1
|
Wang Y, Huang Z, Yan Z, Lei Z, Ma H, Feng C. Overcoming Fe(III) precipitation barrier in acid mine drainage via a visible light-assisted photo-electrochemical system. WATER RESEARCH 2025; 275:123193. [PMID: 39884050 DOI: 10.1016/j.watres.2025.123193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Acid mine drainage (AMD) is characterized by high concentrations of Fe(II) and Fe(III), which can be harnessed for the in-situ formation of schwertmannite, enabling the efficient immobilization of toxic heavy metals. However, existing biological and chemical methods for schwertmannite synthesis face significant challenges, including low Fe(II) oxidation rates and particularly limited Fe(III) precipitation efficiency in acidic environments. In this study, we develop a visible light-assisted photo-electrochemical (PEC) system that effectively overcomes these barriers. By leveraging anodically evolved O2 and cathodically generated OH-, we achieved facile Fe(II) oxidation at pH 3.0, and an impressive Fe(III) precipitation efficiency of 82.8 %, significantly exceeding the < 30 % efficiency reported by other methods. Mössbauer spectroscopy and X-ray diffraction confirmed that the generated minerals are high-purity schwertmannite. Experimental and theoretical analyses revealed that in the presence of cathodic alkalinity, Fe(III) undergoes further hydrolysis to form [(H₂O)3Fe(OH)2(SO4)]- species, which are thermodynamically capable of spontaneous polymerization and mineralization. Furthermore, the photoreduction of [(H₂O)4Fe(SO4)2]- within the PEC system, followed by subsequent oxidation, plays a crucial role in facilitating Fe(III) mineralization. The PEC system also effectively transformed As(III) to As(V) and Cr(VI) to Cr(III) in AMD, promoting their immobilization in the resultant schwertmannite.
Collapse
Affiliation(s)
- Yang Wang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Ziyuan Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhang Yan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118, PR China
| | - Zhenchao Lei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Huanxin Ma
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
2
|
Chang T, Sun J, Li S, Li X, Liu J, Hu Y, Cheng H. Oxygen adsorption and activation control the photochemical activity of common iron oxyhydroxide polymorphs in mediating oxytetracycline degradation under visible light. J Colloid Interface Sci 2025; 683:565-577. [PMID: 39742738 DOI: 10.1016/j.jcis.2024.12.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/04/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025]
Abstract
The natural minerals with semiconducting properties possess photochemical activity through generating reactive oxygen species (ROSs) and affect the fate of adsorbed organic pollutants. Iron oxyhydroxides occur in different polymorphic structures under various geological and climatic conditions in natural environment. However, the difference in their photoactivity has not been well understood. This work elucidates the mechanism of light-induced generation of ROSs by common iron oxyhydroxide polymorphs, including goethite (α-FeOOH), akaganeite (β-FeOOH), lepidocrocite (γ-FeOOH), and feroxyhyte (δ-FeOOH), and the degradation of oxytetracycline (OTC) mediated by them. Under visible light irradiation, all these iron oxyhydroxide polymorphs generated superoxide radicals (O2-•), hydroxyl radicals (•OH), and H2O2. Among the ROSs, O2-•, whose concentrations in the photochemical systems of α-, β-, γ- and δ-FeOOH reached 4.25 × 10-4 ± 5.67 × 10-5, 2.29 × 10-4 ± 2.55 × 10-5, 6.2 × 10-4 ± 8.5 × 10-5 and 7.65 × 10-4 ± 5.67 × 10-5 μmol/L, respectively, played a dominant role in the degradation of OTC. The corresponding rate of OTC degradation in these photochemical systems were 0.054 ± 0.010, 0.015 ± 0.001, 0.338 ± 0.073, and 0.404 ± 0.016 min-1, respectively. A good linear relationship was observed between the steady-state concentrations of O2-• and OTC degradation rates in the photochemical systems of iron oxyhydroxide polymorphs. O2-• was primarily generated by the electron reduction of O2 on the conduction bands (CBs) of iron oxyhydroxide polymorphs, which was controlled by the surface adsorption and activation of O2. H2O2 and surface Fe2+ on iron oxyhydroxide polymorphs synergistically contributed to •OH generation through Fenton reaction. The generation of surface Fe2+ was determined by the geometrical configuration, crystallinity, and surface oxygen vacancies of iron oxyhydroxide polymorphs. These findings demonstrate the photochemical generation of ROSs in the presence of major iron oxyhydroxide polymorphs was primarily controlled by O2 adsorption and activation, leading to different activity in mediating the degradation of adsorbed organic pollutants.
Collapse
Affiliation(s)
- Ting Chang
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Jing Sun
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Shiwen Li
- Central Iron and Steel Research Institute Group, Beijing 100081, China
| | - Xian Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jue Liu
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, University of Geosciences (Beijing), Beijing 100083, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Wu P, Du X, Liu H, Liang J, Wang X, Tao X, Zhou J, Dang Z, Lu G. Iron-mineral-induced visible-light-catalytic degradation of BDE-47 enhanced by low-dose persulfate: Kinetics, mechanisms, and intervention of environmental factors. ENVIRONMENTAL RESEARCH 2025; 276:121477. [PMID: 40139632 DOI: 10.1016/j.envres.2025.121477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/11/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Iron minerals and visible light are ubiquitous in the environment, which have crucial effects on the fate and migration of organic pollutants during in-situ remediation. In this work, the role of iron minerals in visible light-activated persulfate for BDE-47 degradation was systematically investigated. Under visible light irradiation, low-dose persulfate (PS) (10 μM) is capable of achieving the rapid elimination of BDE-47 in the presence of iron minerals, and goethite exhibited the best performance among selected iron minerals. In Goe/PS/vis system, the reactive species involved in the degradation of BDE-47 included ·OH, SO4·-, O2·-, h+ (photo-generated hole), and e-. The existence of O2 and S2O82- led to the synergy of ROS generation derived from h+/e-. Four oxidized intermediates of BDE-47 with lower estimated toxicity were identified by high-resolution mass spectrometry (HRMS), suggesting that PS-based in-situ remediation driven by goethite and visible light can achieve deep mineralization and detoxification of BDE-47. In addition, the Goe/PS/vis system adapts to various co-existing anions and NOMs. Co-existing heavy metals facilitated BDE-47 removal. Heavy metal ions adsorbed on goethite are reduced to zero valent metal by photoelectron during irradiation, which further promotes electron transfer. While heavy metals entering the goethite lattice in the form of isomorphous substitution introduce oxygen vacancy, further promoting BDE-47 degradation. These findings reveal the critical role of natural iron minerals in PS-based in-situ remediation for polluted water and soils under solar irradiation and provide new ideas for developing efficient strategies for the combined contamination of PBDEs and heavy metals.
