1
|
Junker AL, Juve JMA, Bai L, Qvist Christensen CS, Ahrens L, Cousins IT, Ateia M, Wei Z. Best Practices for Experimental Design, Testing, and Reporting of Aqueous PFAS-Degrading Technologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40312980 DOI: 10.1021/acs.est.4c08571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Increased awareness of pervasive per- and polyfluoroalkyl substances (PFAS) contamination and the need for zero-pollution treatment solutions necessitate the scientific and engineering community to respond urgently and systematically. Existing approaches lack reproducible and standardized methods to report the technological treatment capabilities. Consequently, it is difficult to compare innovations and accurately assess their potential. In this Perspective, we shed light on hurdles encountered in the lab-scale research and development of aqueous PFAS destruction technologies with a focus on chemical methods and offer recommendations for overcoming them. Best practices are provided for developing robust PFAS laboratory protocols covering crucial aspects such as experimental planning, sample storage and analysis, and waste management. Further, we present five criteria to standardize reporting on performance and advances in PFAS degrading technologies: 1) scope, 2) defluorination efficiency, 3) relative energy consumption, 4) material stability, and 5) unit process considerations. Through the dissemination of these insights, we aim to foster progress in the development of highly effective treatment solutions.
Collapse
Affiliation(s)
- Allyson Leigh Junker
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| | - Jan-Max Arana Juve
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| | - Lu Bai
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| | - Charlotte Skjold Qvist Christensen
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden
| | - Ian T Cousins
- Department for Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Mohamed Ateia
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1827, United States
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Saitas M, Mustapha T, Vitucci E, Oladeji O, Tsai HHD, Cannon C, Rusyn I, Presto AA, Chiu WA, Johnson NM. Mobile air monitoring to identify volatile organic compound distributions and potential hazard during the remediation of the East Palestine, Ohio train derailment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:597. [PMID: 40285870 PMCID: PMC12033195 DOI: 10.1007/s10661-025-14038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
On February 3, 2023, a train carrying hazardous chemicals derailed in East Palestine, Ohio. Initial mobile air monitoring in mid-February 2023 revealed unique spatiotemporal patterns for a range of volatile organic compounds (VOCs). To determine long-term impacts on air quality, two follow up mobile air monitoring campaigns were carried out in March and April 2023 on public roadways using a proton transfer reaction time-of-flight mass spectrometer. This study aimed to characterize VOC distributions, identify hotspots, and characterize potential hazards. Concentrations of targeted VOCs benzene, toluene, and xylenes were lower overall in East Palestine in April compared to March. Overall, more compounds (n = 48) were identified using non-targeted analysis (NTA) in East Palestine in March compared with April (n = 30). Several of these VOCs were uniquely identified during March sampling, and among the commonly detected compounds, higher average concentrations were observed in East Palestine compared background levels. Spatial analysis revealed similar patterns of hotspots for benzene and additional VOCs identified from NTA, including C3H4O, C4H8O, and C6H12O. Using the EPA Hazard Comparison Dashboard, 49% and 40% of the identified VOCs were classified as "very high" or "high" hazards for eye and skin irritation, respectively. Notably, eye and skin irritation were among the common symptoms reported by the residents near the disaster site. Additionally, 29%, 18%, and 14% of the identified VOCs were classified as "very high" or "high" hazards for genotoxicity/mutagenicity, acute inhalation toxicity, and acute dermal toxicity, respectively. Collectively, these findings provide exposure data supportive of the reported health concerns and demonstrate the application of mobile monitoring coupled with NTA as a novel approach for rapid identification and mapping of potentially hazardous chemicals following an environmental disaster.
