1
|
Chen B, Chen J, Li G, An T. Research progress on secondary formation, photosensitive reaction mechanism and human health effects of chromophoric brown carbon. J Environ Sci (China) 2025; 151:310-330. [PMID: 39481942 DOI: 10.1016/j.jes.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 11/03/2024]
Abstract
Brown carbon (BrC) has attracted widespread attention because of its strong absorption of solar radiation in the ultraviolet-visible wavelength range, which causes adverse impacts on human health. Originally, BrC was a physically defined class of substances. However, current research has gradually shifted towards the identification of its chemical groups, because its light-absorbing capability, chemical properties and health effects mainly depend on the chemical composition of its chromophores. Therefore, this review mainly focuses on the chemical understanding of BrC based on chromophores, and the secondary formation mechanism of chromophores, photosensitized reactions, and human health effects of BrC were detailly summarized. Firstly, BrC chromophores are divided into five categories: nitrogen-heterocycles, nitrogen-chain, aromatic species, oligomers and sulfur-containing organic compounds. Different chromophore precursor species exhibit variations, and their formation mechanisms are also distinct. Secondly, BrC can trigger the production of secondary organic aerosol (SOA) precursors or cause SOA growth because BrC is an important component of light-absorbing particles formed during incomplete combustion of biomass and fossil fuels, potentially exerting adverse effects on human health. Finally, developing sufficiently separated methods for BrC and refining algorithms and machine learning can lead to a more effective understanding of the chemical composition of chromophores, thus enabling better evaluation of the atmospheric effects and health impacts of BrC. In all, this review provides new insights into the categories of BrC chromophores and new advance in secondary formation mechanisms, photosensitized reactions, and human health effects on the basis of chemical structures.
Collapse
Affiliation(s)
- Baihang Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Yang N, Wang J, Jacob DJ, Ye J, Sheng M, Niu M, Qin Y, Ge X, Sun Y, Wang Z, Wang Y, Wu F, Liu CQ, George C, Fu P. Aqueous production of sulfur-containing aerosols from nitroaromatic compounds and SO 2 in wintertime urban haze. Sci Bull (Beijing) 2025:S2095-9273(25)00241-5. [PMID: 40118726 DOI: 10.1016/j.scib.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 03/23/2025]
Abstract
Nighttime aqueous oxidation of fossil fuel emissions is a significant source of atmospheric secondary organic aerosols. However, the underlying mechanism of the aqueous processing remains unclear. Utilizing ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry of water-soluble organic carbon samples, we present field observations that reveal the aqueous-phase conversion of nitroaromatic compounds (NACs) and sulfur-containing aerosols from fossil fuel combustion at high relative humidity during a severe haze event in Beijing in the winter of 2016. We have confirmed that the ring-breaking oxidation of NACs can generate nitrous acid in the aqueous phase, which rapidly oxidizes sulfur dioxide (SO2) to sulfate. Subsequently, reactions between sulfate and unsaturated compounds contribute to the formation of aliphatic organosulfates. Our results elucidate a molecular-level understanding of the aqueous production of sulfur-containing aerosols from NACs and SO2 in wintertime urban haze.