Collapse
Affiliation(s)
- Peiwen Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - He Liu
- South China Institute of Environmental Sciences Guangzhou, Guangzhou, 510655, China
| | - Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Cheng K, Li H, Laszakovits JR, Sharpless CM, Rosario-Ortiz F, McKay G. Probing the Photochemical Formation of Hydroxyl Radical from Dissolved Organic Matter: Insights into the H 2O 2-Dependent Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2245-2256. [PMID: 39818774 PMCID: PMC11800394 DOI: 10.1021/acs.est.4c10348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025]
Abstract
This study quantifies the contribution of the H2O2-dependent pathway to hydroxyl radical (•OH) production from the photolysis of dissolved organic matter (DOM). •OH formation rates were cross-validated using benzoate and terephthalate as probe compounds for diverse DOM sources (reference isolates and whole waters). Catalase addition revealed that the H2O2-dependent pathway accounts for 10-20% of the total •OH production in DOM isolate materials, but no significant correlation was observed between ambient iron (Fe) concentrations and H2O2-dependent •OH formation. This lack of correlation was likely due to lower total Fe levels in isolated materials, thus limiting the concentration of photochemically produced Fe(II) available for reaction with H2O2. Notably, the H2O2-dependent pathway contributed 11 ± 3% to •OH formation from Pony Lake fulvic acid, which had the lowest Fe content, implicating additional H2O2-driven formation mechanisms independent of Fe. Experiments with the DOM model compounds acetophenone and p-benzoquinone indicated no •OH production from triplet DOM reactions with H2O2. However, •OH formation rate increased 6-fold when H2O2 was reduced by ketyl radicals formed from the reaction between excited triplet acetophenone and 2,4,6-trimethylphenol. This study advances the knowledge of •OH production mechanisms from DOM photolysis, providing insight into the role of H2O2 in aquatic photochemical processes.
Collapse
Affiliation(s)
- Kai Cheng
- Zachry
Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hang Li
- Zachry
Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | | | - Charles M. Sharpless
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Fernando Rosario-Ortiz
- Department
of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Environmental
Engineering Program, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Garrett McKay
- Zachry
Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Yang L, Liu Y, Ge Q, Wang J, Wang R, You W, Wang W, Wang T, Zhang L. Atmospheric Hydroxyl Radical Route Revealed: Interface-Mediated Effects of Mineral-Bearing Microdroplet Aerosol. J Am Chem Soc 2025; 147:3371-3382. [PMID: 39824145 DOI: 10.1021/jacs.4c14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Hydroxyl radical (·OH) plays a crucial role in atmospheric chemistry, regulating the oxidative potential and aerosol composition. This study reveals an unprecedented source of ·OH in the atmosphere: mineral dust-bearing microdroplet aerosols. We demonstrate that Kaolin clay particles in microdroplet aerosols trigger rapid ·OH production upon solar irradiation, with rates reaching an order of at least 10-3 M s-1. This production rate is several orders of magnitude higher than that of the bulk phase (2.4 × 10-11 M s-1) and previously known pathways. On this basis, the surface-based interfacial ·OH production rate is estimated to be 8.9 × 10-5 mol m-2 s-1 at the air-water-solid interface of 1 μm sized aerosol particles. The enhanced ·OH formation is attributed to the unique features of air-water-solid interfaces, where the lifespan of photoinduced holes was significantly increased due to the presence of strong electric fields at the air-water interface. We further investigated the impacts of various environmental factors and aerosol properties on ·OH production, including light intensity, relative humidity, particle size, and pH. Our findings provide new insights into atmospheric photochemical processes mediated by mineral dust-bearing microdroplet aerosols, which are important contributors to ·OH source in the atmosphere. This work advances our understanding of atmospheric interfacial chemistry and its profound and lasting implications for air quality and climate.
Collapse
Affiliation(s)
- Le Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Jilun Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Runbo Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Wenbo You
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| |
Collapse
|
6
|
Lin L, Yuan B, Wu S, Su M, Li H, Zhang X, Zhang G, Hong H, Lu H, Liu J, Yan C. Arsenic(III) sequestration by terrestrial-derived soil protein: Roles of redox-active moieties and Fe(III). JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135775. [PMID: 39250861 DOI: 10.1016/j.jhazmat.2024.135775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Glomalin-related soil protein (GRSP) has demonstrated significant potential for water purification and remediation of heavy metals in soils; however, its redox reactivity for As(III) sequestration and the corresponding redox-active component are still poorly understood. This study investigated the photochemical properties of GRSP and its mechanism of oxidation/adsorption of As(III). The results showed that UV irradiation triggered electron transfer and the production of reactive oxygen species (ROS) in GRSP, thereby facilitating As(III) oxidation with promotion rates ranging from 43.34 % to 111.1 %. The oxidation of As(III) occurred both on the GRSP photoforming holes and in the ROS reaction from the oxygen reduction products of the photoforming electrons. OH• and H2O2 played an important role in the oxidation of As(III) by GRSP, especially under alkaline conditions. Moreover, the presence of Fe(III) in GRSP facilitated the formation of OH• and its the oxidation capacity towards As(III). The binding of As(III) to the -COOH, -OH, and -FeO groups on the GRSP surface occurred through surface complexation. Overall, these findings provided new insights into the roles of the redox-active moieties and Fe(III) on GRSP in the promoted oxidation of As(III), which would help to deepen our understanding of the migration and transformation of As(III) in soils.
Collapse
Affiliation(s)
- Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Shengjie Wu
- Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, PR China
| | - Manlin Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Xiaoting Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Guanglong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China.