Collapse
Affiliation(s)
- Mariana Saitas
- Department of Environmental and Occupational Health, Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Toriq Mustapha
- Department of Environmental and Occupational Health, Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Eva Vitucci
- Department of Environmental and Occupational Health, Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Oladayo Oladeji
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Han-Hsuan D Tsai
- Department of Veterinary Physiology and Pharmacology, Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Carolyn Cannon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, TX, 77843, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Albert A Presto
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Huizenga JM, Semprini L, Garcia-Jaramillo M. Identification of Potentially Toxic Transformation Products Produced in Polycyclic Aromatic Hydrocarbon Bioremediation Using Suspect and Non-Target Screening Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7561-7573. [PMID: 40208242 PMCID: PMC12060897 DOI: 10.1021/acs.est.4c13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous environmental contaminants that can be remediated through physical, chemical, or biological means. Treatment strategies can lead to the formation of PAH-transformation products (PAH-TPs) that, despite having the potential for adverse ecological and human health effects, are unregulated and understudied in environmental monitoring and remediation. Unavailability of reference standards for PAH-TPs limits the ability to identify PAH-TPs by targeted methods. This study utilized suspect and nontarget screening approaches to identify PAH-TPs produced by a bacterial culture, Rhodococcus rhodochrous ATCC 21198, using liquid chromatography-high resolution mass spectrometry. Open-source tools were used to predict biotransformation products, predict potential PAH-TP structures from mass spectra, and estimate health hazards of potential PAH-TPs. The workflow developed in this study allowed for the tentative identification of 16 PAH-TPs (confidence levels 2a to 3), seven of which were not previously detected by targeted analysis. Several new potential transformation pathways for our bacterial pure culture were suggested by the PAH-TPs, including carboxylation, sulfonation and up to three hydroxylation reactions. A computational toxicity assessment indicated that the PAH-TPs shared many hazard characteristics with their parent compounds, including genotoxicity and endocrine disruption, highlighting the importance of considering PAH-TPs in future PAH studies.
Collapse
Affiliation(s)
- Juliana M. Huizenga
- Oregon State University, School of Chemical, Biological, and Environmental Engineering 105 SW 26 St, Corvallis, OR, USA, 97331
- Oregon State University, Department of Environmental and Molecular Toxicology 28645 East Hwy 34, Corvallis, OR, USA, 97333
| | - Lewis Semprini
- Oregon State University, School of Chemical, Biological, and Environmental Engineering 105 SW 26 St, Corvallis, OR, USA, 97331
| | - Manuel Garcia-Jaramillo
- Oregon State University, Department of Environmental and Molecular Toxicology 28645 East Hwy 34, Corvallis, OR, USA, 97333
| |
Collapse
|
4
|
Vitucci ECM, Oladeji O, Presto AA, Cannon CL, Johnson NM. The application of PTR-MS and non-targeted analysis to characterize VOCs emitted from a plastic recycling facility fire. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:149-156. [PMID: 38710768 PMCID: PMC12009732 DOI: 10.1038/s41370-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND On April 11th, 2023, the My Way Trading (MWT) recycling facility in Richmond, Indiana caught fire, mandating the evacuation of local residents and necessitating the U.S. Environmental Protection Agency (EPA) to conduct air monitoring. The EPA detected elevated levels of plastic combustion-related air pollutants, including hydrogen cyanide and benzene. OBJECTIVE We aimed to identify these and other volatile organic compounds (VOCs) present as well as to identify the potential hazard of each compound for various human health effects. METHODS To identify the VOCs, we conducted air monitoring at sites within and bordering the evacuation zone using proton transfer reaction mass spectrometry (PTR-MS) and non-targeted analysis (NTA). To facilitate risk assessment of the emitted VOCs, we used the EPA Hazard Comparison Dashboard. RESULTS We identified 46 VOCs, within and outside the evacuation zone, with average detection levels above local background levels measured in Middletown, OH. Levels of hydrogen cyanide and 4 other VOCs were at least 1.8-fold higher near the incidence site in comparison to background levels and displayed unique temporal and spatial patterns. The 46 VOCs identified had the highest hazardous potential for eye and skin irritation, with approximately 45% and 39%, respectively, of the VOCs classified as high and very high hazards for these endpoints. Notably, all detected VOC levels were below the hazard thresholds set for single VOC exposures; however, hazard thresholds for exposure to VOC mixtures are currently unclear. IMPACT This study serves as a proof-of-concept that PTR-MS coupled with NTA can facilitate rapid identification and hazard assessment of VOCs emitted following anthropogenic disasters. Furthermore, it demonstrates that this approach may augment future disaster responses to quantify additional VOCs present in complex combustion mixtures.
