1
|
Yang Z, Peng L, Yang L, Fu M, Ye D, Chen P. Low-temperature NH 3 abatement via selective oxidation over a supported copper catalyst with high Cu + abundance. J Environ Sci (China) 2024; 143:12-22. [PMID: 38644010 DOI: 10.1016/j.jes.2023.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 04/23/2024]
Abstract
Selective catalytic NH3-to-N2 oxidation (NH3-SCO) is highly promising for abating NH3 emissions slipped from stationary flue gas after-treatment devices. Its practical application, however, is limited by the non-availability of low-cost catalysts with high activity and N2 selectivity. Here, using defect-rich nitrogen-doped carbon nanotubes (NCNT-AW) as the support, we developed a highly active and durable copper-based NH3-SCO catalyst with a high abundance of cuprous (Cu+) sites. The obtained Cu/NCNT-AW catalyst demonstrated outstanding activity with a T50 (i.e. the temperature to reach 50% NH3 conversion) of 174°C in the NH3-SCO reaction, which outperformed not only the Cu catalyst supported on N-free O-functionalized CNTs (OCNTs) or NCNT with less surface defects, but also those most active Cu catalysts in open literature. Reaction kinetics measurements and temperature-programmed surface reactions using NH3 as a probe molecule revealed that the NH3-SCO reaction on Cu/NCNT-AW follows an internal selective catalytic reaction (i-SCR) route involving nitric oxide (NO) as a key intermediate. According to mechanistic investigations by X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray absorption spectroscopy, the superior NH3-SCO performance of Cu/NCNT-AW originated from a synergy of surface defects and N-dopants. Specifically, surface defects promoted the anchoring of CuO nanoparticles on N-containing sites and, thereby, enabled efficient electron transfer from N to CuO, increasing significantly the fraction of SCR-active Cu+ sites in the catalyst. This study puts forward a new idea for manipulating and utilizing the interplay of defects and N-dopants on carbon surfaces to fabricate Cu+-rich Cu catalysts for efficient abatement of slip NH3 emissions via selective oxidation.
Collapse
Affiliation(s)
- Zhiming Yang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Lin Peng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Leneng Yang
- Guangdong Chengyi Environmental Technology Corp., Shaoguan 512158, China
| | - Mingli Fu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Chen D, Khetan A, Lei H, Rizzotto V, Yang JY, Jiang J, Sun Q, Peng B, Chen P, Palkovits R, Ye D, Simon U. Copper Site Motion Promotes Catalytic NO x Reduction under Zeolite Confinement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16121-16130. [PMID: 37842921 DOI: 10.1021/acs.est.3c03422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Ammonia-mediated selective catalytic reduction (NH3-SCR) is currently the key approach to abate nitrogen oxides (NOx) emitted from heavy-duty lean-burn vehicles. The state-of-art NH3-SCR catalysts, namely, copper ion-exchanged chabazite (Cu-CHA) zeolites, perform rather poorly at low temperatures (below 200 °C) and are thus incapable of eliminating effectively NOx emissions under cold-start conditions. Here, we demonstrate a significant promotion of low-temperature NOx reduction by reinforcing the dynamic motion of zeolite-confined Cu sites during NH3-SCR. Combining complex impedance-based in situ spectroscopy (IS) and extended density-functional tight-binding molecular dynamics simulation, we revealed an environment- and temperature-dependent nature of the dynamic Cu motion within the zeolite lattice. Further coupling in situ IS with infrared spectroscopy allows us to unravel the critical role of monovalent Cu in the overall Cu mobility at a molecular level. Based on these mechanistic understandings, we elicit a boost of NOx reduction below 200 °C by reinforcing the dynamic Cu motion in various Cu-zeolites (Cu-CHA, Cu-ZSM-5, Cu-Beta, etc.) via facile postsynthesis treatments, either in a reductive mixture at low temperatures (below 250 °C) or in a nonoxidative atmosphere at high temperatures (above 450 °C).