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
7
|
Sun L, Wang T, Li B, Chen M, Wu J, Shang Z, Wu P, Dang Z, Zhu N. Sunlight-Driven Direct/Mediated Electron Transfer for Cr(VI) Reductive Sequestration on Dissolved Black Carbon-Ferrihydrite Coprecipitates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18379-18390. [PMID: 39363618 DOI: 10.1021/acs.est.4c08371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Surface runoff horizontally distributed chromium (Cr) pollution into various surface environments. Sunlight is a vital factor for the Cr cycle in the surface environment, which may be affected by photoactive substances such as ferrihydrite (Fh) and dissolved black carbon (DBC). Herein, sunlight-driven transformation dynamics of Cr species on DBC-Fh coprecipitates were studied. Under sunlight, the removal of aqueous Cr(VI) by DBC-Fh coprecipitates occurred through sunlight-driven reductive sequestration including adsorption, followed by surface reduction (pathway 1) and aqueous reduction, followed by precipitation (pathway 2). Additionally, coprecipitates with a higher DBC content exhibited a more effective reduction of both adsorbed (kapp,S_red) and aqueous Cr(VI) (kapp,A_red). Photoelectrons facilitated Cr(VI) reduction through direct electron transfer; notably, electron donating DBC promoted the production of photoelectrons by consuming photogenerated holes. Photogenerated Fe(II) species (mineral-phase and aqueous Fe(II)) mediated electron transfer for Cr(VI) reduction, which was reinforced via a ligand-to-metal charge transfer (LMCT) process between DBC-organic ligands and mineral Fe(III). Furthermore, ·O2- also mediated Cr(VI) reduction, although this impact was limited. Overall, this study demonstrates that photoelectrons and photogenerated electron mediators play a crucial role in Cr(VI) reductive sequestration on DBC-Fh coprecipitates, providing new insights into the geochemical cycle of Cr pollution in sunlight-influenced surface environments.
Collapse
Affiliation(s)
- Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tianming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bo Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhongbo Shang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Li X, Qu B, Wang J, Zhao H. Phototransformation of tetrabromobisphenol A bis (allyl ether) in an aqueous solution: Role of environmentally persistent free radicals. CHEMOSPHERE 2024; 365:143342. [PMID: 39293686 DOI: 10.1016/j.chemosphere.2024.143342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/07/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Tetrabromobisphenol A bis (allyl ether) (TBBPA-BAE) represents an extensively used brominated flame retardant (BFRs) in the production of many fields and their phototransformation in natural water is still unclear. The environmentally persistent free radicals (EPFRs) with preserved activities could exist in the environment for a long time and involve in the phototransformation of many organic pollutants. Here, the photodegradation of TBBPA-BAE with the degradation rate constant (k = 0.060 h-1) under simulate sunlight and the promoting effect of EPFRs on TBBPA-BAE photodegradation (k = 0.135 h-1) were investigated. According to the detected photogenerated electrons (e-) and singlet oxygen (1O2) rather than hydroxyl radicals (•OH) by the electron paramagnetic resonance (EPR), the effect mechanism may not be related to the typical •OH induced by EPFRs. The possible transformation pathways of the ether cleavage, hydrolysis and hydroxylation of propenyl bond and the debromination were proposed by the primary byproducts identified by UPLC-Q-Exactive Orbitrap MS. EPFRs caused a further debromination and ether cleavage and probably be due to EPFRs directly providing electrons to TBBPA-BAE which promoted the photodegradation of TBBPA-BAE, and their reaction mechanism needed further attention. Overall, this study provided useful information to understand the role of EPFRs on phototransformation of TBBPA-BAE in water.
Collapse
Affiliation(s)
- Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Baocheng Qu
- Dalian Ocean University, Dalian, 116023, China
| | - Jingyao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| |
Collapse
|
9
|
Xing C, Zou Y, Xu M, Ling L. Crystal Water in Minerals Modulates Oxygen Activation for Hydrogen Peroxide Photosynthesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16621-16631. [PMID: 39168907 DOI: 10.1021/acs.est.4c04691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Sunlight-responsive minerals contribute significantly to biogeochemical cycles by activating oxygen (O2) to generate reactive oxygen species (ROS). However, the role of crystal water, incorporated into minerals through hydration during rock cycles, in O2 activation remains largely unexplored. Here, we construct tungstite models containing oxygen vacancies to elucidate the modulation of mineral-based ROS dynamics by the synergy between oxygen vacancy and crystal water. Crystal water promotes the protonation process of superoxide anion radicals to produce hydrogen peroxide (H2O2) and alleviates its decomposition. This mineral-based H2O2 photosynthesis system efficiently eliminates organic pollutants in a sequential light-dark reaction. Furthermore, this synergy effect can extend to other metal oxide minerals such as TiO2, SnO2, CuO, ZnO, and Bi2O3. Our results illuminate an overlooked pathway for modulating the protonation process by immobilized water in hydrous minerals, playing a crucial role in ROS storage and migration and pollutant dynamics in a natural environment throughout the day/night cycle.
Collapse
Affiliation(s)
- Chao Xing
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yunjie Zou
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mingkai Xu
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lan Ling
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
10
|
Ma Z, Cheng H. Insights into the Photochemical Mechanism of Goethite: Roles of Different Types of Surface Hydroxyl Groups in Reactive Oxygen Species Generation and Fe(III) Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14812-14822. [PMID: 39118219 DOI: 10.1021/acs.est.4c03352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The surface photochemical activity of goethite, which occurs widely in surface soils and sediments, plays a crucial role in the environmental transformation of various pollutants and natural organic matter. This study systemically investigated the mechanism of different types of surface hydroxyl groups on goethite in generating reactive oxygen species (ROSs) and Fe(III) reduction under sunlight irradiation. Surface hydroxyl groups were found to induce photoreductive dissolution of Fe(III) at the goethite-water interface to produce Fe2+(aq), while promoting the production of ROSs. Substitution of the surface hydroxyl groups on goethite by fluoride significantly inhibited the photochemical activity of goethite, demonstrating their important role in photochemical activation of goethite. The results showed that the surface hydroxyl groups (especially the terminating hydroxyl groups, ≡FeOH) led to the formation of Fe(III)-hydroxyl complexes via ligand-metal charge transfer on the goethite surface upon photoexcitation, facilitating the production of Fe2+(aq) and •OH. The bridging hydroxyl groups (≡Fe2OH) were shown to mainly catalyze the production of H2O2, leading to the subsequent light-driven Fenton reaction to produce •OH. These findings provide important insights into the activation of molecular oxygen on the goethite surface driven by sunlight in the environment, and the corresponding degradation of anthropogenic and natural organic compounds caused by the generated ROSs.