Collapse
Affiliation(s)
- Eva C M Vitucci
- Department of Environmental and Occupational Health, Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Oladayo Oladeji
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Albert A Presto
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Carolyn L Cannon
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Kellerman AM, Lin Y, McKenna AM, Osborne TZ, Canion A, Lee Y, Freitas AM, Chanton JP, Spencer RGM. Identifying the Molecular Signatures of Organic Matter Leached from Land-Applied Biosolids via 21 T FT-ICR Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2665-2674. [PMID: 39869539 DOI: 10.1021/acs.est.3c06678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Intensification of wastewater treatment residual (i.e., biosolid) applications to watersheds can alter the amount and composition of organic matter (OM) mobilized into waterways. To identify novel tracers of biosolids, characterization of biosolids and their impacts on OM composition in recipient ecosystems is required. Here, water-soluble OM was leached from surface soils from Florida pastures with differing levels of biosolid amendment and an adjacent control site. The biosolid endmember was further constrained by extracting water-soluble OM from biosolids sourced from four Florida wastewater treatment facilities. Nontargeted analysis of organic molecules by negative-ion electrospray ionization 21 T Fourier transform ion cyclotron resonance mass spectrometry examined the molecular composition of soil and biosolid leachates and identified molecular formulas unique to these biosolids and biosolid amended soils. Overall, biosolids leachates were enriched in aliphatic (+16.3% relative abundance) and heteroatomic (+42.5% RA) formulas and depleted in aromatic formulas (-33.5% RA) compared to soil leachates. A subset of 297 molecular formulas were present only in biosolids and amended soil leachates (i.e., not present in control soil leachates), the vast majority of which contained nitrogen (66%) or sulfur (27%). The identification of these molecular formulas is a key step in identifying novel tracers of biosolids movement through impacted watersheds.
Collapse
Affiliation(s)
- Anne M Kellerman
- National High Magnetic Field Laboratory Geochemistry Group and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yang Lin
- Department of Soil, Water and Ecosystem Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Amy M McKenna
- National High Magnetic Field Laboratory Ion Cyclotron Resonance Facility, Tallahassee, Florida 32310, United States
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Todd Z Osborne
- Department of Soil, Water and Ecosystem Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Andy Canion
- St. Johns River Water Management District, Palatka, Florida 32177, United States
| | - Yewon Lee
- Department of Soil, Water and Ecosystem Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Andressa M Freitas
- Department of Soil, Water and Ecosystem Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Jeffrey P Chanton
- National High Magnetic Field Laboratory Geochemistry Group and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Robert G M Spencer
- National High Magnetic Field Laboratory Geochemistry Group and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
6
|
Nason SL, McCord J, Feng YL, Sobus JR, Fisher CM, Marfil-Vega R, Phillips AL, Johnson G, Sloop J, Bayen S, Mutlu E, Batt AL, Nahan K. Communicating with Stakeholders to Identify High-Impact Research Directions for Non-Targeted Analysis. Anal Chem 2025; 97:2567-2578. [PMID: 39883652 PMCID: PMC11886761 DOI: 10.1021/acs.analchem.4c04801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Non-targeted analysis (NTA) using high-resolution mass spectrometry without defined chemical targets has the potential to expand and improve chemical monitoring in many fields. Despite rapid advancements within the research community, NTA methods and data remain underutilized by many potential beneficiaries. To better understand barriers toward widespread adoption, the Best Practices for Non-Targeted Analysis (BP4NTA) working group conducted focus group meetings and follow-up surveys with scientists (n = 61) from various sectors (e.g., drinking water utilities, epidemiologists, n = 9) where NTA is expected to provide future value. Meeting participants included producers and end-users of NTA data with a wide range of familiarity with NTA methods and outputs. Discussions focused on identifying specific barriers that limit adoption and on setting NTA product development priorities. Stated priorities fell into four major categories: 1) education and training materials; 2) QA/QC frameworks and study design guidance; 3) accessible compound databases and libraries; and 4) NTA data linkages with chemical fate and toxicity information. Based on participant feedback, this manuscript proposes research directions, such as standardization of training materials, that BP4NTA and other institutions can pursue to expand NTA use in various application scenarios and decision contexts.
Collapse
Affiliation(s)
- Sara L Nason
- Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511, United States
| | - James McCord
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Jon R Sobus
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Christine M Fisher
- Human Foods Program, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Ruth Marfil-Vega
- Shimadzu Scientific Instruments, 10330 Old Columbia Road, Columbia, Maryland 21046, United States
| | - Allison L Phillips
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, Oregon 97333, United States
| | - Gregory Johnson
- City of High Point, NC, Water Quality Laboratory, 121 N. Pendleton Street High Point, North Carolina 27260, United States
| | - John Sloop
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 TW Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | - Esra Mutlu
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Angela L Batt
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, 26 W Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Keaton Nahan
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| |
Collapse
|
7
|
Sloop JT, Casey JS, Liberatore H, Chao A, Isaacs KK, Newton SR. Development and application of a non-targeted analysis method using GC-MS and LC-MS for identifying chemical contaminants in drinking water via point-of-use filters. Microchem J 2024; 207:112223. [PMID: 39877062 PMCID: PMC11770584 DOI: 10.1016/j.microc.2024.112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
While many chemicals are regulated and routinely monitored in drinking water, they represent just a portion of all contaminants that may be present. Typical drinking water analyses involve sampling one liter or less of water, which could lead to trace level contaminants going undetected. In this study, a method was developed for using point-of-use activated carbon block drinking water filters as sampling devices. The filters were extracted to remove chemicals that were collected, and then analyzed by non-targeted analysis via liquid chromatography and gas chromatography high-resolution mass spectrometry. Extraction efficiencies were assessed by spiking and recovery experiments to better understand the chemical space coverage. To test the method's applicability to real-world samples, filters from a small-scale pilot study were collected from individuals in New York, NY and Atlanta, GA and analyzed. Twenty tentatively identified chemical candidates were confirmed by comparison to chemical standards. Principal components analysis was performed on the full set of filtered chemical features to explore how geographic and temporal differences in samples impact drinking water composition. Product use categories for confirmed chemicals were explored to determine potential sources of contaminants.