Collapse
Affiliation(s)
- Ning Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Junfeng Wang
- School of Emergency Management, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Daniel J Jacob
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Jianhuai Ye
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Sheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Mutong Niu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yiming Qin
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yele Sun
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zifa Wang
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yuhang Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 02115, USA
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Christian George
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne, F-69626, France
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
3
|
Liu Y, Huang RJ, Lin C, Yuan W, Li YJ, Zhong H, Yang L, Wang T, Huang W, Xu W, Huang DD, Huang C. Nitrate-Photolysis Shortens the Lifetimes of Brown Carbon Tracers from Biomass Burning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:640-649. [PMID: 39729369 DOI: 10.1021/acs.est.4c06123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Biomass burning is an important source of brown carbon (BrC) aerosols, which influence climate by affecting the Earth's radiative balance. However, the transformation pathways of BrC chromophores, especially in the presence of photochemically active species, such as nitrate, are not well understood. In this study, the nitrate-mediated aqueous-phase photooxidation of three typical BrC chromophores from biomass burning was investigated, including 4-nitrocatechol, 3-nitrosalicylic acid, and 3,4-dinitrophenol. Variations in nitrate concentrations, pH, and temperatures were systematically examined to assess their impacts on the apparent photolysis rates of these BrC chromophores. The results show that increasing nitrate concentrations significantly enhances apparent photolysis rates to 3-3.5 times compared to nitrate-free conditions. Also, a temperature rise from 0 to 30 °C increases apparent photolysis rates by a factor of 1.3-2.5 for these chromophores. However, the effect of pH varies among these chromophores, depending on the substituents and their positions on the benzene ring. High-resolution mass spectrometric analysis suggests that the photooxidation of these chromophores initiates with the addition of nitro and/or hydroxyl groups to the benzene ring, followed by a ring-opening reaction and the formation of smaller, highly oxygenated molecules including formic acid, glyoxylic acid, malonic acid, and nitropropanoic acid. This study highlights the key role of nitrate in the aqueous-phase photooxidation of BrC, altering the aging pathways and shortening the atmospheric lifetimes of BrC. These results are of particular importance for a better understanding of BrC aging and its radiative forcing, given the increase of the nitrate mass fraction in aerosols of China in recent years.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunshui Lin
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wei Yuan
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yong Jie Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR 999078, China
| | - Haobin Zhong
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Lu Yang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ting Wang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wei Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wei Xu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Dan Dan Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Cheng Huang
- State Ecology and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China
| |
Collapse
|
4
|
Hagemann MJL, Chadwick L, Drake MJ, Hill DJ, Baker BC, Faul CFJ. High-Performance Dopamine-Based Supramolecular Bio-Adhesives. Macromol Rapid Commun 2024; 45:e2400345. [PMID: 38760014 PMCID: PMC11628360 DOI: 10.1002/marc.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The need for wound closure or surgical procedures has been commonly met by the application of sutures. Unfortunately, these are often invasive or subject to contamination. Alternative solutions are offered by surgical adhesives that can be applied and set without major disruption; a new class of supramolecular-based adhesives provides potential solutions to some of these challenges. In this study, a series of polymers utilizing dopamine as a self-assembling unit are synthesized. It is found that these motifs act as extremely effective adhesives, with control over the mechanical strength of the adhesion and materials' tensile properties enabled by changing monomer feed ratios and levels of cross-linking. These materials significantly outperform commercially available bio-adhesives, showing yield strengths after adhesion at least two times higher than that of BioGlue and Tisseel, as well as the ability to re-adhere with significant recovery of adhesion strength. Promisingly, the materials are shown to be non-cytotoxic, with cell viability > 90%, and able to perform in aqueous environments without significant loss in strength. Finally, the removal of the materials, is possible using benign organic solvents such as ethanol. These properties all demonstrate the effectiveness of the materials as potential bio-adhesives, with potential advantages for use in surgery.
Collapse
Affiliation(s)
| | - Lewis Chadwick
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Marcus J. Drake
- Department of Surgery and CancerImperial Collegedu Cane roadLondonW12 0HSUK
| | - Darryl J. Hill
- School of Cellular and Molecular MedicineUniversity of BristolBristolBS8 1TDUK
| | | | | |
Collapse
|
5
|
Dias P, Salam R, Moravcová M, Saadat S, Pourová J, Vopršalová M, Jirkovský E, Tebbens JD, Mladěnka P. 3-methoxycatechol causes vasodilation likely via K V channels: ex vivo, in silico docking and in vivo study. Vascul Pharmacol 2024; 156:107418. [PMID: 39159736 DOI: 10.1016/j.vph.2024.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Substituted catechols include both natural and synthetic compounds found in the environment and foods. Some of them are flavonoid metabolites formed by the gut microbiota which are absorbed afterwards. Our previous findings showed that one of these metabolites, 4-methylcatechol, exerts potent vasorelaxant effects in rats. In the current study, we aimed at testing of its 22 structural congeners in order to find the most potent structure and to investigate the mechanism of action. 3-methoxycatechol (3-MOC), 4-ethylcatechol, 3,5-dichlorocatechol, 4-tert-butylcatechol, 4,5-dichlorocatechol, 3-fluorocatechol, 3-isopropylcatechol, 3-methylcatechol and the parent 4-methylcatechol exhibited high vasodilatory activities on isolated rat aortic rings with EC50s ranging from ∼10 to 24 μM. Some significant sex-differences were found. The most potent compound, 3-MOC, relaxed also resistant mesenteric artery but not porcine coronary artery, and decreased arterial blood pressure in both male and female spontaneously hypertensive rats in vivo without affecting heart rate. It potentiated the vasodilation mediated by cAMP and cGMP, but did not impact L-type Ca2+-channels. By using two inhibitors, activation of voltage-gated potassium channels (KV) was found to be involved in the mechanism of action. This was corroborated by docking analysis of 3-MOC with the KV7.4 channel. None of the most active catechols decreased the viability of the A-10 rat embryonic thoracic aorta smooth muscle cell line. Our findings showed that various catechols can relax vascular smooth muscles and hence could provide templates for developing new antihypertensive vasodilator agents without affecting coronary circulation.