Collapse
Affiliation(s)
- Zhipeng Ma
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Wang R, Wang A, Pan Y, Ni J, Deng Y, Tao Z, Liang X, Tang J, Tian X, Zha T, Liu D, Ma J. Construction of an S-scheme electron transfer channel in Cu 0/CuFe 2O 4 magnetic plate column reactor for the LEV degradation: New strategy of visible Photo-Fenton system application. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135173. [PMID: 39003812 DOI: 10.1016/j.jhazmat.2024.135173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The complicated loading process and easy falling off of powder catalysts still restrict the wide application of Photo-Fenton technology in practical water treatment. In this study, a magnetic fixed film plate column water treatment equipment is designed as a visible Photo-Fenton reactor to remove levofloxacin (LEV). The effect of magnetic force can ensure that the catalyst is firmly fixed, and the multi-level shallow column plate structure achieves full contact and efficient reaction between the catalyst and wastewater. Simultaneously, the Cu0/CuFe2O4 (STCCF) utilizes Cu0 to construct an S-scheme electron transfer channel, which improves the separation efficiency of photo-generated carriers and provides sufficient photo-generated electrons for the reduction of Fe (Ⅲ) and Cu (Ⅱ). The pseudo-first-order reaction kinetic constant k for the degradation of LEV in the visible Photo-Fenton system is 0.0349 min-1, which is 15.9 times that of the photocatalytic system and 4.8 times that of the Fenton system. After continuous operation for 72 h, the magnetic fixed film plate column reactor can still remove more than 90 % of LEV and 82 % of COD in the secondary effluent of simulated antibiotic pharmaceutical wastewater treatment process, and the effluent is stable and meets the standard. The magnetic fixed film plate column reactor can be used for advanced treatment of antibiotic pharmaceutical wastewater. This study provides a new insight into the application of the Photo-Fenton process.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Aiwen Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yunhao Pan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jiaxin Ni
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yingjie Deng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhe Tao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiongying Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jingrui Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xunming Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Tiancheng Zha
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
12
|
Pan Y, Rao Z, Yu W, Chen B, Chu C. Water Vapor Condensation Triggers Simultaneous Oxidation and Hydrolysis of Organic Pollutants on Iron Mineral Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12147-12154. [PMID: 38934559 DOI: 10.1021/acs.est.4c03195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Increasing worldwide contamination with organic chemical compounds is a paramount environmental challenge facing humanity. Once they enter nature, pollutants undergo transformative processes that critically shape their environmental impacts and associated risks. This research unveils previously overlooked yet widespread pathways for the transformations of organic pollutants triggered by water vapor condensation, leading to spontaneous oxidation and hydrolysis of organic pollutants. These transformations exhibit variability through either sequential or parallel hydrolysis and oxidation, contingent upon the functional groups within the organic pollutants. For instance, acetylsalicylic acid on the goethite surface underwent sequential hydrolysis and oxidation that first hydrolyzed to salicylic acid followed by hydroxylation oxidation of the benzene moiety driven by the hydroxyl radical (•OH). In contrast, chloramphenicol underwent parallel oxidation and hydrolysis, forming hydroxylated chloramphenicol and 2-amino-1-(4-nitrophenyl)-1,3-propanediol, respectively. The spontaneous oxidation and hydrolysis occurred consistently on three naturally abundant iron minerals with the key factors being •OH production capacity and surface binding strength. Given the widespread presence of iron minerals on Earth's surface, these spontaneous transformation paths could play a role in the fate and risks of organic pollutants of health concerns.
Collapse
Affiliation(s)
- Yishuai Pan
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zepeng Rao
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wanchao Yu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Zhang Z, Zhu G, Liu Y, Zhou X, Lin B, Qi Z, Zhang S, Yang Y, Li X, Jin R, Zheng M. Characteristics and degradation mechanisms of polychlorinated naphthalenes in surface soil in Yangtze River Delta, China. CHEMOSPHERE 2024; 360:142398. [PMID: 38789053 DOI: 10.1016/j.chemosphere.2024.142398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Both thermal and environmental processes are significant factors influencing the existing characteristics, e.g., congener distributions, and existing levels, of polychlorinated naphthalenes (PCNs) in the environment. Soil plays an important role in the life cycle of PCNs, but degradation of PCNs in soils has never been reported. In this study, we collected surface soil samples from 13 cities in the Yangtze River Delta, which is one of the most crowded areas of China and analyzed the samples for 75 PCNs. The long-range transportation from polluted areas was the major source for PCNs in remote areas, but the PCN profiles in remote areas reported in our previous studies were different from those in human settlement in this study, indicating there is a transformation of PCNs after emissions from anthropogenic activities. Two experiments were then designed to reveal the degradation mechanisms, including influencing factors, products, and pathways, of PCNs in surface soils. Based on the experiments, we found that the major factor driving the losses of PCNs in surface soils was volatilization, followed by photo irradiation and microbial metabolism. Under photo-irradiation, the PCN structures would be destroyed through a process of dechlorination followed by oxidation. In addition, the dechlorination pathways of PCNs have been established and found to be significantly influenced by the structure-related parameters.
Collapse
Affiliation(s)
- Zherui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guohua Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yahui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhou
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310000, China.
| | - Bingcheng Lin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ziyuan Qi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanshan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueyao Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Li S, Pang J, Han W, Chang T, Luo L, Li X, Liu J, Cheng H. Insights into sunlight-driven transformation of tetracycline by iron (hydr)oxides: The dominating role of self-generated hydrogen peroxide. WATER RESEARCH 2024; 258:121800. [PMID: 38796909 DOI: 10.1016/j.watres.2024.121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/01/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Iron (hydr)oxides are abundant in surface environment, and actively participate in the transformation of organic pollutants due to their large specific surface areas and redox activity. This work investigated the transformation of tetracycline (TC) in the presence of three common iron (hydr)oxides, hematite (Hem), goethite (Goe), and ferrihydrite (Fh), under simulated sunlight irradiation. These iron (hydr)oxides exhibited photoactivity and facilitated the transformation of TC with the initial phototransformation rates decreasing in the order of: Hem > Fh > Goe. The linear correlation between TC removal efficiency and the yield of HO• suggests that HO• dominated TC transformation. The HO• was produced by UV-induced decomposition of self-generated H2O2 and surface Fe2+-triggered photo-Fenton reaction. The experimental results indicate that the generation of HO• was controlled by H2O2, while surface Fe2+ was in excess. Sunlight-driven H2O2 production in the presence of the highly crystalline Hem and Goe occurred through a one-step two-electron reduction pathway, while the process was contributed by both O2-induced Fe2+ oxidation and direct reduction of O2 by electrons on the conduction band in the presence of the poorly crystalline Fh. These findings demonstrate that sunlight may significantly accelerate the degradation of organic pollutants in the presence of iron (hydr)oxides.