Collapse
Affiliation(s)
- John T Sloop
- Oak Ridge Institute for Science and Education (ORISE) Participant, Research Triangle Park, NC 27711, USA
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
- Present address: Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27109, USA
| | - Jonathan S Casey
- Oak Ridge Institute for Science and Education (ORISE) Participant, Research Triangle Park, NC 27711, USA
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Hannah Liberatore
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Alex Chao
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Kristin K Isaacs
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Seth R Newton
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
8
|
Mandal V, Ajabiya J, Khan N, Tekade RK, Sengupta P. Advances and challenges in non-targeted analysis: An insight into sample preparation and detection by liquid chromatography-mass spectrometry. J Chromatogr A 2024; 1737:465459. [PMID: 39476774 DOI: 10.1016/j.chroma.2024.465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/10/2024]
Abstract
Unknown impurities, metabolites and harmful pollutants present in pharmaceutical products, biological and environmental samples, respectively are of high concern in terms of their detection and quantification. The targeted analysis aims to quantify known chemical entities, but it lacks the ability to identify unknown components present in a sample. Non-targeted analysis is an analytical approach that can be made applicable to various disciplines of science to effectively search for unknown chemical, biological, or environmental entities that can answer various baffling mysteries of research. It employs various high-end analytical techniques that can specifically screen out multiple unknown compounds from complex mixtures. Non-targeted analysis is also applicable for complex studies such as metabolomics to search unidentified metabolites of new chemical entities. This review critically discusses the current advancements in non-targeted analysis related to the analysis of pharmaceutical, biological, and environmental samples. Various steps like sample collection, handling, preparation, extraction, its analysis using advanced techniques like high-resolution mass spectrometry, liquid chromatography mass spectrometry, and lastly interpretation of the huge amounts of complex data obtained upon analysis of complex matrices have been discussed broadly in this article. Besides the advantages of non-targeted analysis over targeted analysis, limitations, bioinformatics tools, sources of error, and research gaps have been critically analyzed.
Collapse
Affiliation(s)
- Vivek Mandal
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Jinal Ajabiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Nasir Khan
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
9
|
Wang X, Zhang J, Jing W, Guo X, Li M, Cheng X, Wei F. Digital identification and adulteration analysis of Codonopsis Radix and Stellariae Radix based on the "digital identity" of chemical compositions. Front Chem 2024; 12:1438321. [PMID: 39575395 PMCID: PMC11579866 DOI: 10.3389/fchem.2024.1438321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Under the background of digitalization of traditional Chinese medicine (TCM), this study aimed to realize the digital identification and adulteration analysis of Codonopsis Radix (CR) and Stellariae Radix (SR) based on chemical analysis. Methods This study combined digitalization concepts and chemical analysis and conducted a chemical analysis of CR and SR from different batches based on UHPLC-QTOF-MSE. Furthermore, the shared ions were extracted from different batches of CR and SR as their "ion characterization" after digital quantization. Then, the data matrices of unique ions of CR relative to SR and SR relative to CR were screened out, and the top-N ions were outputted as the "digital identities" of CR and SR, sorted by ionic strength. Finally, the above "digital identities" of CR and SR were used as benchmarks for matching positive samples and market samples to provide feedback on the matching credibility (MC) for identification and adulteration analysis. Results The results showed that based on the "digital identities" of CR and SR, the digital identification of CR, SR, and positive samples can be realized at the individual level of TCM efficiently and accurately, even if 3% of SR in the mixed samples can still be identified efficiently and accurately. Moreover, 1 of the 12 batches of market samples was identified as an adulterated sample. Conclusion It proved that the identification and adulteration analysis of two herbs can be realized efficiently and quickly through the "digital identities" of chemical compositions. It has important reference significance for developing the digital identification of CR and SR at the individual level of Chinese medicine based on the "digital identity" of chemical compositions, which was beneficial to the construction of digital quality control of CR and SR.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianlong Cheng