Collapse
MESH Headings
- Animals
- Vasodilation/drug effects
- Male
- Catechols/pharmacology
- Catechols/chemistry
- Molecular Docking Simulation
- Vasodilator Agents/pharmacology
- Vasodilator Agents/chemistry
- Female
- Rats, Inbred SHR
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Potassium Channels, Voltage-Gated/metabolism
- Potassium Channels, Voltage-Gated/antagonists & inhibitors
- Potassium Channels, Voltage-Gated/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Swine
- Dose-Response Relationship, Drug
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Hypertension/drug therapy
- Hypertension/physiopathology
- Hypertension/metabolism
- Arterial Pressure/drug effects
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Rats
- Sex Factors
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Disease Models, Animal
- Structure-Activity Relationship
- Cyclic GMP/metabolism
Collapse
Affiliation(s)
- Patrícia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
| | - Rudy Salam
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Saina Saadat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
6
|
Chen K, Yang D. Tandem MS Elucidation of the Late-Stage Degradation Mechanism of Nitroplasticizer. ACS OMEGA 2024; 9:36600-36608. [PMID: 39220529 PMCID: PMC11359627 DOI: 10.1021/acsomega.4c04923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Understanding the degradation behavior of nitroplasticizer (NP) and the subsequent production of nitro-organics is crucial for both environmental monitoring and material development. A nontargeted approach via LC-QTOF-MS was employed to thoroughly study the degradation mechanism of NP in its late aging stage. Both positive and negative modes of ESI were performed to increase the compound coverage. To shed light on the fragmentation behavior of NP degradants (e.g., compounds containing a high density of NO2 moieties and oxygen sites) in the positive mode, which is rarely reported, the high-resolution tandem MS information on precursor ions at m/z 251(+), 254(+), 266(+), and 270(+) and a pair of isomeric ions at m/z 284(+) was investigated to extract their common diagnostic ions and dissociation channels, including the neutral loss of 2,2-dinitropropanol, nitro-nitrite rearrangement, homolytic cleavage of NO2, and simple inductive cleavage. Additionally, leveraging the sensitivity for nitroaromatics in the negative polarity, negative ions m/z 182(-) and 233(-) are identified as dinitroaniline and dinitronaphthol, respectively, which confirm the secondary hydrolysis pathway of the antioxidant (e.g., N-phenyl-2-naphthylamine) postulated in our previous work. In addition to earlier findings, the detection of these eight degradants further supports the evidence of increased acid concentration and aging temperatures in the late-stage NP environment, which contribute to intricate degradation behaviors in different aging environments.
Collapse
Affiliation(s)
- Kitmin Chen
- MST-7: Engineered Materials,
Material Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dali Yang
- MST-7: Engineered Materials,
Material Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
7
|
Holder AL, Sullivan AP. Emissions, Chemistry, and the Environmental Impacts of Wildland Fire. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39133033 DOI: 10.1021/acs.est.4c07631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
|
8
|
Ossola R, Farmer D. The Chemical Landscape of Leaf Surfaces and Its Interaction with the Atmosphere. Chem Rev 2024; 124:5764-5794. [PMID: 38652704 PMCID: PMC11082906 DOI: 10.1021/acs.chemrev.3c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Atmospheric chemists have historically treated leaves as inert surfaces that merely emit volatile hydrocarbons. However, a growing body of evidence suggests that leaves are ubiquitous substrates for multiphase reactions-implying the presence of chemicals on their surfaces. This Review provides an overview of the chemistry and reactivity of the leaf surface's "chemical landscape", the dynamic ensemble of compounds covering plant leaves. We classified chemicals as endogenous (originating from the plant and its biome) or exogenous (delivered from the environment), highlighting the biological, geographical, and meteorological factors driving their contributions. Based on available data, we predicted ≫2 μg cm-2 of organics on a typical leaf, leading to a global estimate of ≫3 Tg for multiphase reactions. Our work also highlighted three major knowledge gaps: (i) the overlooked role of ambient water in enabling the leaching of endogenous substances and mediating aqueous chemistry; (ii) the importance of phyllosphere biofilms in shaping leaf surface chemistry and reactivity; (iii) the paucity of studies on the multiphase reactivity of atmospheric oxidants with leaf-adsorbed chemicals. Although biased toward available data, we hope this Review will spark a renewed interest in the leaf surface's chemical landscape and encourage multidisciplinary collaborations to move the field forward.