Collapse
Affiliation(s)
- Dongdong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Abhishek Khetan
- Multiscale Modelling of Heterogeneous Catalysis in Energy Systems, RWTH Aachen University, Schinkelstrasse 8, 52062 Aachen, Germany
| | - Huarong Lei
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen Germany
| | - Valentina Rizzotto
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen Germany
| | - Jia-Yue Yang
- Optics & Thermal Radiation Research Center, Shandong University, 266237 Qingdao, China
| | - Jiuxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Qiming Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Peirong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Regina Palkovits
- Chair of Heterogeneous Catalysis and Chemical Technology, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Daiqi Ye
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen Germany
| |
Collapse
|
3
|
Lei H, Chen D, Yang JY, Khetan A, Jiang J, Peng B, Simon U, Ye D, Chen P. Revealing the Formation and Reactivity of Cage-Confined Cu Pairs in Catalytic NO x Reduction over Cu-SSZ-13 Zeolites by In Situ UV-Vis Spectroscopy and Time-Dependent DFT Calculation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12465-12475. [PMID: 37556316 DOI: 10.1021/acs.est.3c00458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The low-temperature mechanism of chabazite-type small-pore Cu-SSZ-13 zeolite, a state-of-the-art catalyst for ammonia-assisted selective reduction (NH3-SCR) of toxic NOx pollutants from heavy-duty vehicles, remains a debate and needs to be clarified for further improvement of NH3-SCR performance. In this study, we established experimental protocols to follow the dynamic redox cycling (i.e., CuII ↔ CuI) of Cu sites in Cu-SSZ-13 during low-temperature NH3-SCR catalysis by in situ ultraviolet-visible spectroscopy and in situ infrared spectroscopy. Further integrating the in situ spectroscopic observations with time-dependent density functional theory calculations allows us to identify two cage-confined transient states, namely, the O2-bridged Cu dimers (i.e., μ-η2:η2-peroxodiamino dicopper) and the proximately paired, chemically nonbonded CuI(NH3)2 sites, and to confirm the CuI(NH3)2 pair as a precursor to the O2-bridged Cu dimer. Comparative transient experiments reveal a particularly high reactivity of the CuI(NH3)2 pairs for NO-to-N2 reduction at low temperatures. Our study demonstrates direct experimental evidence for the transient formation and high reactivity of proximately paired CuI sites under zeolite confinement and provides new insights into the monomeric-to-dimeric Cu transformation for completing the Cu redox cycle in low-temperature NH3-SCR catalysis over Cu-SSZ-13.
Collapse
Affiliation(s)
- Huarong Lei
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Dongdong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Jia-Yue Yang
- Optics & Thermal Radiation Research Center, Shandong University, Qingdao 266237 China
| | - Abhishek Khetan
- Fuel Science Center, RWTH Aachen University, Schinkelstr. 8, 52074 Aachen, Germany
| | - Jiuxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275 China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, Bochum 44780 Germany
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- Fuel Science Center, RWTH Aachen University, Schinkelstr. 8, 52074 Aachen, Germany
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| |
Collapse
|
4
|
Li Y, Chen D, Xu X, Wang X, Kang R, Fu M, Guo Y, Chen P, Li Y, Ye D. Cold-Start NO x Mitigation by Passive Adsorption Using Pd-Exchanged Zeolites: From Material Design to Mechanism Understanding and System Integration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3467-3485. [PMID: 36802541 DOI: 10.1021/acs.est.2c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It remains a major challenge to abate efficiently the harmful nitrogen oxides (NOx) in low-temperature diesel exhausts emitted during the cold-start period of engine operation. Passive NOx adsorbers (PNA), which could temporarily capture NOx at low temperatures (below 200 °C) and release the stored NOx at higher temperatures (normally 250-450 °C) to downstream selective catalytic reduction unit for complete abatement, hold promise to mitigate cold-start NOx emissions. In this review, recent advances in material design, mechanism understanding, and system integration are summarized for PNA based on palladium-exchanged zeolites. First, we discuss the choices of parent zeolite, Pd precursor, and synthetic method for the synthesis of Pd-zeolites with atomic Pd dispersions, and review the effect of hydrothermal aging on the properties and PNA performance of Pd-zeolites. Then, we show how different experimental and theoretical methodologies can be integrated to gain mechanistic insights into the nature of Pd active sites, the NOx storage/release chemistry, as well as the interactions between Pd and typical components/poisons in engine exhausts. This review also gathers several novel designs of PNA integration into modern exhaust after-treatment systems for practical application. At the end, we discuss the major challenges, as well as important implications, for the further development and real application of Pd-zeolite-based PNA in cold-start NOx mitigation.
Collapse
Affiliation(s)
- Ying Li
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Dongdong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Xin Xu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Xinyu Wang
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Running Kang
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Mingli Fu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Yanbing Guo
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, 430079 Wuhan, China
| | - Peirong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Yongdan Li
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Daiqi Ye
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| |
Collapse
|