Collapse
Affiliation(s)
- Shiwen Li
- Central Iron and Steel Research Institute Group, Beijing 100081, China
| | - Jianming Pang
- Central Iron and Steel Research Institute Group, Beijing 100081, China
| | - Wei Han
- Central Iron and Steel Research Institute Group, Beijing 100081, China
| | - Ting Chang
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Lingen Luo
- Central Iron and Steel Research Institute Group, Beijing 100081, China
| | - Xian Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jue Liu
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Wang J, Wu B, Zheng X, Ma J, Yu W, Chen B, Chu C. Insights into the Crystallinity-Dependent Photochemical Productions of Reactive Oxygen Species from Iron Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10623-10631. [PMID: 38781516 DOI: 10.1021/acs.est.4c01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Iron minerals are widespread in earth's surface water and soil. Recent studies have revealed that under sunlight irradiation, iron minerals are photoactive on producing reactive oxygen species (ROS), a group of key species in regulating elemental cycling, microbe inactivation, and pollutant degradation. In nature, iron minerals exhibit varying crystallinity under different hydrogeological conditions. While crystallinity is a known key parameter determining the overall activity of iron minerals, the impact of iron mineral crystallinity on photochemical ROS production remains unknown. Here, we assessed the photochemical ROS production from ferrihydrites with different degrees of crystallinity. All examined ferrihydrites demonstrated photoactivity under irradiation, resulting in the generation of hydrogen peroxide (H2O2) and hydroxyl radical (•OH). The photochemical ROS production from ferrihydrites increased with decreasing ferrihydrite crystallinity. The crystallinity-dependent photochemical •OH production was primarily attributed to conduction band reduction reactions, with the reduction of O2 by conduction band electrons being the rate-limiting key process. Conversely, the crystallinity of iron minerals had a negligible influence on photon-to-electron conversion efficiency or surface Fenton-like activity. The difference in ROS productions led to a discrepant degradation efficiency of organic pollutants on iron mineral surfaces. Our study provides valuable insights into the crystallinity-dependent ROS productions from iron minerals in natural systems, emphasizing the significance of iron mineral photochemistry in natural sites with abundant lower-crystallinity iron minerals such as wetland water and surface soils.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Junye Ma
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Wanchao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Li S, Chen L, Wang J, Liu T, Li D, Yang Z, Xiao X, Chu C, Chen B. Integrative Active Sites of Cathode for Electron-Oxygen-Proton Coupling To Favor H 2O 2 Production in a Photoelectrochemical System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10072-10083. [PMID: 38810213 DOI: 10.1021/acs.est.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The oxygen reduction process generating H2O2 in the photoelectrochemical (PEC) system is milder and environmentally friendly compared with the traditional anthraquinone process but still lacks the efficient electron-oxygen-proton coupling interfaces to improve H2O2 production efficiency. Here, we propose an integrated active site strategy, that is, designing a hydrophobic C-B-N interface to refine the dearth of electron, oxygen, and proton balance. Computational calculation results show a lower energy barrier for H2O2 production due to synergistic and coupling effects of boron sites for O2 adsorption, nitrogen sites for H+ binding, and the carbon structure for electron transfer, demonstrating theoretically the feasibility of the strategy. Furthermore, we construct a hydrophobic boron- and nitrogen-doped carbon black gas diffusion cathode (BN-CB-PTFE) with graphite carbon dots decorated on a BiVO4 photoanode (BVO/g-CDs) for H2O2 production. Remarkably, this approach achieves a record H2O2 production rate (9.24 μmol min-1 cm-2) at the PEC cathode. The BN-CB-PTFE cathode exhibits an outstanding Faraday efficiency for H2O2 production of ∼100%. The newly formed h-BN integrative active site can not only adsorb more O2 but also significantly improve the electron and proton transfer. Unexpectedly, coupling BVO/g-CDs with the BN-CB-PTFE gas diffusion cathode also achieves a record H2O2 production rate (6.60 μmol min-1 cm-2) at the PEC photoanode. This study opens new insight into integrative active sites for electron-O2-proton coupling in a PEC H2O2 production system that may be meaningful for environment and energy applications.
Collapse
Affiliation(s)
- Shan Li
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Lei Chen
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian Wang
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tian Liu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dawei Li
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhi Yang
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Xiao
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Chiheng Chu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
17
|
Zhang X, Zhao Y, Wang Y, Qian H, Xing J, Joseph A, Rene ER, Li J, Zhu N. The interplay of hematite and photic biofilm triggers the acceleration of biotic nitrate removal. CHEMOSPHERE 2024; 358:142136. [PMID: 38692363 DOI: 10.1016/j.chemosphere.2024.142136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
The soil-water interface is replete with photic biofilm and iron minerals; however, the potential of how iron minerals promote biotic nitrate removal is still unknown. This study investigates the physiological and ecological responses of photic biofilm to hematite (Fe2O3), in order to explore a practically feasible approach for in-situ nitrate removal. The nitrate removal by photic biofilm was significantly higher in the presence of Fe2O3 (92.5%) compared to the control (82.8%). Results show that the presence of Fe2O3 changed the microbial community composition of the photic biofilm, facilitates the thriving of Magnetospirillum and Pseudomonas, and promotes the growth of photic biofilm represented by the extracellular polymeric substance (EPS) and the content of chlorophyll. The presence of Fe2O3 also induces oxidative stress (•O2-) in the photic biofilm, which was demonstrated by electron spin resonance spectrometry. However, the photic biofilm could improve the EPS productivity to prevent the entrance of Fe2O3 to cells in the biofilm matrix and mitigate oxidative stress. The Fe2O3 then promoted the relative abundance of Magnetospirillum and Pseudomonas and the activity of nitrate reductase, which accelerates nitrate reduction by the photic biofilm. This study provides an insight into the interaction between iron minerals and photic biofilm and demonstrates the possibility of combining biotic and abiotic methods to improve the in-situ nitrate removal rate.