Collapse
Affiliation(s)
- Rachele Ossola
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| | - Delphine Farmer
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| |
Collapse
|
9
|
Lu H, Wang X, Cong Q, Chen X, Li Q, Li X, Zhong S, Deng H, Yan B. Research Progress on the Degradation of Organic Pollutants in Water by Activated Persulfate Using Biochar-Loaded Nano Zero-Valent Iron. Molecules 2024; 29:1130. [PMID: 38474642 DOI: 10.3390/molecules29051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Biochar (BC) is a new type of carbon material with a high specific surface area, porous structure, and good adsorption capacity, which can effectively adsorb and enrich organic pollutants. Meanwhile, nano zero-valent iron (nZVI) has excellent catalytic activity and can rapidly degrade organic pollutants through reduction and oxidation reactions. The combined utilization of BC and nZVI can not only give full play to their advantages in the adsorption and catalytic degradation of organic pollutants, but also help to reduce the agglomeration of nZVI, thus improving its efficiency in water treatment and providing strong technical support for water resources protection and environmental quality improvement. This article provides a detailed introduction to the preparation method and characterization technology, reaction mechanism, influencing factors, and specific applications of BC and nZVI, and elaborates on the research progress of BC-nZVI in activating persulfate (PS) to degrade organic pollutants in water. It has been proven experimentally that BC-nZVI can effectively remove phenols, dyes, pesticides, and other organic pollutants. Meanwhile, in response to the existing problems in current research, this article proposes future research directions and challenges, and summarizes the application prospects and development trends of BC-nZVI in water treatment. In summary, BC-nZVI-activated PS is an efficient technology for degrading organic pollutants in water, providing an effective solution for protecting water resources and improving environmental quality, and has significant application value.
Collapse
Affiliation(s)
- Hai Lu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xiaoyan Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Qiao Cong
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xinglin Chen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Qingpo Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xueqi Li
- Urban Construction College, Changchun University of Architecture, Changchun 130607, China
| | - Shuang Zhong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Huan Deng
- College of Visual Arts, Changchun Sci-Tech University, Changchun 130600, China
| | - Bojiao Yan
- College of Visual Arts, Changchun Sci-Tech University, Changchun 130600, China
| |
Collapse
|
10
|
Gong L, Qiu L, Xing X, Zhu J, Lu M, Dong F, Yu Y, Yu W. Coupling Fe-Co atomic pair to promote the selective reduction of nitroaromatics under mild conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169161. [PMID: 38092213 DOI: 10.1016/j.scitotenv.2023.169161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Selectively reducing nitroaromatics into aromatic amines will not only remove nitroaromatic pollutants in waste effluents to reduce environmental risks, but also yield important feedstocks for chemical industrial manufactures. In this study, a FeCo-co-embedded N-doped Carbon (FeCo-N-C) catalyst with Fe-Co atomic pair has been identified with favorable activity, superior selectivity, excellent reusability, as well as outstanding performance in the treatment of real water. The combined results from theoretical study and experimental tests indicate that the improved catalytic performance of FeCo-N-C is owing to the narrowed band gap and electron delocalization caused by the Fe-Co atomic pair which can improve electron transport in its catalytic reaction. The results of isotope experiments and H* quenching experiments confirm that H2O is the source of hydrogen in catalytic reduction of PNP. FeCo-N-C is identified as a superior catalyst to replace multitudinous currently used noble-metal catalysts for the selective catalytic reduction of nitroaromatics in wastewater treatment.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Leben Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Xiaoqian Xing
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Jieyun Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Mengzhi Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Feier Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Yan Yu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi 315300, People's Republic of China
| | - Weiting Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China.