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Feng Wei
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
10
|
Chen G, Rosolina S, Padilla-Crespo E, He G, Chen Q, Arosemena A, Rosado-Maldonado BE, Swift CM, Coelho PB, Whelton AJ, Taggart D, Löffler FE. Natural Attenuation Potential of Vinyl Chloride and Butyl Acrylate Released in the East Palestine, Ohio Train Derailment Accident. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17743-17755. [PMID: 39344962 DOI: 10.1021/acs.est.4c04198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The East Palestine, Ohio train derailment released toxic vinyl chloride (VC) and butyl acrylate (BA), which entered the watershed. Streambed sediment, surface water, and private well water samples were collected 128 and 276 days postaccident to assess the natural attenuation potential of VC and BA by quantifying biodegradation biomarker genes and conducting microcosm treatability studies. qPCR detected the aerobic VC degradation biomarkers etnC in ∼40% and etnE in ∼27% of sediments collected in both sampling campaigns in abundances reaching 105 gene copies g-1. The 16S rRNA genes of organohalide-respiring Dehalococcoides and Dehalogenimonas were, respectively, detected in 50 and 64% of sediment samples collected 128 days postaccident and in 63 and 88% of sediment samples collected 276 days postaccident, in abundances reaching 107 cells g-1. Elevated detection frequencies of VC degradation biomarker genes were measured immediately downstream of the accident site (i.e., Sulphur Run). Aerobic VC degradation occurred in all sediment microcosms and coincided with increases of etnC/etnE genes and Mycobacterium, a genus comprising aerobic VC degraders. The conversion of VC to ethene and an increased abundance of VC reductive dechlorination biomarker genes were observed in microcosms established with sediments collected from Sulphur Run. All anoxic microcosms rapidly degraded BA to innocuous products with intermediate formation of n-butanol and acrylate. The results indicate that microbiomes in the East Palestine watershed have natural attenuation capacity for VC and BA. Recommendations are made to improve first-response actions in future contaminant release accidents of this magnitude.
Collapse
Affiliation(s)
- Gao Chen
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Sam Rosolina
- Microbial Insights, Incorporated, 10515 Research Drive, Knoxville, Tennessee 37932, United States
| | - Elizabeth Padilla-Crespo
- Science and Technology Department, Inter American University of Puerto Rico, Aguadilla 00605, Puerto Rico
| | - Guang He
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Qiao Chen
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Ana Arosemena
- Science and Technology Department, Inter American University of Puerto Rico, Aguadilla 00605, Puerto Rico
| | - Bryan E Rosado-Maldonado
- Science and Technology Department, Inter American University of Puerto Rico-Metropolitan Campus, San Juan 00926, Puerto Rico
| | - Cynthia M Swift
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Paula Belmont Coelho
- Division of Environmental and Ecological Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew J Whelton
- Division of Environmental and Ecological Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dora Taggart
- Microbial Insights, Incorporated, 10515 Research Drive, Knoxville, Tennessee 37932, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- Department of Microbiology, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering and Soil Science, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
11
|
Zhang Y, Meng J, Su G, Li Q, Sun B, Gu Y, Shi B. Recognition of screening out hierarchical toxic contaminants tuned by quantified pseudo-components from complex engineering co-combustion. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135029. [PMID: 38959830 DOI: 10.1016/j.jhazmat.2024.135029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Co-combustion of industrial and municipal solid wastes has emerged as the most promising disposal technology, yet its effect on unknown contaminants generation remains rarely revealed due to waste complexity. Hence, six batches of large-scale engineering experiments were designed in an incinerator of 650 t/d, which overcame the inauthenticity and deviation of laboratory tests. 953-1772 non-targeted compounds were screened in fly ash. Targeting the impact of co-combustion, a pseudo-component matrix model was innovatively integrated to quantitatively extract nine components from complex wastes grouped into biomass and plastic. Thus, the influence was evaluated across eight dimensions, covering molecular characteristics and toxicity. The effect of co-combustion with biomass pseudo-components was insignificant. However, co-combustion with high ratios of plastic pseudo-components induced higher potential risks, significantly promoting the formation of unsaturated hydrocarbons, highly unsaturated compounds (DBE≥15), and cyclic compounds by 19 %- 49 %, 17 %- 31 %, and 7 %- 27 %, respectively. Especially, blending with high ratios of PET plastic pseudo-components produced more species of contaminants. Unique 2 Level I toxicants, bromomethyl benzene and benzofuran-2-carbaldehyde, as well as 4 Level II toxicants, were locked, receiving no concern in previous combustion. The results highlighted risks during high proportion plastics co-combustion, which can help pollution reduction by tuning source wastes to enable healthy co-combustion.