollutants in the environment. However, the kinetics and pathways of Fe mineral recrystallization and transformation processes under environmentally relevant conditions are still elusive. Here, we present a novel approach enabling us to follow the transformations of Fe minerals added to soils or sediments in close spatial association with complex solid matrices including other minerals, organic matter, and microorganisms. Minerals enriched with the stable isotope 57Fe are mixed with soil or sediment, and changes in Fe speciation are subsequently studied by 57Fe Mössbauer spectroscopy, which exclusively detects 57Fe. In this study, 57Fe-labeled ferrihydrite was synthesized, mixed with four soils differing in chemical and physical properties, and incubated for 12+ weeks under anoxic conditions. Our results reveal that the formation of crystalline Fe(III)(oxyhydr)oxides such as lepidocrocite and goethite was strongly suppressed, and instead formation of a green rust-like phase was observed in all soils. These results contrast those from Fe(II)-catalyzed ferrihydrite transformation experiments, where formation of lepidocrocite, goethite, and/or magnetite often occurs. The presented approach allows control over the composition and crystallinity of the initial Fe mineral, and it can be easily adapted to other experimental setups or Fe minerals. It thus offers great potential for future investigations of Fe mineral transformations in situ under environmentally relevant conditions, in both the laboratory and the field.
Collapse
Affiliation(s)
- Luiza Notini
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Katrin Schulz
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - L Joëlle Kubeneck
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Andrew R C Grigg
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Katherine A Rothwell
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Giulia Fantappiè
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Laurel K ThomasArrigo
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Ruben Kretzschmar
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| |
Collapse
|
21
|
Liu Y, Ding Y, Sheng A, Li X, Chen J, Arai Y, Liu J. Fe(II)-Catalyzed Transformation of Ferrihydrite with Different Degrees of Crystallinity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6934-6943. [PMID: 37078588 DOI: 10.1021/acs.est.3c00555] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Natural occurring ferrihydrite (Fh) nanoparticles have varying degrees of crystallinity, but how Fh crystallinity affects its transformation behavior remains elusive. Here, we investigated the Fe(II)-catalyzed transformation of Fh with different degrees of crystallinity (i.e., Fh-2h, Fh-12h, and Fh-85C). X-ray diffraction patterns of Fh-2h, Fh-12h, and Fh-85C exhibited two, five, and six diffraction peaks, respectively, indicating the order of crystallinity: Fh-2h < Fh-12h < Fh-85C. Fh with the lower crystallinity has a higher redox potential, corresponding to the faster Fe(II)-Fh interfacial electron transfer and Fe(III)labile production. With the increase of initial Fe(II) concentration ([Fe(II)aq]int.) from 0.2 to 5.0 mM, the transformation pathways of Fh-2h and Fh-12h change from Fh → lepidocrocite (Lp) → goethite (Gt) to Fh → Gt, but that of Fh-85C switches from Fh → Gt to Fh → magnetite (Mt). The changes are rationalized using a computational model that quantitatively describes the relationship between the free energies of formation for starting Fh and nucleation barriers of competing product phases. Gt particles from the Fh-2h transformation exhibit a broader width distribution than those from Fh-12h and Fh-85C. Uncommon hexagonal Mt nanoplates are formed from the Fh-85C transformation at [Fe(II)aq]int.= 5.0 mM. The findings are crucial to comprehensively understand the environmental behavior of Fh and other associated elements.
Collapse
Affiliation(s)
- Yuyan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuefei Ding
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Anxu Sheng
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoxu Li
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiawei Chen
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Yuji Arai
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Beijing 100871, China
| |
Collapse
|