| |
Collapse
|
11
|
Rana MS, Bradley ST, Guzman MI. Conversion of Catechol to 4-Nitrocatechol in
Aqueous Microdroplets Exposed to O 3 and NO 2. ACS ES&T AIR 2023; 1:80-91. [PMCID: PMC10863616 DOI: 10.1021/acsestair.3c00001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/28/2023] [Indexed: 12/22/2024]
Abstract
Catechol is a widespread atmospheric dihydroxybenzene present in vehicle emissions, biomass burning, and combustion pollution plumes. Although the daytime reactivity of catechol is controlled by ozone (O3) and hydroxyl radicals (HO), the action of nitrate radicals (NO3) on the surface of aqueous atmospheric particles should become significant at night. This work simulates nighttime interfacial chemistry between hydrated catechol and adsorbed NO3 to form 4-nitrocatechol during experiments lasting ≤1 μs. Surface-sensitive online electrospray ionization mass spectrometry (OESI-MS) examines the reaction on the water surface under variable ratios of [NO2] and [O3]. The produced 4-nitrocatechol is quantified by a standard addition in real-time experiments under [NO2]:[O3] ratios of 1:1, 2:1, 3:1, and 4:1. Three mechanisms contribute to produce 4-nitrocatechol: (1) electron and proton transfers from catechol to NO3, forming a semiquinone radical, (2) electrophilic NO3 attack to the ring to yield a cyclohexadienyl radical intermediate, and (3) electrophilic attack to the ring by nitronium ion (NO2+) formed at the interface of water by colliding N2O5(g) at low pH. Ozonolysis competes strongly with nitration when using [NO2]:[O3] ratios 1:1 or smaller. Instead, nighttime chemistry under higher molar ratios proceeds mainly by nitration with a maximum yield of 0.90 for [NO2]:[O3] = 4:1. The role of NO2:O3 molar ratios on the interfacial nitration of catechol emitted from combustion processes remains unexplored. The work reports that nitration becomes prevalent for molar ratios of NO2:O3 ≥ 2:1.
Collapse
Affiliation(s)
- Md Sohel Rana
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Seth T. Bradley
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Marcelo I. Guzman
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
12
|
Hazrah AS, Insausti A, Ma J, Al-Jabiri MH, Jäger W, Xu Y. Wetting vs Droplet Aggregation: A Broadband Rotational Spectroscopic Study of 3-Methylcatechol⋅⋅⋅Water Clusters. Angew Chem Int Ed Engl 2023; 62:e202310610. [PMID: 37697450 DOI: 10.1002/anie.202310610] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Two competing solvation pathways of 3-methylcatechol (MC), an atmospherically relevant aromatic molecule, with up to five water molecules were explored in detail by using a combination of broadband rotational spectroscopy and computational chemistry. Theoretically, two different pathways of solvation emerge: the commonly observed droplet pathway which involves preferential binding among the water molecules while the solute serves as an anchor point for the formation of a water cluster, and an unexpected wetting pathway which involves interactions between the water molecules and the aromatic face of MC, i.e., a wetting of the π-surface. Conclusive identification of the MC hydrate structures, and therefore the wetting pathway, was facilitated by rotational spectra of the parent MC hydrates and several H2 18 O and 13 C isotopologues which exhibit splittings associated with methyl internal rotation and/or water tunneling motions. Theoretical modelling and analyses offer insights into the tunneling and conversion barriers associated with the observed hydrate conformers and the nature of the non-covalent interactions involved in choosing the unusual wetting pathway.
Collapse
Affiliation(s)
- Arsh S Hazrah
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Current Address: Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Aran Insausti
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV-EHU), 48080, Bilbao, Spain
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jiarui Ma
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Mohamad H Al-Jabiri
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Wolfgang Jäger
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
13
|
Chen K, Edgar AS, Li ZH, Marina OC, Yang D. Roles of HNO x and Carboxylic Acids in the Thermal Stability of Nitroplasticizer. ACS OMEGA 2023; 8:14730-14741. [PMID: 37125136 PMCID: PMC10134467 DOI: 10.1021/acsomega.3c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
In the thermal aging of nitroplasticizer (NP), the produced nitrous acid (HONO) can decompose into reactive nitro-oxide species and nitric acid (HNO3). These volatile species are prone to cause cascaded deterioration of NP and give rise to various acidic constituents. To gain insight on the early stage of NP degradation, an adequate method for measuring changes in the concentrations of HONO, HNO3, and related acidic species is imperative. The typical assessment of acidity in nonaqueous solutions (i.e., acid number) cannot differentiate acidic species and thus presents difficulty in the measurement of HONO and HNO3 at a micromolar concentration level. Using liquid-liquid extraction and ion chromatography (IC), we developed a fast and unambiguous analytical method to accurately determine the concentration of HONO, HNO3, acetic/formic acids, and oxalic acid in aged NP samples. Given by the overlay analysis results of liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and IC, the prominent increase of produced HONO after the depletion of antioxidants is the primary cause of HNO3 formation in the late stage of NP degradation, which results in the acid-catalyzed hydrolysis of NP into 2,2-dinitropropanol and acetic/formic acids. Our study has demonstrated that the aging temperature plays a crucial role in accelerating the formation and decomposition of HONO, which consequently increases the acidity of aged NP samples and hence accelerates the hydrolyzation of NP. Therefore, to prevent NP from undergoing rapid degradation, we suggest that the concentration of HNO3 should be maintained below 1.35 mM and the temperature under 38 °C.