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Gu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Delanka-Pedige HMK, Ahmed A, Schaub T, Trainor P, Nirmalakhandan N. Feasibility of organic micropollutant removal from municipal wastewaters by algal treatment vs. activated sludge treatment: Comparison based on non-targeted organic compound analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121936. [PMID: 39096723 DOI: 10.1016/j.jenvman.2024.121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Sustainability and life-cycle concerns about the conventional activated sludge (CAS) process for wastewater treatment have been driving the development of energy-efficient, greener alternatives. Feasibility of an algal-based wastewater treatment (A-WWT) system has been demonstrated recently as a possible alternative, capable of simultaneous nutrient and energy recovery. This study compared capabilities of the A-WWT and CAS systems in removing organic micropollutants (OMP). Initial assessments based on surrogate organic measures and fluorescence excitation-emission matrix (FEEM) scans revealed that the A-WWT system achieved higher removals of organics than the CAS system. However, effluents of both systems contained residual organic matter, necessitating further OMP assessment for a rigorous comparison. A novel ultrahigh-performance liquid chromatography- Fourier transform mass spectrometry (UPLC-FTMS)-based non-targeted screening approach was adopted here for residual OMP analysis. This approach confirmed that the A-WWT system resulted in better OMP removal, eliminating 329 compounds and partially reducing 472 compounds, compared to 206 eliminations and 410 partial reductions by the CAS system. Mass spectra signal corresponding to some OMPs increased with treatment while some transformation products were observed following treatment. Higher OMP reduction in the A-WWT system with concurrent reductions of biodegradable carbon, nutrients, and pathogens in a single-step while producing energy and nutrient rich algal biomass underscore its potential as a greener alternative for wastewater treatment.
Collapse
Affiliation(s)
- H M K Delanka-Pedige
- School of Civil, Environmental, and Infrastructure Engineering, Southern Illinois University, Carbondale, IL, 62901, USA
| | - A Ahmed
- Chemical & Analysis Instrumentation Laboratory, New Mexico State University, Las Cruces, NM, 88003, USA
| | - T Schaub
- Chemical & Analysis Instrumentation Laboratory, New Mexico State University, Las Cruces, NM, 88003, USA
| | - P Trainor
- Economics, Applied Statistics & International Business Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - N Nirmalakhandan
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
13
|
Newmeyer MN, Lyu Q, Sobus JR, Williams AJ, Nachman KE, Prasse C. Combining Nontargeted Analysis with Computer-Based Hazard Comparison Approaches to Support Prioritization of Unregulated Organic Contaminants in Biosolids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12135-12146. [PMID: 38916220 PMCID: PMC11381038 DOI: 10.1021/acs.est.4c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Biosolids are a byproduct of wastewater treatment that can be beneficially applied to agricultural land as a fertilizer. While U.S. regulations limit metals and pathogens in biosolids intended for land applications, no organic contaminants are currently regulated. Novel techniques can aid in detection, evaluation, and prioritization of biosolid-associated organic contaminants (BOCs). For example, nontargeted analysis (NTA) can detect a broad range of chemicals, producing data sets representing thousands of measured analytes that can be combined with computational toxicological tools to support human and ecological hazard assessment and prioritization. We combined NTA with a computer-based tool from the U.S. EPA, the Cheminformatics Hazard Comparison Module (HCM), to identify and prioritize BOCs present in U.S. and Canadian biosolids (n = 16). Four-hundred fifty-one features were detected in at least 80% of samples, with identities of 92 compounds confirmed or assigned probable structures. These compounds were primarily categorized as endogenous compounds, pharmaceuticals, industrial chemicals, and fragrances. Examples of top prioritized compounds were p-cresol and chlorophene, based on human health end points, and fludioxonil and triclocarban, based on ecological health end points. Combining NTA results with hazard comparison data allowed us to prioritize compounds to be included in future studies of the environmental fate and transport of BOCs.