Collapse
Affiliation(s)
- Xiguo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yanhui Zhao
- Changjiang Basin Ecology and Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Wuhan, 430010, China
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Haoliang Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Akaninyene Joseph
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Jizhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, 210008, China.
| |
Collapse
|
18
|
Shu X, Qin Z, Nie C, Zhang D, Du H, Zhang Q, Dang Z. Inhibition photooxidation of pyrite under illumination via altering photogenerated carrier migration pathways: Role of DTC-TETA surface passivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171988. [PMID: 38537811 DOI: 10.1016/j.scitotenv.2024.171988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
The oxidation of pyrite is the main cause of acidic mine drainage (AMD), which is a very serious environmental problem in numerous mining areas around the world. Previous studies have shown that passivation agents create a hydrophobic film on the surface of pyrite, effectively isolating oxygen and water. However, the presence of abundant sulfide minerals in tailings ponds may exacerbate AMD when exposed to solar radiation, due to the semiconductor properties of pyrite. It remains uncertain whether the current surface passivation coating can effectively prevent the oxidation of pyrite under light conditions. This paper is the first to investigate the passivation effect as well as the mechanism of surface passivation coating on pyrite under illumination from the perspective of materials science. The results demonstrated that the triethylenetetramine-bisdithiocarbamate (DTC-TETA) passivation coating on pyrite almost completely suppressed the photooxidation of pyrite under illumination by changing the migration path of photogenerated charge carriers. The formation of NC(S)2-Fe chelating groups provides atomic-level interface channels for DTC-TETA to transfer electrons to pyrite and creates a favorable reduction environment for pyrite. Besides, DTC-TETA coating greatly improves the electron-hole pairs recombination efficiency of pyrite, which significantly inhibits the photogenerated electron reduction of oxygen to generate reactive oxygen species (ROS). Moreover, DTC-TETA coating captures the photogenerated holes, avoiding direct oxidation of pyrite by holes. Density functional theory (DFT) calculations revealed that the DTC-TETA coating increases the adsorption energy barrier for oxygen and water. The results extend the existing knowledge on passivation mechanisms on pyrite and hold significant implications for the future screening, evaluation, and practical application of surface passivating agents.
Collapse
Affiliation(s)
- Xiaohua Shu
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - ZiQi Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - Changda Nie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - Dinghua Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - Haijie Du
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China.
| | - Qian Zhang
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, Guangxi 541000, PR China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
19
|
Zhu L, Wang H, Sun J, Lu L, Li S. Sulfur Vacancies in Pyrite Trigger the Path to Nonradical Singlet Oxygen and Spontaneous Sulfamethoxazole Degradation: Unveiling the Hidden Potential in Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6753-6762. [PMID: 38526226 DOI: 10.1021/acs.est.3c09316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Pharmaceutical residues in sediments are concerning as ubiquitous emerging contaminants. Pyrite is the most abundant sulfide minerals in the estuarine and coastal sediments, making it a major sink for pharmaceutical pollutants such as sulfamethoxazole (SMX). However, research on the adsorption and redox behaviors of SMX on the pyrite surface is limited. Here, we investigated the impact of the nonphotochemical process of pyrite on the fate of coexisting SMX. Remarkably, sulfur vacancies (SVs) on pyrite promoted the generation of nonradical species (hydrogen peroxide, H2O2 and singlet oxygen, 1O2), thereby exhibiting prominent SMX degradation performance under darkness. Nonradical 1O2 contributed approximately 73.1% of the total SMX degradation. The SVs with high surrounding electron density showed an advanced affinity for adsorbing O2 and then initiated redox reactions in the sediment electron-storing geobattery pyrite, resulting in the extensive generation of H2O2 through a two-electron oxygen reduction pathway. Surface Fe(III) (hydro)oxides on pyrite facilitated the decomposition of H2O2 to 1O2 generation. Distinct nonradical products were observed in all investigated estuarine and coastal samples with the concentrations of H2O2 ranging from 1.96 to 2.94 μM, while the concentrations of 1O2 ranged from 4.63 × 10-15 to 8.93 × 10-15 M. This dark-redox pathway outperformed traditional photochemical routes for pollutant degradation, broadening the possibilities for nonradical species use in estuarine and coastal sediments. Our study highlighted the SV-triggered process as a ubiquitous yet previously overlooked source of nonradical species, which offered fresh insights into geochemical processes and the dynamics of pollutants in regions of frequent redox oscillations and sulfur-rich sediments.
Collapse
Affiliation(s)
- Lijun Zhu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Huan Wang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Jian Sun
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Shaofeng Li
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
20
|
Liu L, Zheng N, Yu Y, Zheng Z, Yao H. Soil carbon and nitrogen cycles driven by iron redox: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170660. [PMID: 38325492 DOI: 10.1016/j.scitotenv.2024.170660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Soil carbon and nitrogen cycles affect agricultural production, environmental quality, and global climate. Iron (Fe), regarded as the most abundant redox-active metal element in the Earth's crust, is involved in a biogeochemical cycle that includes Fe(III) reduction and Fe(II) oxidation. The redox reactions of Fe can be linked to the carbon and nitrogen cycles in soil in various ways. Investigating the transformation processes and mechanisms of soil carbon and nitrogen species driven by Fe redox can provide theoretical guidance for improving soil fertility, and addressing global environmental pollution as well as climate change. Although the widespread occurrence of these coupling processes in soils has been revealed, explorations of the effects of Fe redox on soil carbon and nitrogen cycles remain in the early stages, particularly when considering the broader context of global climate and environmental changes. The key functional microorganisms, mechanisms, and contributions of these coupling processes to soil carbon and nitrogen cycles have not been fully elucidated. Here, we present a systematic review of the research progress on soil carbon and nitrogen cycles mediated by Fe redox, including the underlying reaction processes, the key microorganisms involved, the influencing factors, and their environmental significance. Finally, some unresolved issues and future perspectives are addressed. This knowledge expands our understanding of the interconnected cycles of Fe, carbon and nitrogen in soils.