Collapse
Affiliation(s)
- Kitmin Chen
- MST-7:
Engineered Materials Group, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexander S. Edgar
- MST-7:
Engineered Materials Group, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Zheng-Hua Li
- EES-14:
Earth System Observations Group, Earth and Environmental Sciences
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Oana C. Marina
- EES-14:
Earth System Observations Group, Earth and Environmental Sciences
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dali Yang
- MST-7:
Engineered Materials Group, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
14
|
Li K, Guo Y, Nizkorodov S, Rudich Y, Angelaki M, Wang X, An T, Perrier S, George C. Spontaneous dark formation of OH radicals at the interface of aqueous atmospheric droplets. Proc Natl Acad Sci U S A 2023; 120:e2220228120. [PMID: 37011187 PMCID: PMC10104570 DOI: 10.1073/pnas.2220228120] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Hydroxyl radical (OH) is a key oxidant that triggers atmospheric oxidation chemistry in both gas and aqueous phases. The current understanding of its aqueous sources is mainly based on known bulk (photo)chemical processes, uptake from gaseous OH, or related to interfacial O3 and NO3 radical-driven chemistry. Here, we present experimental evidence that OH radicals are spontaneously produced at the air-water interface of aqueous droplets in the dark and the absence of known precursors, possibly due to the strong electric field that forms at such interfaces. The measured OH production rates in atmospherically relevant droplets are comparable to or significantly higher than those from known aqueous bulk sources, especially in the dark. As aqueous droplets are ubiquitous in the troposphere, this interfacial source of OH radicals should significantly impact atmospheric multiphase oxidation chemistry, with substantial implications on air quality, climate, and health.
Collapse
Affiliation(s)
- Kangwei Li
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
| | - Yunlong Guo
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | | | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute, Rehovot76100, Israel
| | - Maria Angelaki
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
| | - Xinke Wang
- Department of Chemistry, University of California, Irvine, CA92697
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Sebastien Perrier
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
| | - Christian George
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
| |
Collapse
|
15
|
Chen C, Gao B, Xu M, Liu S, Zhu D, Yang J, Chen Z. The spatiotemporal variation of PM 2.5-O 3 association and its influencing factors across China: Dynamic Simil-Hu lines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163346. [PMID: 37031933 DOI: 10.1016/j.scitotenv.2023.163346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
In recent years, PM2.5 and O3 composite airborne pollution has become one of the most severe environment issues in China. To get a better understanding and tackle these problems, we employed multi-year data to explore the spatiotemporal variation of the PM2.5-O3 relationship in China and investigated its major driving factors. Firstly, interesting patterns were found that named dynamic Simil-Hu lines, which presented a combined effect of natural and anthropogenic influences, were closely related to the spatial patterns of PM2.5-O3 association across seasons. Furthermore, regions with lower altitudes, higher humidity, higher atmospheric pressure, higher temperature, fewer sunshine hours, more accumulated precipitation, denser population and higher GDP often show positive PM2.5-O3 associations, regardless of seasonal variations. Amongst these factors, humidity, temperature and precipitation were dominant factors. This research suggests that the collaborative governance of composite atmospheric pollution should be implemented dynamically, in consideration of geographical locations, meteorological conditions and socioeconomic conditions.
Collapse
Affiliation(s)
- Chenru Chen
- College of Surveying and Geographic Informatics, Tongji University, Shanghai 200092, China
| | - Bingbo Gao
- College of Land Science and Technology, China Agricultural University, Beijing 100091, China.
| | - Miaoqing Xu
- College of Global and Earth System Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuyi Liu
- College of Land Science and Technology, China Agricultural University, Beijing 100091, China
| | - Dehai Zhu
- College of Land Science and Technology, China Agricultural University, Beijing 100091, China
| | - Jianyu Yang
- College of Land Science and Technology, China Agricultural University, Beijing 100091, China
| | - Ziyue Chen
- College of Global and Earth System Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|