Collapse
Affiliation(s)
- Matthew N Newmeyer
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Qinfan Lyu
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Jon R Sobus
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Keeve E Nachman
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Risk Sciences and Public Policy Institute, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Center for a Livable Future, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Carsten Prasse
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Risk Sciences and Public Policy Institute, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
14
|
Liu J, Xiang T, Song XC, Zhang S, Wu Q, Gao J, Lv M, Shi C, Yang X, Liu Y, Fu J, Shi W, Fang M, Qu G, Yu H, Jiang G. High-Efficiency Effect-Directed Analysis Leveraging Five High Level Advancements: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9925-9944. [PMID: 38820315 DOI: 10.1021/acs.est.3c10996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organic contaminants are ubiquitous in the environment, with mounting evidence unequivocally connecting them to aquatic toxicity, illness, and increased mortality, underscoring their substantial impacts on ecological security and environmental health. The intricate composition of sample mixtures and uncertain physicochemical features of potential toxic substances pose challenges to identify key toxicants in environmental samples. Effect-directed analysis (EDA), establishing a connection between key toxicants found in environmental samples and associated hazards, enables the identification of toxicants that can streamline research efforts and inform management action. Nevertheless, the advancement of EDA is constrained by the following factors: inadequate extraction and fractionation of environmental samples, limited bioassay endpoints and unknown linkage to higher order impacts, limited coverage of chemical analysis (i.e., high-resolution mass spectrometry, HRMS), and lacking effective linkage between bioassays and chemical analysis. This review proposes five key advancements to enhance the efficiency of EDA in addressing these challenges: (1) multiple adsorbents for comprehensive coverage of chemical extraction, (2) high-resolution microfractionation and multidimensional fractionation for refined fractionation, (3) robust in vivo/vitro bioassays and omics, (4) high-performance configurations for HRMS analysis, and (5) chemical-, data-, and knowledge-driven approaches for streamlined toxicant identification and validation. We envision that future EDA will integrate big data and artificial intelligence based on the development of quantitative omics, cutting-edge multidimensional microfractionation, and ultraperformance MS to identify environmental hazard factors, serving for broader environmental governance.
Collapse
Affiliation(s)
- Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Xue-Chao Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meilin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Sciences, Northeastern University, Shenyang 110004, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Delanka-Pedige HMK, Young RB, Abutokaikah MT, Chen L, Wang H, Imihamillage KABI, Thimons S, Jahne MA, Williams AJ, Zhang Y, Xu P. Non-targeted analysis and toxicity prediction for evaluation of photocatalytic membrane distillation removing organic contaminants from hypersaline oil and gas field-produced water. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134436. [PMID: 38688221 PMCID: PMC11694490 DOI: 10.1016/j.jhazmat.2024.134436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Membrane distillation (MD) has received ample recognition for treating complex wastewater, including hypersaline oil and gas (O&G) produced water (PW). Rigorous water quality assessment is critical in evaluating PW treatment because PW consists of numerous contaminants beyond the targets listed in general discharge and reuse standards. This study evaluated a novel photocatalytic membrane distillation (PMD) process, with and without a UV light source, against a standard vacuum membrane distillation (VMD) process for treating PW, utilizing targeted analyses and a non-targeted chemical identification workflow coupled with toxicity predictions. PMD with UV light resulted in better removals of dissolved organic carbon, ammoniacal nitrogen, and conductivity. Targeted organic analyses identified only trace amounts of acetone and 2-butanone in distillates. According to non-targeted analysis, the number of suspects reduced from 65 in feed to 25-30 across all distillate samples. Certain physicochemical properties of compounds influenced contaminant rejection in different MD configurations. According to preliminary toxicity predictions, VMD, PMD with and without UV distillate samples, respectively contained 21, 22, and 23 suspects associated with critical toxicity concerns. Overall, non-targeted analysis together with toxicity prediction provides a competent supportive tool to assess treatment efficiency and potential impacts on public health and the environment during PW reuse.
Collapse
Affiliation(s)
| | - Robert B Young
- Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, NM 88003, United States
| | - Maha T Abutokaikah
- Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, NM 88003, United States
| | - Lin Chen
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Kanchana A B I Imihamillage
- Department of Engineering Technology and Surveying Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Sean Thimons
- Oak Ridge Institute for Science and Education, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Michael A Jahne
- Office of Research and Development, US Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Antony J Williams
- Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, United States
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States.