Collapse
Affiliation(s)
- Lihu Liu
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
| | - Zhaozhi Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, New South Wales 2052, Australia
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| |
Collapse
|
21
|
Zhou C, Wu B, Zheng X, Chen B, Chu C. Wavelength-dependent direct and indirect photochemical transformations of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170414. [PMID: 38272084 DOI: 10.1016/j.scitotenv.2024.170414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Sunlight-induced photochemical transformations greatly affect the persistence of organic pollutants in natural environment. Whereas sunlight intensity is well-known to affect pollutant phototransformation rates, the reliance of pollutant phototransformation kinetics on sunlight spectrum remains poorly understood, which may greatly vary under different spatial-temporal, water matrix, and climatic conditions. Here, we systematically assessed the wavelength-dependent direct and indirect phototransformations of 12 organic pollutants. Their phototransformation rates dramatically decreased with light wavelength increasing from 375 to 632 nm, with direct photolysis displaying higher wavelength-dependence than indirect photolysis. Remarkably, UV light dominated both direct (90.4-99.5 %) and indirect (64.6-98.7 %) photochemical transformations of all investigated organic pollutants, despite its minor portion in sunlight spectrum (e.g., 6.5 % on March 20 at the equator). Based on wavelength-dependent rate constant spectrum, the predicted phototransformation rate of chloramphenicol (4.5 ± 0.7 × 10-4 s-1) agreed well with the observed rate under outdoor sunlight irradiation (4.3 ± 0.0 × 10-4 s-1), and there is no significant difference between the predicted rate and the observed rate (p-value = 0.132). Moreover, rate constant and quantum yield coefficient (QYC) spectrum could be applied for facilely investigate the influence of spectral changes on the phototransformation of pollutants under varying spatial-temporal (e.g., season, latitude) and climatic conditions (e.g., cloud cover). Our study highlights the wavelength-dependence of both direct and indirect phototransformation of pollutants, and the UV part of natural sunlight plays a decisive role in the phototransformation of pollutants.
Collapse
Affiliation(s)
- Chong Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
22
|
Xu Z, Tsang DC. Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:59-76. [PMID: 38318344 PMCID: PMC10840363 DOI: 10.1016/j.eehl.2023.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024]
Abstract
Soil, the largest terrestrial carbon reservoir, is central to climate change and relevant feedback to environmental health. Minerals are the essential components that contribute to over 60% of soil carbon storage. However, how the interactions between minerals and organic carbon shape the carbon transformation and stability remains poorly understood. Herein, we critically review the primary interactions between organic carbon and soil minerals and the relevant mechanisms, including sorption, redox reaction, co-precipitation, dissolution, polymerization, and catalytic reaction. These interactions, highly complex with the combination of multiple processes, greatly affect the stability of organic carbon through the following processes: (1) formation or deconstruction of the mineral-organic carbon association; (2) oxidative transformation of the organic carbon with minerals; (3) catalytic polymerization of organic carbon with minerals; and (4) varying association stability of organic carbon according to the mineral transformation. Several pieces of evidence related to the carbon turnover and stability during the interaction with soil minerals in the real eco-environment are then demonstrated. We also highlight the current research gaps and outline research priorities, which may map future directions for a deeper mechanisms-based understanding of the soil carbon storage capacity considering its interactions with minerals.
Collapse
Affiliation(s)
- Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C.W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
23
|
Shu Z, Liu Q, Liu E, Pan Z, Yan S, Zhang L, Song W, Wang Z. Overlooked role of aqueous chromate (VI) as a photosensitizer in enhancing the photochemical reactivity of ferrihydrite and production of hydroxyl radical. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133557. [PMID: 38309168 DOI: 10.1016/j.jhazmat.2024.133557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
The reactive oxygen species (ROS) photochemically generated from natural iron minerals have gained significant attention. Amidst the previous studies on the impact of heavy metal ions on ROS generation, our study addresses the role of the anion Cr(VI), with its intrinsic photoactivity, in influencing ROS photochemical generation with the co-presence of minerals. We investigated the transformation of inorganic/organic pollutants (Cr(VI) and benzoic acid) at the ferrihydrite interface, considering sunlight-mediated conversion processes (300-1000 nm). Increased photochemical reactivity of ferrihydrite was observed in the presence of aqueous Cr(VI), acting as a photosensitizer. Meanwhile, a positive correlation between hydroxyl radical (•OH) production and concentrations of aqueous Cr(VI) was observed, with a 650% increase of •OH generation at 50 mg L-1 Cr(VI) compared to systems without Cr(VI). Our photochemical batch experiments elucidated three potential pathways for •OH photochemical production under varying wet chemistry conditions: (1) ferrihydrite hole-mediated pathway, (2) chromium intermediate O-I-mediated pathway, and (3) chromium intermediates CrIV/V-mediated pathway. Notably, even in the visible region (> 425 nm), the promotion of aqueous Cr(VI) on •OH accumulation was observed in the presence of ferrihydrite and TiO2 suspensions, attributed to Cr(VI) photosensitization at the mineral interface. This study sheds light on the overlooked role of aqueous Cr(VI) in the photochemical reactivity of minerals, thereby enhancing our understanding of pollutant fate in acid mining-impacted environments.
Collapse
Affiliation(s)
- Zhipeng Shu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qiuyao Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Enyang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China.
| | - Shuwen Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Weihua Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
24
|
Tan M, Zheng X, Yu W, Chen B, Chu C. Facet-Dependent Productions of Reactive Oxygen Species from Pyrite Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:432-439. [PMID: 38111081 DOI: 10.1021/acs.est.3c06105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Reactive oxygen species (ROS) are widespread in nature and play central roles in numerous biogeochemical processes and pollutant dynamics. Recent studies have revealed ROS productions triggered by electron transfer from naturally abundant reduced iron minerals to oxygen. Here, we report that ROS productions from pyrite oxidation exhibit a high facet dependence. Pyrites with various facet compositions displayed distinct efficiencies in producing superoxide (O2• -), hydrogen peroxide (H2O2), and hydroxyl radical (•OH). The 48 h •OH production rates varied by 3.1-fold from 11.7 ± 0.4 to 36.2 ± 0.6 nM h-1, showing a strong correlation with the ratio of the {210} facet. Such facet dependence in ROS productions primarily stems from the different surface electron-donating capacities (2.2-8.6 mmol e- g-1) and kinetics (from 1.2 × 10-4 to 5.8 × 10-4 s-1) of various faceted pyrites. Further, the Fenton-like activity also displayed 10.1-fold variations among faceted pyrites, contributing to the facet depedence of •OH productions. The facet dependence of ROS production can greatly affect ROS-driven pollutant transformations. As a paradigm, the degradation rates of carbamazepine, phenol, and bisphenol A varied by 3.5-5.3-fold from oxidation of pyrites with different facet compositions, where the kinetics were in good agreement with the pyrite {210} facet ratio. These findings highlight the crucial role of facet composition in determining ROS production and subsequent ROS-driven reactions during iron mineral oxidation.
Collapse
Affiliation(s)
- Mengxi Tan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Wanchao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
25
|
Meng FL, Zhang X, Hu Y, Sheng GP. New Barrier Role of Iron Plaque: Producing Interfacial Hydroxyl Radicals to Degrade Rhizosphere Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:795-804. [PMID: 38095914 DOI: 10.1021/acs.est.3c08132] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Iron plaque, as a natural barrier between rice and soil, can reduce the accumulation of pollutants in rice by adsorption, contributing to the safe production of rice in contaminated soil. In this study, we unveiled a new role of iron plaque, i.e., producing hydroxyl radicals (·OH) by activating root-secreted oxygen to degrade pollutants. The ·OH was produced on the iron plaque surface and then diffused to the interfacial layer between the surface and the rhizosphere environment. The iron plaque activated oxygen via a successive three-electron transfer to produce ·OH, involving superoxide and hydrogen peroxide as the intermediates. The structural Fe(II) in iron plaque played a dominant role in activating oxygen rather than the adsorbed Fe(II), since the structural Fe(II) was thermodynamically more favorable for oxygen activation. The oxygen vacancies accompanied by the structural Fe(II) played an important role in oxygen activation to produce ·OH. The interfacial ·OH selectively degraded rhizosphere pollutants that could be adsorbed onto the iron plaque and was less affected by the rhizosphere environments than the free ·OH. This study uncovered the oxidative role of iron plaque mediated by its produced ·OH, reshaping our understanding of the role of iron plaque as a barrier for rice.
Collapse
Affiliation(s)
- Fan-Li Meng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
26
|
Wang L, Zhou JC, Li ZH, Zhang X, Leung KMY, Yuan L, Sheng GP. Facet-Specific Photocatalytic Degradation of Extracellular Antibiotic Resistance Genes by Hematite Nanoparticles in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21835-21845. [PMID: 38085064 DOI: 10.1021/acs.est.3c06571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persistence of extracellular antibiotic resistance genes (ARGs) in aquatic environments has attracted increasing attention due to their potential threat to public health and the environment. However, the fate of extracellular ARGs in receiving water remains largely unknown. This study investigated the influence of hematite nanoparticles, a widespread natural mineral, on the photodegradation of extracellular ARGs in river water. Results showed that under exposure to visible light, hematite nanoparticles, at environmental concentrations, resulted in a 3-5 orders of magnitude reduction in extracellular ARGs. This photodegradation of extracellular ARGs is shown to be facet-dependent; the (001) facet of hematite demonstrates a higher removal rate than that of the (100) facet, which is ascribed to its enhanced adsorption capability and higher hydroxyl radical (•OH) production. Density functional theory (DFT) calculations corroborate this finding, indicating elevated iron density, larger adsorption energy, and lower energy barrier of •OH formation on the (001) facet, providing more active sites and •OH generation for extracellular ARG interaction. Gel electrophoresis and atomic force microscopy analyses further confirm that the (001) facet causes more substantial damage to extracellular ARGs than the (100) facet. These findings pave the way for predicting the photodegradation efficiency of hematite nanoparticles with varied facets, thereby shedding light on the inherent self-purification capacity for extracellular ARGs in both natural and engineered aquatic environments.
Collapse
Affiliation(s)
- Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jing-Chen Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
27
|
Zhang J, Lin Z, Yu Z, Zhang Y, Liang D, Chen Y, Chen Y, Chen P, Liu H, Lv W, Liu G. Simplified synthesis of direct Z-scheme Bi 2WO 6/PhC 2Cu heterojunction that shows enhanced photocatalytic degradation of 2,4,6-TCP: Kinetic study and mechanistic insights. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132065. [PMID: 37467607 DOI: 10.1016/j.jhazmat.2023.132065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
For this work, we employed n-type Bi2WO6 and p-type PhC2Cu to formulate a direct Z-scheme Bi2WO6/PhC2Cu (PCBW) photocatalyst via simplified ultrasonic stirring technique. An optimal 0.6PCBW composite exhibited the capacity to rapidly photodegrade 2,4,6-TCP (98.6% in 120 min) under low-power blue LED light, which was 8.53 times and 12.53 times faster than for pristine PhC2Cu and Bi2WO6, respectively. Moreover, electron spin resonance (ESR), time-resolved PL spectra, and quantitative ROS tests indicated that the PCBW enhanced the separation capacity of photocarriers. It also more readily associated with dissolved oxygen in water to generate reactive oxygen species (ROS). Among them, the ability of PCBW to produce ·O2- in one hour was 12.07 times faster than for pure PhC2Cu. In addition, the H2O2 formation rate and apparent quantum efficiency of PCBW are 10.73 times that of PhC2Cu, which indicates that PCBW not only has excellent photocatalytic performance, but also has outstanding ROS production ability. Furthermore, Ag photodeposition, in situ X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations were utilized to determine the photogenerated electron migration paths in the PCBW, which systematically confirmed that Z-scheme heterojunction were successfully formed. Finally, based on the intermediate products, three potential 2,4,6-TCP degradation pathways were proposed.
Collapse
Affiliation(s)
- Jinfan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zili Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongshun Yu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yudan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Danluo Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingyi Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Haijin Liu
- Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Wenying Lv
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guoguang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|