| |
Collapse
|
16
|
Groff L, Williams A, Shah I, Patlewicz G. MetSim: Integrated Programmatic Access and Pathway Management for Xenobiotic Metabolism Simulators. Chem Res Toxicol 2024; 37:685-697. [PMID: 38598715 PMCID: PMC11325951 DOI: 10.1021/acs.chemrestox.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Xenobiotic metabolism is a key consideration in evaluating the hazards and risks posed by environmental chemicals. A number of software tools exist that are capable of simulating metabolites, but each reports its predictions in a different format and with varying levels of detail. This makes comparing the performance and coverage of the tools a practical challenge. To address this shortcoming, we developed a metabolic simulation framework called MetSim, which comprises three main components. A graph-based schema was developed to allow metabolism information to be harmonized. The schema was implemented in MongoDB to store and retrieve metabolic graphs for subsequent analysis. MetSim currently includes an application programming interface for four metabolic simulators: BioTransformer, the OECD Toolbox, EPA's chemical transformation simulator (CTS), and tissue metabolism simulator (TIMES). Lastly, MetSim provides functions to help evaluate simulator performance for specific data sets. In this study, a set of 112 drugs with 432 reported metabolites were compiled, and predictions were made using the 4 simulators. Fifty-nine of the 112 drugs were taken from the Small Molecule Pathway Database, with the remainder sourced from the literature. The human models within BioTransformer and CTS (Phase I only) and the rat models within TIMES and the OECD Toolbox (Phase I only) were used to make predictions for the chemicals in the data set. The recall and precision (recall, precision) ranked in order of highest recall for each individual tool were CTS (0.54, 0.017), BioTransformer (0.50, 0.008), Toolbox in vitro (0.40, 0.144), TIMES in vivo (0.40, 0.133), Toolbox in vivo (0.40, 0.118), and TIMES in vitro (0.39, 0.128). Combining all of the model predictions together increased the overall recall (0.73, 0.008). MetSim enabled insights into the performance and coverage of in silico metabolic simulators to be more efficiently derived, which in turn should aid future efforts to evaluate other data sets.
Collapse
Affiliation(s)
- Louis Groff
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Antony Williams
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Imran Shah
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
17
|
Oladeji O, Saitas M, Mustapha T, Johnson NM, Chiu WA, Rusyn I, Robinson AL, Presto AA. Air Pollutant Patterns and Human Health Risk following the East Palestine, Ohio, Train Derailment. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:680-685. [PMID: 37577363 PMCID: PMC10413936 DOI: 10.1021/acs.estlett.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023]
Abstract
On February 3, 2023, a train carrying numerous hazardous chemicals derailed in East Palestine, OH, spurring temporary evacuation of residents and a controlled burn of some of the hazardous cargo. Residents reported health symptoms, including headaches and respiratory, skin, and eye irritation. Initial data from U.S. Environmental Protection Agency (EPA) stationary air monitors indicated levels of potential concern for air toxics based on hazard quotient calculations. To provide complementary data, we conducted mobile air quality sampling on February 20 and 21 using proton transfer reaction-mass spectrometry. Measurements were taken at 1 s intervals along routes designed to sample both close to and farther from the derailment. Mobile air monitoring indicated that average concentrations of benzene, toluene, xylenes, and vinyl chloride were below minimal risk levels for intermediate and chronic exposures, similar to EPA stationary monitoring data. Levels of acrolein were high relative to those of other volatile organic compounds, with spatial analyses showing levels in East Palestine up to 6 times higher than the local rural background. Nontargeted analyses identified levels of additional unique compounds above background levels, some displaying spatiotemporal patterns similar to that of acrolein and others exhibiting distinct hot spots. These initial findings warrant follow-up mobile air quality monitoring to characterize longitudinal exposure and risk levels.
Collapse
Affiliation(s)
- Oladayo Oladeji
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Mariana Saitas
- Department
of Environmental and Occupational Health, Interdisciplinary Faculty
of Toxicology, Texas A&M University, College Station, Texas 77843, United States
| | - Toriq Mustapha
- Department
of Environmental and Occupational Health, Interdisciplinary Faculty
of Toxicology, Texas A&M University, College Station, Texas 77843, United States
| | - Natalie M. Johnson
- Department
of Environmental and Occupational Health, Interdisciplinary Faculty
of Toxicology, Texas A&M University, College Station, Texas 77843, United States
| | - Weihsueh A. Chiu
- Department
of Veterinary Physiology and Pharmacology, Interdisciplinary Faculty
of Toxicology, Texas A&M University, College Station, Texas 77843, United States
| | - Ivan Rusyn
- Department
of Veterinary Physiology and Pharmacology, Interdisciplinary Faculty
of Toxicology, Texas A&M University, College Station, Texas 77843, United States
| | - Allen L. Robinson
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Albert A. Presto
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|